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Abstract
Plasma-enhanced atomic layer deposition (PEALD) is gaining interest in thin films for laser applications, and post-
annealing treatments are often used to improve thin film properties. However, research to improve thin film properties is
often based on an expensive and time-consuming trial-and-error process. In this study, PEALD-HfO2 thin film samples
were deposited and treated under different annealing atmospheres and temperatures. The samples were characterized
in terms of their refractive indices, layer thicknesses and O/Hf ratios. The collected data were split into training and
validation sets and fed to multiple back-propagation neural networks with different hidden layers to determine the best
way to construct the process–performance relationship. The results showed that the three-hidden-layer back-propagation
neural network (THL-BPNN) achieved stable and accurate fitting. For the refractive index, layer thickness and O/Hf
ratio, the THL-BPNN model achieved accuracy values of 0.99, 0.94 and 0.94, respectively, on the training set and
0.99, 0.91 and 0.90, respectively, on the validation set. The THL-BPNN model was further used to predict the laser-
induced damage threshold of PEALD-HfO2 thin films and the properties of the PEALD-SiO2 thin films, both showing
high accuracy. This study not only provides quantitative guidance for the improvement of thin film properties but also
proposes a general model that can be applied to predict the properties of different types of laser thin films, saving
experimental costs for process optimization.
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1. Introduction

Optical thin films are key components of laser systems, and
their optical properties and laser-induced damage threshold
(LIDT) directly affect their output energy[1–3]. Traditional
preparation methods for laser thin films include electron-
beam evaporation[4–6] and ion-beam sputtering[7]. Recently,
plasma-enhanced atomic layer deposition (PEALD)
has attracted attention because of its precise thickness
controllability[8], excellent conformality[9], low-temperature
growth properties[10] and high LIDT[11]. Furthermore, post-
treatment annealing improves the properties of thin films
grown via PEALD[12]. However, owing to the diversity and
wide range of process parameters, process optimization and

Correspondence to: Meiping Zhu, Shanghai Institute of Optics and
Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.
Email: bree@siom.ac.cn

thin film performance improvement often require extensive,
expensive and time-consuming experiments.

Back-propagation neural networks (BPNNs), a subset of
machine learning, have shown potential for mapping the
relationship between experimental parameters and material
properties[13,14]. This approach can identify underlying reg-
ularities in the training data by updating the internal weight
parameters[15,16]. In recent years, researchers have begun to
study the application of neural networks in the field of
thin films to predict the growth rate[17–20], hydrophobic-
ity[21], permeate flux and foulant rejection[22]. Although these
reports demonstrate the application of BPNNs in various
thin films, studies on the properties of laser thin films are
lacking. Furthermore, the adopted models were mainly shal-
low structures with single or double hidden layers. Shallow-
structure neural networks can meet most modeling and
prediction needs but may require a large number of neurons
to accurately represent the relationship between the input
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and output[23], which increases the likelihood of errors in
models[22]. In 2022, Mengu et al.[24], while studying the
emerging symbiotic relationship between deep learning and
optics, reported the advantages of deep neural networks with
three or more hidden layers in terms of approximation and
generalization capability. However, as the number of hidden
layers increases, deep neural networks may suffer from poor
performance or training failure owing to issues such as
vanishing/exploding gradients[25]. Therefore, it is necessary
to determine the optimal number of hidden layers for solving
a special task.

In this study, we employ several BPNN models to estab-
lish the relationship between the annealing process and the
properties of PEALD-HfO2 thin films for laser applications.
Firstly, comparing the performance of BPNN models with
different numbers of hidden layers, it is deduced that the
three-hidden-layer back-propagation neural network (THL-
BPNN) performs best. The THL-BPNN model was then
used to model and predict the relationship between the
annealing process and the PEALD-HfO2 thin film properties
and was compared with the other two models. Finally, the
LIDT of the PEALD-grown thin films and the properties
of the PEALD-SiO2 thin films were predicted using the
THL-BPNN model, and the applicability of the THL-BPNN
model was verified. We believe that the THL-BPNN model
can help predict the properties of other laser thin films.

