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Abstract A brief overview of recent experimental
research on coherent optical fiber transmission systems at
Queen’s University is presented. Exemplary results are
described that exploit real-time signal processing to assess
the impact of cascaded optical filtering.1)
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1 Introduction

Modern optical fiber transmission systems utilize advances
in digital signal processing (DSP) and digital-to-analog
converters (DACs) in the transmitter, and analog-to-digital
converters (ADCs) and DSP in the receiver [1]. Modulated
optical signals are generated with precise control of the
amplitude and phase, thus allowing for significant
increases in the amount of digital data transmitted by
each channel. Moreover, each channel consists of two
orthogonally polarized signals with the same carrier
frequency, thereby doubling the per-channel bit rate. In
the receiver, the combination of coherent detection, ADCs
and DSP allows for implementing functions necessary to
recover the transmitted information (e.g., resolving the two
dual-polarization (DP) signals and compensating for
transmission impairments).
In commercial systems, the DSP and DACs/ADCs are

realized as complex and expensive application specific
integrated circuits (ASICs). ASIC functionality is fre-
quently emulated by using a computer for off-line signal
processing and an arbitrary waveform generator to act as
the DACs by converting stored sample values for the
digital signals to analog electrical drive signals that are
applied to a DP in-phase/quadrature optical modulator. The
received signal is detected using a coherent receiver, four-

channel real-time sampling oscilloscope to perform the
analog-to-digital conversion, and off-line signal proces-
sing. This approach has the advantage of supporting
exploratory and applied research on DSP algorithms for
the transmitter and/or receiver. The real-time signal
processing of an ASIC can be used to assess the impact
of transmission impairments on system performance by
taking advantage of the rapid acquisition of results.
Recent research conducted at Queen’s University has

addressed topics related to transmission impairments and
performance characterization. These topics include the
following.
An efficient procedure has been presented for evaluating

the performance of multidimensional modulation formats
in terms of the achievable information rate. It allows the
explicit properties of signal constellations to be captured
and is applicable to fully loaded dense wavelength division
multiplexed transmission systems. The efficiency of the
procedure facilitated formulating multidimensional quad-
rature-amplitude-modulation (QAM) constellation subset
selection as a combinatorial optimization problem [2]. The
approach allows obtaining a polarization balanced (PB)
version of polarization-switched quaternary phase shift
keying (PS-QPSK). PB-PS-QPSK is an eight-dimensional
(8D) polarization balanced format; the signal vector
extends over two consecutive time slots and satisfies

Am,xA
*
m,y þ Amþ1,xA

*
mþ1,y ¼ 0,

where Am,x and Am,y are the symbol sequences for the X-
and Y-polarization signals. For dispersion managed links,
polarization crosstalk can be mitigated if the constellation
exhibits this temporal correlation. The PB-PS-QPSK
format has the same constellation entropy (6 bits/8D
symbol) and power efficiency as the PS-QPSK format. The
advantage for the PB-PS-QPSK format over the PS-QPSK
format is shown in Fig. 1 for 41 channel nonlinear
transmission over a 10000 km dispersion managed link at
35 Gbaud. The dependence of the achievable information
rate (AIR) on the per-channel launch power indicates
increases of 0.09 bits/8D symbol at optimum power and
0.25 bits/8D symbol at – 3 dBm for the PB-PS-QPSK
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format compared to the PS-QPSK format.
A comparative assessment of a nonlinear pre-distorter

(NLPD) at the transmitter, and a maximum-a-posteriori
(MAP) probability detector, time-domain Volterra non-
linear equalizer (VNLE), or sparse-VNLE at the receiver
has been presented for compensating pattern-dependent
distortion that can occur in high symbol rate transmitters
and receivers. Experimental results were obtained for a 1
Tb/s DP 16-QAM superchannel signal with three sub-
carriers [3]. For transmission over 1500 km of single-mode
fiber, the dependence of the bit error ratio (BER) on launch
power is shown in Fig. 2 for the four compensation

