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Abstract
Pulse shaping is a powerful tool for mitigating implosion instabilities in direct-drive inertial confinement fusion (ICF).
However, the high-dimensional and nonlinear nature of implosions makes the pulse optimization quite challenging.
In this research, we develop a machine-learning pulse shape designer to achieve high compression density and stable
implosion. The facility-specific laser imprint pattern is considered in the optimization, which makes the pulse design
more relevant. The designer is applied to the novel double-cone ignition scheme, and simulation shows that the optimized
pulse increases the areal density expectation by 16% in one dimension, and the clean-fuel thickness by a factor of four
in two dimensions. This pulse shape designer could be a useful tool for direct-drive ICF instability control.

Keywords: double-cone ignition; hydrodynamics instability; machine-learning optimization; pulse shape optimization

1. Introduction

Inertial confinement fusion (ICF)[1–3] uses drivers such as
lasers to implode a fuel-containing shell, compress it to
extreme conditions[3] and trigger a sustained thermonuclear
reaction. However, the acceleration of the shell creates favor-
able conditions for the development of Rayleigh–Taylor
instability (RTI)[4,5], which can lead to severe ablator–fuel
mixing and even shell breakup[6,7]. Direct-drive ICF[2] is
particularly susceptible to RTI, because the laser imprint[8]

can couple illumination non-uniformities directly to the
shell, providing a large number of seeds for RTI. Measures
to suppress the imprint include target roughness reduction[9],
beam overlap optimization[10,11], beam smoothing[12] and
pulse shaping[13,14].

Pulse shaping is a powerful tool for mitigating instabilities.
For example, isentropic pulses[15] can achieve the maximum
density compression in an idealized 1D implosion, but the
risk of instability is high. Components such as intense
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‘pickets’[13] (power spikes) are added to the main pulse
to help adjust the plasma density profile and reduce the
instability seed due to the laser imprint. Well-shaped pulses
can achieve the effect of ‘adiabat shaping’[16]: a picket-driven
decaying shock[17] heats only the outer layer of the shell (high
adiabat) to effectively smooth the imprint, while the inner
layer of the shell remains relatively cold (low adiabat) to
preserve the density compressibility.

However, pulse design is not straightforward. The rela-
tionship between pulse shapes and implosion performance
is nonlinear and depends on the imprint details, which
is facility-specific. Algebraic metrics such as the ignition
threshold factor (ITF)[18,19] lack the modeling of the imprint
details, while experiments reflect all the instabilities but are
very expensive. For these reasons, effective pulse design
relies heavily on numerical and statistical models.

Recently, data-driven methods[20–27] have shown great
potential in ICF research. For example, evolutionary
algorithms can automate the exploration of pulse shapes
and target geometries, and generate new classes of
implosion designs[21–23]. Regression and classification
algorithms can identify the complex correlations between the
experimental inputs and outputs[21,24,25], and help increase
the experimental neutron yield[26]. Transfer learning uses a
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small high-fidelity dataset to calibrate the naive prediction
trained on a much larger low-fidelity dataset, which is ideal
for merging simulation and experimental observations[27,28].

In this research, we develop an automated pulse shape
designer for direct-drive schemes. The pulse designer uses
machine-learning algorithms to evolve the pulse shapes for
higher compression density and better implosion stability.
The facility-specific imprint characteristics are considered in
the optimization, making the pulse shaping more relevant.
This designer is tested on the novel double-cone ignition
(DCI) scheme[29]. Simulation shows that the optimized pulse
increases the baseline areal density by 16% and increases the
clean-fuel thickness by a factor of four. At the same time,
the robustness of the pulse against shaping errors is also
evaluated.

The paper is organized as follows. Section 2 introduces the
simulation setup and optimization workflow. Section 3 intro-
duces the RTI linear growth prediction. Section 4 introduces
the implosion performance surrogate (IPS) model. Section 5
introduces the model correction by imprint seeds. Section 6
introduces the pulse quality check. Section 7 is a summary.

2. Simulation setup and optimization workflow

The DCI target is a shell-in-cone design, as shown in
Figure 1(a). The cone half-angle is 50◦ (polar angle), the
small hole radius is 50 µm and the double-cone separation
is 100 µm. The shell composition is high-density plastic
(1.27 g/cm3, C:H=1:1). The shell inner radius ri = 450 µm
and the outer radius ro = 495 µm. Each cone is illuminated
by four laser beams, the beam incident angle is 50◦, each
beam delivers 1.5 kJ of energy (12 kJ in all beams) and
the laser wavelength is λL = 351 nm. Figure 1(c) shows the
power intensity of the laser spot; the inhomogeneous speckle

feature is modeled and the speckle power root-mean-square
value is σrms ∼ 15%.