2. Materials and methods

2.1. Data preparation

The HfO2 thin films used to construct the annealing
process–thin film property relationship were grown on Si
substrates using a commercial PEALD device (Picosun
Advanced R200, Finland) with an integrated remote
plasma source. HfO2 thin films were grown by alternating
exposure to the precursor tetrakis-ethylmethylamino hafnium
(Hf(N(CH3)(CH2CH3))4, TEMAH) and O2/Ar gas mixture
plasma reactant at a deposition temperature of 150◦C.
The number of deposition cycles was 500, and the pulse
sequence for each HfO2 growth cycle was as follows:
TEMAH feeding (1.6 s), N2 purging (19 s), Ar/O2 mixture
feeding (11 s) and Ar purging (10 s). The samples were then

annealed in quartz tube annealing equipment (RS 80/300/11,
Nabertherm) for 3 h. The annealing process included a
combination of three atmospheres (vacuum, O2 and N2)
and six annealing temperatures (300◦C to 800◦C in 100◦C
increments). For vacuum annealing, the pressure in the
tubular annealing chamber was approximately 1 × 10–4 Pa.
For O2 and N2 atmosphere annealing, the gas flow rate was
150 SCCM for both O2 and N2. The HfO2 thin films were
measured using an ellipsometer (Horiba Uvisel 2), and the
thicknesses and refractive indices were extracted using the
Tauc-Lorentz model in DeltaPsi2 software, neglecting
the extinction coefficient (k). The O/Hf ratio of the HfO2 thin
films was analyzed using X-ray photoelectron spectroscopy
(XPS) (Thermo Scientific) with a monochromatic Al Kα

(1486.6 eV) X-ray source. The data used to construct the
annealing process–thin film property relationship consisted
of 19 samples, including 1 as-deposited sample and 18
annealed samples.

The HfO2 thin film data used for LIDT modeling and
prediction come from Ref. [26], including 12 samples treated
by different annealing process parameters. Among them,
six samples were annealed in an O2 atmosphere, and the
other six samples were annealed in a N2 atmosphere. The
annealing temperature ranged from 300◦C to 800◦C.

The SiO2 thin film data used for property modeling and
prediction come from Ref. [27], including 10 samples grown
by different deposition process parameters. Among them,
four samples were grown at different temperatures ranging
from 50◦C to 200◦C, and six samples were grown with
different precursor source exposure times ranging from 0.2
to 0.7 s.

Table 1 lists the detailed parameters of the datasets used to
model and predict the properties of HfO2 and SiO2 thin films,
including the refractive index, thickness and stoichiometric
ratio. As the annealing temperature increases, the thickness
of the HfO2 thin film decreases and the refractive index
increases. In a vacuum environment, O2 environment and
N2 environment, the thickness of HfO2 thin films annealed
at different temperatures changes in the range of 34.7–42.7,
38.5–49.1 and 36.3–46.7 nm, respectively, while the refrac-
tive index (at 355 nm) of HfO2 thin films annealed at
different temperatures changes in the range of 1.99–2.24,
1.83–1.97 and 1.88–2.00, respectively. This means that the

Table 1. Datasets for property prediction of HfO2 and SiO2 thin films.

HfO2 thin films SiO2 thin films
Variables Range Variables Range

Input Annealing atmosphere* 0–3 Deposition temperature (◦C) 50–200
Annealing temperature (◦C) 0–800 Precursor exposure time (s) 0.1–0.7

Output
Refractive index (at 355 nm) 1.83–2.24 Refractive index (at 355 nm) 1.48–1.49

Thickness (nm) 34.7–50.3 Thickness (nm) 69.0–88.1
O/Hf ratio 1.80–2.04 O/Si ratio 1.94–2.01

*Note: 0, 1, 2 and 3 represent the as-deposited sample, O2, N2 and vacuum, respectively.
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Table 2. Datasets for LIDT prediction of HfO2 and SiO2 thin films.