techniques. The launch power ranges for a BER below the
forward error correction coding threshold BER of 1.9 ´
10–2 are 2.1, 2.3, 2.8 and 3.2 dB for the sparse-VNLE,
VNLE, MAP detector, and NLPD, respectively.
Balanced heterodyne detection and a gated microwave

spectrum analyzer have been used to precisely measure the
spectral broadening due to intra-channel fiber nonlinea-
rities. Polarization resolved spectra for a 200 Gb/s DP 16-
QAM signal have been quantified in terms of the spectral
edge power which serves as a useful metric for capturing
the effects of both fiber nonlinearities and amplified
spontaneous emission noise [4]. Figure 3 shows measure-
ments of the high frequency edge of the signal spectra. The
pulse shape for each polarization component was square-
root raised-cosine with a roll-off factor of 0.05. Fiber
nonlinearities cause broadening of the spectrum for a
launch power of 6 dBm.
The performance implications of passband impairments

and bandwidth narrowing caused by the cascading of
optical filters in reconfigurable optical add-drop multi-
plexers (ROADMs) have been investigated using a 100
Gb/s DP QPSK transceiver. To determine the impact on
system margins, a methodology based on extreme value
statistics was used [5]. This last topic is described in more
detail.
The impact of cascaded filtering on system performance

and techniques to mitigate the filtering penalties have been
assessed experimentally using both offline signal proces-
sing [6–15] and real-time signal processing [16–23]. The
experiments used either a recirculating loop to repeatedly
apply an optical signal to the same optical filter(s) [7–
11,14,18], or straight-line cascades of distinct optical filters
[6,7,16,17,19,20,23]. The performance implications of 1)
passband impairments and bandwidth narrowing [21] and

Fig. 1 Dependence of estimated 8D AIR on launch power for
PB-PS-QPSK and PS-QPSK for 41 channel nonlinear transmis-
sion over a 10000 km dispersion managed link at 35 Gbaud. ©
2018 IEEE. Reprinted, with permission, from IEEE/OSA Journal
of Lightwave Technology

Fig. 2 Dependence of the BER on launch power for a 1.206 Tb/s
superchannel signal and transmission over 1500 km of single-
mode fiber with a NLPD, MAP detector, VNLE and sparse-VNLE.
© 2016 IEEE. Reprinted, with permission, from IEEE Photonics
Technology Letters

Fig. 3 Normalized measured spectra for a 224 Gb/s DP 16-QAM
signal, X-polarization component. Resolution bandwidth of 300
kHz, video bandwidth of 300 kHz. © 2016 IEEE. Reprinted, with
permission, from IEEE Photonics Technology Letters
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2) bandwidth narrowing and center frequency offset [22]
have recently been investigated by considering emulated
realizations of the cascaded response and real-time signal
processing. Emulation of the overall cascaded filter
response allows a relatively large number of possible
realizations to be considered.

2 Methodology and experiment

The overall passband responses for a cascade of ten filters
were generated offline. The passband impairment for each
filter is characterized by a slope about the carrier frequency
with amplitude As, and ripple with amplitude, frequency
and phase offset Ar, fr and fr, respectively. The phase
response has a negligible effect for cases of interest and is
neglected [24]. Randomly selected passband impairments
were applied to each of the ten filters in a cascade. As was
uniformly distributed on the interval [ –Rs, Rs] with Rs =
0.25 dB/50-GHz and Ar was uniformly distributed on the
interval [0.005, Rr] with Rr = 0.02. fr was set to 50.3 GHz
and fr was uniformly distributed on the interval [0, 2p].
The overall passband response for the cascaded filters was
numerically generated for 1000 sets of ten filter responses.
The overall response of the filter cascade is also specified
by the bandwidth BW and offset of the center frequency fo
relative to the carrier frequency. The overall responses
were realized using a programmable optical filter (POF)
with a resolution of 1 GHz and a variable bandwidth
optical filter (VBOF). The POF was used to set the
passband impairment and the VBOF was used to set the
3-dB bandwidth BW and center frequency. Here, fo was set
to 0.
The experimental setup is shown in Fig. 4. With