We use two radiation hydrodynamics codes in our work.
The first one is the Lagrangian code MULTI-1D[30], which
models the DCI target in spherical geometry and resolves
the implosion on the radial dimension only. The second is the
Eulerian code FLASH[31], which models the DCI target in 2D
cylindrical geometry and resolves the instability evolution.
The laser speckle is modeled only by the FLASH code.

In an ideal DCI implosion, the shells experience com-
pression, acceleration and extrusion (from the cone hole).
After that, the head-on flying shells collide and stagnate,
forming a high-density fuel package ready to be ignited
by relativistic electron beams[29]. However, hydrodynamic
instability poses a serious threat, as demonstrated by the
FLASH example in Figure 1(e). An isentropic pulse[15] is
used to drive the implosion, and such a pulse can achieve
the maximum density compression in one dimension for a
given laser energy. However, without any pulse shaping, the
shell is easily imprinted by the speckle, generating short-
wavelength perturbations. These perturbations seed the rapid
development of acceleration RTI, and almost break the shell
before extrusion.

We design a pulse optimization workflow to tune the pulse
shape, as shown in Figure 2. The workflow consists of four
main components: the IPS, 1D simulations, 2D simulations
and a pulse production and quality check. The pulse shape is
optimized by iterating this workflow.

The meaning of the IPS should be clarified first. A surro-
gate is a data-driven model used to represent the complex
input and output relationships of a system when a simple
algebraic representation is not available. In our case, due
to the complexity of implosions, the relation IPS(P) is not
known. Here, P represents the pulse parameters. However,
we can write IPS = IPS(ρa,A) in a heuristic form (see

Figure 1. (a) Schematic of the DCI target. (b) Schematic of the incident laser beams. (c) Power intensity of a single laser spot with inhomogeneous
‘speckle’ feature. (d) An isentropic pulse shape used in the example simulation to show (e) the density distribution at four DCI implosion stages: initial
target, compression, acceleration and extrusion. This simulation is conducted in cylindrical geometry and only resolves half of the upper-cone.
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Figure 2. Pulse shape designer workflow, where the primary goal is to
maximize the implosion performance surrogate.

Section 4), where ρa is the areal density and A is the maxi-
mum perturbation amplitude. The goal of the optimization is
to adjust P so that the IPS is maximized.

After defining the IPS, simulations are performed to obtain
ρa and A. The fluid variables can be obtained by 1D sim-
ulations, from which we can calculate the stagnation areal
density ρa and the RTI growth multiplier GL(see Section 3).
The imprint seed S can be obtained by 2D simulations, and
the instability amplitude can be inferred as A = SGL.

Machine-learning algorithms are used to build the IPS.
Specifically, classification and clustering algorithms are used
in the ‘prediction–correction’ steps. In the prediction step,
a machine-learning classifier is trained on the P − IPS data
sampled in one dimension, and the classification helps to
improve the prediction on GL. In the correction step, a
machine-learning cluster is used to identify good pulse com-
monalities and sample their imprint patterns, and clustering
helps update the seed S (see Section 5). The optimization
algorithm is implemented using the MATLAB language and
its machine-learning toolkit.

Pulse production determines the best pulse shape from the
IPS. The pulse quality check tests the pulse’s compression,
implosion stability and robustness (see Section 6). If the
pulse meets the engineering requirements, its time-power
data is output. Otherwise, one loops and continues sampling
the pulse space.

3. Rayleigh–Taylor instability linear growth prediction

The continuous pulse is decomposed into finite nodes,
node power pw and node timing dt can change freely
and a pulse space is constructed based on these finite

Figure 3. (a) The pulse shape is decomposed into a finite number of nodes.
The example pulse is marked with node power pw and node timing dt.
Changing the node values generates many other pulse shapes in the same
pulse space, as shown by the grey lines. (b) Implosion density and pressure
profile of the example pulse at +6 ns. Fitting these profiles to obtain the RTI
growth parameters. (c) Calculated RTI growth multiplier of the example
pulse.

degrees of freedom (DoFs). Each shape is a unique point
with coordinates

[
pw1,dt1,pw2,dt2. . .

]
in the pulse space.