Range
Variables HfO2 SiO2

thin films thin films

Input

Type* 1 2
Total impurity content 5.4–13.5 0.6–1.1
(%, atomic fraction)
Absorption (ppm) 211–10892 3.8–5.8

Stoichiometric ratio 1.81–2.06 1.94–2.01

Output LIDT (J/cm2) 1.2–6.3 22.0–39.4

*Note: 1 and 2 represent HfO2 samples and SiO2 samples, respectively.

packing density of the HfO2 thin film increases with increas-
ing annealing temperature[26]. In addition, the O/Hf ratio of
HfO2 thin films annealed in an O2 environment fluctuates
slightly around the ideal value of 2.0. However, the O/Hf
ratio of HfO2 thin films annealed in vacuum and N2 envi-
ronments decreases with increasing annealing temperature.

Table 2 lists the detailed parameters of the datasets used
for LIDT modeling and prediction. Compared with PEALD-
HfO2 thin films, PEALD-SiO2 thin films have lower absorp-
tion and impurity content. Furthermore, properties such as
absorption, impurity content and stoichiometric ratio influ-
ence each other. Detailed relationships are described in Refs.
[26,27]. The LIDT was tested in one-on-one mode according
to ISO 21254 using a Gaussian-shape 3ω neodymium-doped
yttrium aluminum garnet (Nd:YAG) laser (355 nm, 7.8 ns).
The LIDT test was performed under normal incidence, and
the maximum laser fluence with zero damage probability
was determined as the LIDT. It is worth mentioning that the
LIDT of HfO2 thin films is lower than that of SiO2 thin films,
which is attributed to the fact that the bandgap of HfO2 is
lower than that of SiO2.

2.2. Models

Six models, namely four BPNN models with different
numbers of hidden layers (single-hidden-layer BPNN,
double-hidden-layer BPNN, three-hidden-layer BPNN
and four-hidden-layer BPNN), a support vector machine
regression (SVR) model[28] using a Gaussian kernel function
and a linear regression (LR) model[29], were used to establish
the correlation between the annealing process and the
refractive index, layer thickness and O/Hf ratio of PEALD-
HfO2 thin films. Except for the LR model, which belongs to
the category of linear regression fitting, the other models
belong to the category of nonlinear regression fitting.
All models performed regression fitting by training on a
training set, tuning the modeling parameters to achieve the
highest accuracy (i.e., lowest error) and then validating on a
validation set. When constructing the relationship between
the annealing process and the properties of the PEALD-
HfO2 thin films, 6 samples were randomly selected as the

Figure 1. THL-BPNN model with all neurons in adjacent layers con-
nected, where x = [x1; x2], y1 and hij represent the input, output and
intermediate processing signals, respectively.

validation set, and the remaining 13 samples (12 annealed
samples and 1 as-deposited sample) were used as the training
set. When predicting the LIDT of PEALD-grown thin films,
6 samples (3 HfO2 samples and 3 SiO2 samples) were
randomly selected as the validation set, and the remaining 16
samples (9 HfO2 samples and 7 SiO2 samples) were used as
the training set. When predicting the properties of PEALD-
SiO2 thin films, the leave-one-out cross-validation method
was adopted owing to limited data. For each test, one sample
was used as a validation set, and the remaining samples
were used as a training set until every sample was used
as a validation set. Subsequently, the average performance
deviation was calculated for each model.

Figure 1 shows a schematic of the THL-BPNN model,
including an input layer (layer 0), three hidden layers (layers
1–3) and an output layer (layer 4), with each layer containing
one or more neurons. The number of neurons in the input
and output layers was determined by the number of input
and output variables in the dataset, whereas the number of
neurons in the hidden layers was initially determined using
Equation (1) (an empirical formula) and finally determined
by a global traversal search:

l = √
u+ v+a, (1)

where u, v and l are the numbers of neurons in the input,
output and hidden layers, respectively, and a is a random
number between 1 and 10.

The neurons receive input signals from the previous layer
and generate output signals for the next layer[30,31]. For
example, the first neuron in layer 1 (from top to bottom), the
circle where h11 is located, receives input signals, x = [x1;
x2], from layer 0. Then x undergoes linear transformation to
get the weighted sum, z, which is expressed as follows:

z = wTx+b, (2)

where w = [w1; w2] ∈ R is a weight vector between the
neurons, and b ∈ R is a bias.
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Subsequently, z passes through a nonlinear activation func-
tion f (·)[32], and the output signal h11 is generated as follows:

h11 = f (z). (3)

These processes were performed for each neuron in each
layer to form the final output signal, y1

[33]. Obviously, map-
ping from the input space to the output space is initially
established through layer-by-layer information transfer.

