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Abstract
The recent advent of deep artificial neural networks has resulted in a dramatic increase in performance for object
classification and detection. While pre-trained with everyday objects, we find that a state-of-the-art object detection
architecture can very efficiently be fine-tuned to work on a variety of object detection tasks in a high-power laser
laboratory. In this paper, three exemplary applications are presented. We show that the plasma waves in a laser–
plasma accelerator can be detected and located on the optical shadowgrams. The plasma wavelength and plasma density
are estimated accordingly. Furthermore, we present the detection of all the peaks in an electron energy spectrum of
the accelerated electron beam, and the beam charge of each peak is estimated accordingly. Lastly, we demonstrate
the detection of optical damage in a high-power laser system. The reliability of the object detector is demonstrated over
1000 laser shots in each application. Our study shows that deep object detection networks are suitable to assist online and
offline experimental analysis, even with small training sets. We believe that the presented methodology is adaptable yet
robust, and we encourage further applications in Hz-level or kHz-level high-power laser facilities regarding the control
and diagnostic tools, especially for those involving image data.
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1. Introduction

High-power laser systems with power reaching the petawatt
level and repetition rate at a fraction of a hertz have emerged
worldwide in the past few years[1–5]. With the fast develop-
ment of high-repetition-rate operation capabilities in plasma
targetry, high-power laser–plasma experiments can employ
statistical methods that require a large number of shots.
Studies for real-time optimization using evolutionary algo-
rithms have been reported in recent years[6–11]. As the size
of data to process has continued to increase, more advanced
machine learning models have attracted increasing attention.
By constructing predictive models, machine learning meth-
ods are employed to model the nonlinear, high-dimensional
processes in high-power laser experiments. Various methods,
including neural networks, Bayesian inference and deci-
sion trees, have been introduced for optimization tasks and
physics interpretation[12–17]. Meanwhile, as the measurement
and diagnostic tools evolve, digital imaging is playing an
increasingly important role in experiments and, with it,
machine learning methods to process image data.
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In the case of a laser–plasma accelerator, image-based
diagnostics can take a variety of forms, from the optical
elements in the high-power laser facility, over shadowgra-
phy and interferometry of plasma dynamics, to scintillator
signals generated by energetic electron or X-ray beams
from the accelerator. In particular, the evolving structure
of a plasma accelerator is challenging to visualize because
of its microscopic size (∼10−5 m) and its high velocity
(approaching the speed of light). With the latest techniques,
such as few-cycle shadowgraphy, taking snapshots of the
plasma wake structure is enabled in femtosecond resolution
over a range of picoseconds[18–20]. The latest generation of
laboratory diagnostics for plasma structures is reviewed by
Downer et al.[21].

In this paper, we demonstrate exemplary applications of an
object detection network in the diagnostics in a high-power
laser laboratory. We apply the object detector to few-cycle
shadowgraphy of plasma waves, to an electron energy spec-
trometer and to detect optical damages in a high-power laser
beamline. The results show that object detection enables
possibilities in diagnostics and data analysis that have not
yet been achieved using conventional methods. Moreover,
due to the fast inference speed of the object detector, it paves
the road towards real-time demonstration of such diagnostics
during experiments.
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2. Object detection algorithms

Since the development of convolutional neural networks
(CNNs), computer vision has drawn attention from across
various disciplines[22–24]. As a huge breakthrough in image
recognition, a CNN allows categorizing images into certain
classes. When a CNN classifies an input image, it learns a
model that detects the specific patterns on that image. A
pattern is detected by a ‘filter’ matrix, which has a pre-
defined size relatively smaller than the size of the input
image. It then takes the dot product of the filter matrix with
a sub-matrix of the input image (in pixel values) that has
the same size. The filter is ‘convolved’ with the input image
as it slides across the entire input image matrix for all sub-
matrices of its size, resulting in an output matrix of cross-
products. Intuitively, a filter in a CNN is analogous to a
neuron in a regular feed-forward neural network, and several
filter matrices form a convolutional layer. A complex CNN
can have multiple convolutional layers, and the final output
matrix is compared with the input image to adjust the values
of the filter matrices. This process is repeated over and over
until the output matrix is close enough to the input.

An extension to classification tasks in computer vision is
object detection. Unlike classification tasks such as image
recognition, which assign one single label to the image,
object detection aims to identify all the objects of interest
in an image, classify each object and assign a label to it, and
then locate them by drawing a bounding box around each
object. For images with a fixed number of objects, the objects
can be found using a standard CNN followed by a fully
connected output network layer with a pre-specified length.
However, the task becomes much more challenging when
the number of interesting objects is not fixed in an image,
leading to a varying length of the output layer of the neural

network. This happens to be the case for most applications
in high-power laser experiments, especially when scanning
parameter spaces across various laser and plasma conditions.

Theoretically, the problem can be solved by splitting the
image into many regions of interest and coupling a CNN
to each region. However, the number of regions could be
significant and easily exceed the computational limit. To
make it computationally efficient, there are two families of
methods to locate and label objects without determining the
number of objects in advance. The region-based convolu-
tional neural network (R-CNN)[25] and its later iterations
(faster R-CNN, mask R-CNN) use a selective algorithm to
propose a reasonable number of regions that may contain
bounding boxes. It then applies a CNN to extract features
from each candidate region and classify the feature into the
known classes using a linear classifier. While the R-CNN is
very accurate in locating the objects, its computational cost
can be heavy.