Figure 3(a) shows a pulse series with two pickets preceding
the main acceleration (the picket width is 500 ps, the pulse
length limit is 10 ns and the power ceiling is 6 TW). The
pickets are forced by limiting the power of several nodes
to 0. The purpose of the first picket is to resist the imprint,
and the purpose of the second picket is to work with the
acceleration pulse (main pulse) to reach higher compression.
A 14D pulse space is needed to describe such a pulse shape.
We randomly select an example pulse shape in Figure 3(a)
and estimate its corresponding RTI linear growth.

The ablation front is detected at each evolution step in
the 1D implosion, and the region with opposite density and
pressure gradient is delineated as RTI unstable. Figure 3(b)
shows the unstable region at +6 ns. The instantaneous
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growth rate γ is calculated using the steady-state equation
of Betti et al.[32]:

γ =
√

α1 (ν,ε)kg+α2 (ν,ε,Fr)k2V2
a −β1 (ν,ε)kVa, (1)

where k is the wave vector, g is the effective acceleration,
Va is the ablation velocity, ν is the power index of heat
conduction (ν = 2.5 for electron conduction), w is the
characteristic width of the ablation front, Fr = V2

a /(gw) is
the Froude number and α1, α2 and β1 are complex functions
that can be found in Betti et al.’s work. The values of
ν, w, Fr and Va can be determined by fitting density and
pressure profiles in the unstable region. The annotation in
Figure 3(b) shows the fitted values at the instant moment
+6 ns. Acceleration g is calculated by tracking the center
of the mass trajectory of the shell. Integrate instant γ

over time slices 
t to obtain the growth multiplier GL =
exp (γ1L 
t1 +γ2L 
t2 +·· ·+γnL
tn). Subscript L repre-
sents a single circular mode L = kr, where r is the radius
of the shell. The peak RTI mode and the stabilization mode
corresponding to the example pulse are shown in Figure 3(c).

A prerequisite for using the RTI scaling law is that
the ablation has already reached a steady-state, that is, the
density and pressure profile are quasi-stable. Most of the
RTI growth occurs during the acceleration, when the plasma
corona is largely established, and the fluid field can quickly
adapt to the pulse power change. Although the steady-
state ablation assumption does not hold for pickets, the
shell acceleration is small, so the picket’s contribution to
RTI is also small according to Equation (1), resulting in a
negligible error. Overall, this time-integrated RTI estimation
is generally acceptable.

4. Implosion performance surrogate model

To evaluate the quality of the implosion, a heuristic IPS
expression based on DCI physics is given:

IPS
(
ρa,A

) =
{

1−2/
[
1+ exp

(
ρa/0.7 g · cm−2)]2

}

· exp
[−(A/3 µm)2] . (2)

The first line on the equation right-hand side is related to
density compression. The basic requirement for compression
is ρa > 0.3 g/cm2 to support alpha self-heating, and the
advanced requirement for compression is ρa > 0.8 g/cm2

to stop the fast ignition electrons[29]. The second line on
the equation right-hand side is related to instability. The
basic requirement for instability is A ∼ 3 µm which is the
typical amplitude of the imprint pattern, and the advanced
requirement for instability is A ∼ 1.5 µm such that the
perturbation is reduced by half. Based on the DCI physics,
we choose 0.7 g/cm2 and 3 µm in the IPS expression to
reflect the trade-off between compression and stability; both
factors are associated with term values in the range of
0−1. The IPS mesh is shown intuitively in Figure 4(a).
Satisfying the basic requirements results in an IPS ∼ 0.25,
while satisfying the advanced requirements results in an
IPS ∼ 0.7.

A classification algorithm is used to build the surrogate.
First, we randomly sample the pulse space; we use the word
‘batch’ to refer to all the pulses in the same optimization
loop. Second, we perform 1D simulations on the batch to
obtain the IPS scores. In our practice, each batch con-
tains 2000 P − IPS relations. We specify a ‘filter’ threshold
for each batch, the scores above/below the threshold are
assigned labels T (true)/F (false), thus forming a labeled
training set. Then we train a Gaussian kernel support vector
machine (SVM)[33] on this training set; after training, the
surrogate can predict the pulse performance based on the
input P. Note that we use classification rather than regression
to build the surrogate, because our tests show that the
regression variance is too large in sparsely sampled pulse
spaces, and therefore the P− IPS is easily overfitted and the
prediction by regression is poor.