To further improve the mapping accuracy, a training loss
was constructed in the output layer, and an appropriate
training algorithm is selected to update the relevant param-
eters (weights w and bias b) in combination with the chain
rule[34] until the loss or the number of iterations reaches the
preset threshold[35]. The Levenberg–Marquardt algorithm[36]

was used to solve the nonlinear least squares problem. The
hyperbolic tangent function was selected as the activation
function for all hidden layers. The initialization state of each
run was fixed to avoid interference from other factors.

2.3. Model specification and evaluation

2.3.1. Variable scaling
Considering that different distribution ranges of the input
and output values may lead to biased assessments, Equation
(4) is used to scale the input and output of the data to [–1, 1]:

Xnorm = (Ymax −Ymin)(X −Xmin)

Xmax −Xmin
+Ymin, (4)

where X is the input or output vector; Xmax and Xmin are
the maximum and minimum values of the input or output
vector, respectively; and Ymax and Ymin are the maximum and
minimum values after normalization, respectively.

2.3.2. Model evaluation metrics
The coefficient of determination (R2)[37] was used to evaluate
the overall performance of each model. The average accuracy
(AA) was used to evaluate the performance of each model
on a validation set with only a single sample. The root mean
square error (RMSE)[38] was used to measure the deviation
between the predicted and measured values:

R2 = 1−
∑

(Yi −Ti)∑(
Yi −Y

)2

2

, (5)

AA = 1
n

n∑
i=1

(
1− |Yi −Ti|

|Yi|
)

, (6)

RMSE =
[

1
n

n∑
i=1

(Yi −Ti)
2

]1/2

, (7)

where n is the size of the dataset; Yi and Ti are the mea-
sured and predicted values of the ith sample in the dataset,
respectively; and Y is the average of the measured values.

A lower RMSE (close to 0) and higher R2 and AA (close
to 1) indicate smaller differences between the measured and
predicted values.

3. Results and discussion

3.1. Analysis of the number of hidden layers of the BPNN
model

The influence of the number of hidden layers in the BPNN
model on the modeling accuracy was studied using the
measured data of the refractive index, layer thickness and
O/Hf ratio of the PEALD-HfO2 thin films treated with
different annealing process parameters. The optimal number
of neurons in each hidden layer was determined by a global
traversal search on the training set corresponding to the
lowest mean absolute error, and then the optimal model was
applied to the validation set. For the refractive index and
layer thickness datasets, the total number of neurons in the
BPNN model with multiple hidden layers was consistent

Figure 2. Accuracy of BPNNs with one to four hidden layers based on (a)
the refractive index (at 355 nm), (b) layer thickness and (c) O/Hf ratio of
PEALD-HfO2. The four columns in each subgraph represent the R2 values
of the model in the training and validation sets and the RMSE values in the
training and validation sets, respectively. The table indicates the number of
neurons in each hidden layer of each model.
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Figure 3. Measured and predicted (a)–(c) refractive index, (d)–(f) layer thickness and (g)–(i) O/Hf ratio of HfO2 thin films. The data in the left-hand,
middle and right-hand columns are predicted by the LR model, SVR model and THL-BPNN model, respectively. The blue line (with a slope of 1) serves as
a guideline for perfect prediction.

with that of the single-hidden-layer BPNN model. For the
O/Hf ratio dataset, because the optimal number of neurons in
the single-hidden-layer BPNN model is only five, this value
is set as the maximum number of neurons in each hidden
layer in the BPNN model with multiple hidden layers. The
modeling and prediction accuracies are shown in Figure 2.
Overall, as the number of hidden layers increased from one
to three, the difference between the R2 and RMSE in the
training and validation sets decreased, indicating that the
model moved from inexact to exact fitting. However, as
the number of hidden layers was further increased to four,
the difference between the R2 and RMSE in the training and
validation sets increased. This may be due to the fact that the
combination of neurons in each layer grows exponentially
with the number of hidden layers, which introduces the risk
of overfitting while potentially obtaining better solutions.
The only exception is the modeling of the refractive index,
where a single-hidden-layer BPNN also exhibits good perfor-
mance, which could be attributed to the small variation in the
properties and the uncomplicated relationship between the
input and output. With the three-hidden-layer BPNN model,
the R2 values of the refractive index, layer thickness and

O/Hf ratio were higher than 0.90 in both the training and
validation sets. The THL-BPNN model was selected for the
follow-up study.