overhead for forward error correction (FEC) coding and
framing, the transmitted 137.84 Gb/s DP QPSK signal
used a root raised cosine pulse shape with a roll-off factor
of 0.14 and was generated by a Ciena WaveLogic 3
transceiver. The modulation rate was 34.46 Gbaud. For this
transceiver, the threshold for the pre-FEC bit error ratio
(BER) is 0.034. Each passband response for a cascade was
uploaded to the POF. The combined frequency response
was then measured using an optical vector analyzer. The
DP QPSK signal was applied to the two filters and then

noise-loaded to set the optical signal-to-noise ratio
(OSNR) at the receiver. The noise-loaded signal was
filtered to reject out-of-band noise using an optical filter
with a bandwidth that exceeded the signal bandwidth in
order to avoid any further distortion of the signal. Real-
time digital signal processing was performed by the
transceiver and estimates of the pre-FEC BER were
obtained based on the FEC decoding.
The values for the pre-FEC BER were converted to

signal-to-noise ratios (SNRs) Es/N0 using [25]

Es

N0
¼ 2½erfc – 1ð4ð1 –

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 –BER
p

ÞÞ�2,

where erfc is the complementary error function. Given the
statistical variation of the SNR, the probability that it is less
than a specified value SNR0, which corresponds to a BER
value BER0 at or below the FEC threshold, is of interest.
One approach to estimate the probability Prob(SNR<
SNR0) is to fit a probability density function to measured
results. However, given that SNR0 values of interest are in
the lower tail of the density function, it is difficult to obtain
reliable results as differences in the fitting procedure can
lead to significant variations in the estimated probabilities.
Extreme value statistics can be used to circumvent this
issue by considering n values of the SNR for different
cascaded filter responses as a sequence of independent
identically distributed random variables. The probability
distribution function Fn(x) for the minimum of this
sequence, SNRmin,n = min{SNR1, SNR2,…, SNRn}, is
sought. The statistical methods of extreme values provide
the important result that there are limiting forms of Fn(x) as
n!1 regardless of the actual distribution for the random
variable SNR [26]. The Gumbel probability distribution
function is used here.

3 Results

Figure 5 illustrates an example of the measured frequency
response for an emulated response with a bandwidth BW of
38 GHz. The inset in Fig. 5 shows the spectrum of the DP
QPSK signal obtained using a spectrometer with a
resolution of 15 MHz. The signal has a spectral occupancy
of 39.6 GHz.

Fig. 4 Experimental setup. EDFA: erbium doped fiber amplifier; OBPF: optical bandpass filter; VOA: variable optical attenuator;
BBNS: broadband noise source. © 2017 IEEE. Reprinted, with permission, from IEEE/OSA Journal of Lightwave Technology
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A histogram of the values of the SNR for the results of
one measurement for 1000 overall responses is shown in
Fig. 6 for BW = 36 GHz and OSNR = 13.8 dB. The mean
value of the SNR is 4.01 and the standard deviation is
6.09�10–2.
From results such as these, the required OSNRs for

specified values of Prob(SNRmin< 3.52) can be extracted
as shown in Fig. 7 for n = 40 as a function of the bandwidth
BW. The value of SNR0 = 3.52 corresponds to BER = 0.03.
The three values of Prob(SNRmin< 3.52) represent
different levels of tolerating the pre-FEC BER exceeding
the FEC threshold. In practical applications, this tolerance
could range from cases where an adversely affected

channel can be re-provisioned to where its occurrence is
to be very infrequent. This approach for assessing the
implications on system performance allows anticipated
variations in the cascaded frequency response to be
quantified in terms of the pre-FEC BER exceeding the
FEC threshold.

4 Conclusion

By emulating the overall responses for 1000 cascades of
ten filters using the combination of a programmable optical
filter and variable bandwidth optical filter, the impact of the
statistical variations in the responses was assessed using
SNR values obtained from corresponding estimates of the
pre-FEC BER. The results were interpreted using extreme
value statistics to consider the probability that the
minimum of n observations of the SNR is less than a
specified value.
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