The filter threshold is slightly elevated between opti-
mization batches for the purpose of pulse evolution. For
a new batch, its pulse candidates are first filtered by the

Figure 4. (a) The IPS mesh shape, plotted against areal density ρa and perturbation amplitude A. (b) Six consecutive optimization batches, each batch
containing 2000 pulse samples; complete optimization uses six batches. The left-hand axis shows the batch-averaged IPS score and the right-hand axis
shows the pulse space fraction occupied by each batch.
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classifier from the previous batch, and those pulse candi-
dates predicted true are kept in the simulation pool, while
those predicted false are discarded. As the boundary of
high-performance pulses slowly becomes clear, we operate
the surrogate to produce the best pulse shape. The best
pulse can be determined by simply taking the batch high-
score or by searching the surrogate. Note that the pulse
evolution does not use a common evolutionary algorithm,
mainly because the IPS score depends on the imprint seed
S, and S is recalibrated before each batch run (detailed in
the next section); as a result the extremes of the optimization
problem are constantly changing. Therefore, we do not use
an evolutionary algorithm, but instead focus on sampling the
pulse space more evenly.

Figure 4(b) shows six consecutive batches; their filter
thresholds are 0.1, 0.15, 0.2, 0.25, 0.275 and 0.3. The last
batch occupies 2 × 10−5 of the whole pulse space; the top
10% pulses achieve compression ρa > 0.5 g/cm2 and insta-
bility amplitude A < 2 µm, demonstrating the effectiveness
of the algorithm.

5. Model correction by imprint seeds

The surrogate is corrected by updating the imprint seed
S. The imprint is simulated by 2D FLASH code. We modify
the FLASH laser module to reflect the real DCI target
and laser signatures: the target surface roughness is 
std =
45 nm, the laser speckle power non-uniformity is σrms ∼ 15%
and the speckle spectrum peaks at L ∼ 150(λ ∼ 20 µm).
The FLASH simulations are performed in 2D cylindrical
geometry. Examining the imprint for every pulse in the batch
is not easy due to the 2D computational load, so we use a
clustering method to determine several key pulses and extract
their seed features, and we use an interpolation method to
synthesize the seeds for other pulse samples.

As explained earlier, each pulse shape is a unique point in
the pulse space, the classification algorithm divides points
with high IPS scores into discriminative groups and the
division minimizes the sum of distances between points and
their group centers. Here we use the K-means clustering
algorithm[34] and the number of groups K is a free parameter,
in our case K = 9. Figure 5(a) provides an illustration of
the clustered centers c1–c9, while Figure 5(b) shows the
imprint simulation of the c9 pulse. Six batches require five
rounds of correction and 45 center pulses in total, and their
imprint spectrum is obtained by using wavelet analysis on
the center-of-mass perturbation of the flying shell when the
shell reaches two-thirds of its initial radius.

For a newly sampled pulse, its seed S(P̃) can be interpo-
lated as follows:

S
(

P̃
)

=
∑

k

Sk
|| P̃− ck||−2

∑
j

|| P̃− cj||−2
, (3)

where Sk is the spectrum of the centers, c is the coordinates
of the centers (P̃ and c are in the same pulse space) and the
fractional term is the summation weight. Figure 5(c) shows
the interpolated seed for the example pulse in Figure 3(a);
the prediction of the instability changes significantly after
correction. Figure 5(d) shows the prediction of the dominant
mode shifted from L = 71 without correction to L = 37 with
correction, which is much closer to the 2D simulation facts.

We use a validation set consisting of nine newly gener-
ated pulses, and compare the interpolation method with the
2D simulation results. Figures 5(e) and 5(f) show that the
corrected surrogate has a high correlation with the 2D sim-
ulation in both the imprint seed spectrum and the dominant
growth mode, confirming the effectiveness of the correction.

6. Pulse quality check

This section describes the pulse quality check. The opti-
mized pulses are evaluated in three aspects: first, the implo-
sion performance improvement over the baseline; second,
robustness to shaping errors; and third, optimization results
with and without imprint correction.