3.2. Comparison of the THL-BPNN model with other
models

The performance of the THL-BPNN model was further
evaluated and compared with the LR and SVR models. The
refractive index, layer thickness and O/Hf ratio of the HfO2

thin films predicted by the three models were compared with
the measured values, as shown in Figure 3 and Table 3. As
shown in Figures 3(a), 3(d) and 3(g), the poor performance
of the LR model on all three datasets indicates a nonlinear
relationship between the annealing process and the thin film
properties. As shown in Figures 3(b), 3(e) and 3(h), the SVR
model obtains a better fit than the LR model on the layer
thickness and O/Hf ratio datasets, but it still does not perform
well enough on the refractive index dataset. As shown in
Figures 3(c), 3(f) and 3(i), the predicted and measured values
of most samples are in good agreement, particularly for
the refractive index dataset, indicating that the THL-BPNN
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Table 3. Evaluation of the LR, SVR and THL-BPNN models.

Refractive index Layer thickness O/Hf ratio
Training data Validation data Training data Validation data Training data Validation data

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE
LR 0.72 0.06 0.66 0.08 0.74 2.24 0.48 2.88 0.43 0.08 0.48 0.08
SVR 0.71 0.06 0.52 0.10 0.75 2.22 0.56 2.64 0.84 0.04 0.74 0.05
THL-BPNN 0.99 0.01 0.99 0.01 0.94 1.08 0.91 1.18 0.94 0.03 0.90 0.03

model has a high accuracy in modeling and predicting the
relationship between the annealing process parameters and
HfO2 thin film properties.

Table 3 lists the specific performance of all models on
the training and validation sets. The THL-BPNN model per-
forms best among the three regression models, with R2 val-
ues not lower than 0.90 for the refractive index, layer thick-
ness and O/Hf ratio datasets. High R2 values and low RMSE
values indicate that the THL-BPNN model can capture the
patterns and extend them to unknown data. In short, the
THL-BPNN model shows good stability in constructing
the relationship between the annealing process and HfO2 thin
film properties under several conditions.

3.3. Evaluation of the THL-BPNN model for other thin film
applications

3.3.1. Prediction of the LIDT of PEALD-HfO2 and
PEALD-SiO2 thin films
The LIDT value is a key specification for thin films used
in laser systems[39,40]. Firstly, we analyzed the main factors
affecting the LIDT. According to Ref. [26], the main factors
affecting the LIDT of HfO2 thin films are the C impurity
content, N impurity content, absorption and O/Hf ratio.
Pearson’s correlation coefficient was used to further analyze
the correlation between the main influencing factors and the
LIDT. The results shown in Figure 4 indicate that, except
for the O/Hf ratio, which is positively correlated with the
LIDT, all other parameters are negatively correlated with
the LIDT. The change in the C and N impurity contents
can be represented by the total impurity content. Likewise,
for SiO2 thin films, factors affecting the LIDT include the
total impurity contents, absorption and O/Si ratio. Then, we
applied the THL-BPNN to the quantitative prediction of the
LIDT based on these factors. The total impurity contents,
absorption, stoichiometric ratio and type of thin film were
fed into the THL-BPNN as input variables, and the LIDT
was derived as the output variable.

Furthermore, the predicted LIDT and measured LIDT of
each sample are shown in Figure 5. It is observed that
the THL-BPNN model performs well in both training and
validation sets with high accuracy and low error, which is
smaller than the relative error of the LIDT. The relative
error of damage probability is about ±15%, mainly due to
the uncertainty of the nonuniformity among the samples

Figure 4. Correlations between properties of HfO2 thin films used in
this section. Blue indicates a negative correlation, whereas red indicates
a positive correlation. Darker colors and larger circles indicate higher
correlations. The numbers inside the circles indicate the corresponding
correlation coefficients of the two features.