6.1. Improvement over the baseline pulse

The pulse shape used in the DCI experiment (round 6, starts
from winter of 2021) is shown in Figure 6(a). The pulse is a
near-isentropic design with a 1D areal density expectation
of ρa = 0.95 g/cm2. This pulse is used as a baseline for
reference. At 2–3.5 ns, the pulse drives a strong shock into
the shell and achieves a relatively high in-flight aspect ratio
(IFAR, defined as the compressed fuel thickness divided
by the initial radius) of approximately 20. The perturbation
pattern on the outer surface can be seen in Figure 6(b), where
the plasma corona scale length is too short to smooth the
speckle at L ∼ 150 (λ ∼ 20 µm). The seeds are amplified and
evolve into the nonlinear phase at the end of the acceleration.
The bubbles (low-density region in the instability structure)
reach the inner surface of the fuel, with L ∼ 45 being the
dominant mode. The average adiabat of the cold fuel (sam-
pling point along the shell mass center) is kept low at α =
2.3, but the fingers with the high adiabat α = 13.1 penetrate
deeply and contaminate the inner fuel. The unmixed-fuel
width is less than 5 µm. The hydrodynamic efficiency (the
fraction of laser energy converted to shell energy) of this
pulse is 9.2%.

The designer optimizes the acceleration pulse after 12,000
samples. The pulse shape is shown in Figure 6(d). The laser
power rises rapidly to 1.8 TW before the first shock reaches
the inner surface and then remains steady for 2.2 ns, during
which the shell is not further compressed. The pulse power
rises to 5 TW at the very end, producing a final boost.
The imprinted seeds are neutralized by strong mass ablation,
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Figure 5. (a) Illustration of a new pulse point and its distance to the center pulse points. (b) Imprint density of the c9 center pulse. (c) Seed spectrum
interpolation for the new pulse. (d) Instability amplitude of the new pulse, with seed correction, without seed correction and the 2D simulation amplitude.
(e) Correlation between the interpolated seed spectrum and the 2D simulated spectrum. (f) Dominant mode in the interpolated spectrum and the 2D simulated
spectrum.

and the accelerated RTI is mitigated by a prolonged hot
corona. The shell remains intact, and there are no significant
short-wavelength or medium-wavelength perturbations in
the density or adiabat. This pulse reaches an areal density
ρa = 0.83 g/cm2, IFAR ∼ 10 and a slightly high adiabat
α = 3.9. This pulse sacrifices compression for stability. The
hydrodynamic efficiency of this pulse is 8.4%.

The designer performs best when pickets are allowed, as
shown in Figure 6(g). A low-intensity picket produces thin
plasma at the fuel surface. A second higher picket sends a
stronger shock into the fuel. The acceleration pulse switched
on immediately after the pickets. These three shocks reach
the inner layer synchronously; IFAR ∼ 15. One dimension
predicts ρa = 1.1 g/cm2; this is the best value among all the
three pulses. More importantly, the outer layer perturbation
is much less developed due to a well-established plasma
corona before 3.5 ns. The bubbles develop at the final accel-
eration but do not penetrate the inner fuel. In Figure 6(i), the

unmixed fuel remains cold (α = 3.2) and sufficiently thick
(> 20 µm). The velocity of the shell before exiting the cone
is V ∼ 190 km/s. The hydrodynamic efficiency of the picket
pulse is 10.8%.

The areal density is overestimated in one dimension.
Taking the acceleration pulse as an example, the FLASH 2D
areal density at stagnation is ρa = 0.27 g/cm2, which is only
33% of the 1D value. However, this does not affect the sur-
rogate, since the implosion degradation due to instability is
reflected individually (as a correction to the 1D prediction).

The advantageous shaping strategy of the two-picket pulse
is reflected in Figure 7(a). The first picket delivers less than
1% of the total energy, allowing the shell outer surface to
expand for approximately 2 ns, forming a corona with Dac >

20 µm; this length is comparable to a typical laser speckle.
The illumination non-uniformity decays exponentially over
the long distance from the critical surface to the ablation
front. The second picket starts the compression in an imprint-
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Figure 6. Implosion simulation of (a)–(c) the baseline pulse, (d)–(f) the designer-optimized acceleration pulse and (g)–(i) the designer-optimized two-picket
pulse. The first row of the figure shows the respective pulse shapes and 1D implosion streamlines. The second row shows the shell’s density at two-thirds
and one-third of its initial radius. The third row is the adiabat of the shell at one-third of its initial radius.

Figure 7. (a) Time evolution of Dac, the distance between the ablation front and the critical surface. (b) Time evolution of the fuel adiabat α. The horizontal
axis is the laser energy delivered; only the first 2 kJ energy is plotted to clearly show the pickets.

safe environment. In contrast, both the baseline pulse and
the acceleration-only pulse lack the plasma corona formation
procedure.

Figure 7(b) confirms the necessity of a ‘high foot’ in the
adiabat profile. For the two-picket pulse, the first picket
produces an unsupported decaying shock[17] with minimal

fuel heating. The second picket creates a slightly higher
foot of α ∼ 5 to mitigate instability, and then the adiabat
decreases to α ∼ 2.5, comparable to an isentropic drive.
For the acceleration-only pulse, the already heavy imprint
forces it to adopt a stronger shock, creating an α ∼ 12
‘ultra-high foot’ that preserves the integrity of the shell
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Figure 8. (a) Pulse shapes when 5% perturbation is added to the optimal two-picket pulse. (b) Eigenvalues of the IPS Hessian matrix. (c), (d) Pulse shapes
and implosion streamlines after perturbation along the first and second eigenvectors. The dashed lines are the reference unperturbed pulse shapes.

through excessive amounts of thermal smoothing, but at the
cost of areal density loss.

The improvement can be summarized as follows. The
optimized pulse demonstrates a 16% increase in areal density
(from 0.95 to 1.1 g/cm2), a four-fold increase in the unmixed-
fuel thickness (from 5 to 20 µm) and a superior adiabat
shaping strategy relative to the baseline.

6.2. Robustness of the optimization against shaping errors

Real-world lasers inevitably contain shaping errors, and
the effect of these errors on the optimization results can be
assessed using Hessian matrix analysis. The Hessian is the
Jacobian of the gradient of a scalar function H = J (∇IPS).
In our case, H describes the curvature of the IPS in pulse
space, and the eigenvalues and eigenvectors of H reveal the
sensitivity and robustness of the IPS to perturbations. Taking
the two-picket pulse for example, Figure 8(b) shows that H
is a negative-definite matrix, proving that the designer has
indeed found the IPS local maximum.

The first two Hessian eigenvalues are significant. Their
corresponding eigenvectors indicate two main descending
directions of the IPS. Figures 8(c) and 8(d) show the per-
turbed pulses; the primary error is the rising slope at the
acceleration, resulting in a 15% increase in the RTI. The
secondary error is the time interval between the picket and
the main pulse, resulting in a 9% decrease in the areal
density. These results remind us to pay special attention to
such shaping errors in real experiments.

6.3. Optimization with and without seed correction

Figure 9 shows a comparison of the pulse designs with
and without seed correction. The uncorrected series tends
to produce a more compact pulse sequence with a signifi-
cantly shorter interval between the two pickets. However, the
plasma scale length of the uncorrected series is too small and
Figure 9(c) shows that the imprint suppression is insufficient.
Figure 9(d) shows that the uncorrected pulse has a weaker
stabilizing effect on the modes L > 70 and a higher risk of
fuel mixing at the moment of extrusion.

In quantitative terms, inclusion of the seed correction
reduces the perturbation intensity at short-to-medium wave-
lengths by 31% (averaged from L = 100 to L = 500) and the
spectrum intensity of laser speckle by 40% (at the character
mode L = 150).

The dominant instability mode of both series is L ∼ 45.
This is the combined result of the finite number of beams and
the cone boundary. This long-wavelength perturbation is dif-
ficult to eliminate by pulse shaping alone. Our group is also
working on high-Z-doping[35] and foam-coated targets[36] for
DCI. It is hoped that this long-wavelength perturbation can
be handled by joint optimization in the future.

7. Summary

We develop an automated pulse shape designer for
improving the direct-drive implosion performance based on
hydrodynamics simulations. This designer trains a machine-
learning surrogate to predict the compression areal density
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Figure 9. Optimized pulse series with and without imprint seed correction. (a) The best pulse in each series is shown with bold lines; the top 10 pulses in
each series are shown with translucent lines. (b) Imploding shell density of the best pulse in the uncorrected series, taken at one-third and two-thirds of its
initial radius. (c) Areal density perturbation of the two best pulses, where θ is the fuel polar angle. (d) Center-of-mass perturbation spectrum of the two best
pulses.

and instability growth of a pulse shape, and operates the
surrogate to optimize the pulse shape. The laser imprint
and RTI linear growth are integrated into the optimization
workflow through a prediction–correction alternation,
enabling facility-specific engineering features such as laser
speckles to be included in the instability estimation, making
the pulse shaping more relevant and efficient. The designer is
tested using the novel DCI direct-drive scheme. Simulations
show that the optimized pulse increases the baseline areal
density by 16% in one dimension, the clean-fuel thickness by
a factor of four in two dimensions and the imprint resistance
by over 30% in two dimensions. This pulse shape designer
can be a useful tool for direct-drive ICF instability control.
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