Figure 5. Comparison of measured and predicted LIDT values on the (a)
training set and (b) validation set.

(3%), the measurement of the laser spot area (5%) and the
fluctuation of laser energy (5%)[41]. For the training set and
validation set, the R2 values are 1.00 and 0.97, respectively,
and the RMSE values are 0.48 and 2.32, respectively. The
results show that the THL-BPNN model is effective for
predicting LIDT values of HfO2 and SiO2 thin films.
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Figure 6. Comparison of measured and predicted values of (a) the refrac-
tive index (at 355 nm), (b) the layer thickness and (c) the O/Si ratio for SiO2
thin films in the validation set.

3.3.2. Prediction of other properties of PEALD-SiO2 thin
films
SiO2 is the most common low-refractive-index material
used for laser thin films in the ultraviolet to near-infrared
wavelength region. It is of great significance to study the
correlation between the properties of SiO2 thin films and
the deposition parameters. Therefore, we applied the THL-
BPNN model to evaluate the relationship between the
deposition parameters and the properties of PEALD-SiO2

thin films. Figure 6 shows the excellent performance of the
THL-BPNN model in predicting the properties of PEALD-
SiO2 thin films on the validation set, including the refractive
index, layer thickness and O/Si ratio. For most samples,
the prediction deviation was smaller than the measurement
error.

Table 4 lists the R2, AA and RMSE values of the THL-
BPNN model for SiO2 thin film properties. Except for the
average R2 value of the O/Si ratio on the training set of
0.81, the other values, including the average R2 value of the

Table 4. Evaluation of the THL-BPNN model for SiO2 thin film
properties.

Training data Validation data

R2 RMSE AA RMSE
Refractive index 0.99 0.00 1.00 0.00
Layer thickness 0.99 0.43 0.98 1.72
O/Si ratio 0.81 0.01 0.99 0.03

refractive index and layer thickness in the training set and
the AA values of the three properties in the validation set,
are higher than 0.98. Although the THL-BPNN model did
not perform sufficiently well on the O/Si ratio training set,
it still provided accurate predictions on the corresponding
validation set. This could be attributed to the successful
learning of correlations by the THL-BPNN model through
training. Therefore, the THL-BPNN model can be used to
construct the relationship between the deposition parameters
and PEALD-SiO2 thin film properties, thus proving the uni-
versality of the THL-BPNN model in studying the nonlinear
relationship between the process parameters and thin film
properties.

4. Conclusions

In this study, BPNN models with different numbers of hid-
den layers were used to establish the correlation between the
properties of PEALD-HfO2 thin films and annealing param-
eters. For modeling, the annealing parameters, including the
annealing atmosphere and temperature, were used as inputs,
and measured thin film properties, including the refractive
index, layer thickness and O/Hf ratio, were used as outputs.
The data were split into two categories: a training set and a
validation set. Firstly, BPNN models with different numbers
of hidden layers were compared. The results demonstrated
that as the number of hidden layers was increased to achieve
higher accuracy on the training sets, the risk of overfitting
also increased. Considering the fitting accuracy and model
stability, the THL-BPNN model was adopted in a follow-up
study. The performance of the THL-BPNN model was then
compared with that of the LR and SVR models. The poor
performance of the LR model on most datasets indicated that
the effect of the two input features on the dependent output
variable was nonlinear. The THL-BPNN model achieved
a high accuracy of not less than 0.90 on all training and
validation datasets, confirming that the THL-BPNN model
outperforms the SVR model, which also belongs to the
category of nonlinear regression fitting. Finally, the THL-
BPNN model was used to predict the LIDT of PEALD-HfO2

and PEALD-SiO2 thin films, and the mapping relationship
between deposition parameters and PEALD-SiO2 thin film
properties was constructed. The modeling results showed
that the predicted values are consistent with the measured
values, proving that the THL-BPNN model is a reliable
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predictive learning-based model. We believe that the THL-
BPNN model can be used to predict the properties of dif-
ferent types of thin films, thereby reducing the experimental
cost of process optimization.
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