The ‘you only look once’ (YOLO) family of algorithms[26]

takes a different approach; a simplified methodology is
illustrated in Figures 1(a)–1(c). YOLO algorithms split the
image into a pre-determined number of grids, and define
multiple bounding boxes for each grid. Unlike the R-CNN,
which applies a network to each region, YOLO algorithms
apply a single neural network to the full image. The net-
work then predicts a probability for each class for each
bounding box. Post-processing is performed to select the best
bounding boxes based on the probability and the overlapping
conditions regarding their neighbouring boxes. The greatest
advantage of YOLO algorithms, as the name suggests, is
that they make predictions with a single network evaluation
instead of thousands in other methods, such as the R-CNN.
Therefore, YOLO algorithms can be two or three orders
of magnitude faster than the R-CNN, making it possible
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Figure 1. Step-wise illustration of the object detection method. The example image presents ducks creating and surfing on wakefields. (a) Split the image
into small grid cells; (b) predict bounding boxes and confidences for each class; (c) final detected objects with confidences; (d) bounding box predicted by
the object detector versus the ground-truth bounding box labelled manually. IoU is defined as their area of intersection divided by their area of union, where
an ideal object detector would have IoU = 1.
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for real-time object detection tasks. This is of particular
interest to the community in high-power laser experiments,
especially with the development of high-repetition-rate capa-
bilities. However, it has to be pointed out that the YOLO
algorithms’ superiority in efficiency comes at the cost of
prediction accuracy, such as in locating the bounding boxes.

While the original YOLO method was designed to work
with square images, it is worth noting that the recent ver-
sions allow efficient training on non-square images using
rectangular inference. Having such adaptability can benefit
our practical applications in laser–plasma experiments that
usually have multiple diagnostics with various image resolu-
tions.

As a supervised learning task, validation is needed after
training an object detection model. The commonly used
evaluation metric in object detection is the intersection over
union (IoU). To evaluate the model accuracy on a predicted
bounding box, we manually label a ground-truth bounding
box and the IoU calculates the area of the intersection as
well as the area of the union; see Figure 1(d). The ratio of
these two areas is defined as the IoU value between 0 and 1,
where 0 means no intersection and 1 means completely
overlapping. For a set of images, the performance of the
object detection model is evaluated using the mean average
precision (mAP), which is obtained by averaging over differ-
ent IoU thresholds on each bounding box on each image. The
box confidence score C is then defined as follows:

C = Pobject × IoU,

where Pobject is the probability that the box contains an
object. The model considers the prediction to be a true
prediction only if the box confidence score is higher than
a minimum score. This minimum score is called a ‘threshold
confidence’ and is set manually. For the dataset we use here,
the threshold confidence is set to 10%–40% to find most
objects of interest while excluding unwanted objects.

The algorithm we use in this project is the state-of-the-art
object detector YOLOv5[27], which compared with its pre-
decessors included a new PyTorch training and deployment
framework. As a result, YOLOv5 is significantly faster and
user-friendly while maintaining good prediction accuracy.
Therefore, YOLOv5 is regarded as one of the standard test
models when developing specific algorithms in the field of
fast object detection.

3. Applications

In this section we are going to present three exemplary
applications for object detection in the context of high-power
laser experiments.

The experiment was performed at the Center for Advanced
Laser Applications at the Ludwig-Maximilians-University
of Munich using the ATLAS laser system. The on-target

energy of the experiment is 6±1 J. The pulses are centred at
800 nm and compressed to a length of 30 fs (full width at half
maximum (FWHM)). Focused with a f /33 parabolic mirror,
the peak intensity reaches from 1.7×1019 to 5×1019 W/cm2,
resulting in a normalized vector potential a0, ranging from
2.8 to 4.8. Laval nozzles fed with hydrogen are used as the
gas target and have a diameter of 5 or 7 mm.

3.1. Few-cycle shadowgraphy of plasma waves

Plasma waves excited by a laser-driven electron beam in a
hybrid plasma accelerator are diagnosed. A hybrid plasma
accelerator utilizes the dense, high-current electron bunch
produced by a laser-wakefield accelerator to drive the plasma
wave for a plasma-wakefield acceleration (PWFA)[19,28,29].
Unlike in PWFA driven by electron bunches from conven-
tional radio frequency (RF) accelerators, the plasma density
in a hybrid accelerator is higher, typically approximately
1018 cm−3, which makes it possible for shadowgraphy using
few-cycle optical probes[18–20]. The plasma evolution can be
observed in detail in femtosecond resolution using a few-
cycle probe beam. It is derived from the main laser driver,
undergoes spectral broadening in a gas-filled fibre and is
compressed to sub-10 fs by a set of chirped mirrors. Thus,
the probe and driver are inherently synchronized. A practical
problem in experiments is the variation of the plasma waves
in the shadowgrams. This especially occurs when the laser–
plasma parameters are being tuned, for instance, scanning
the plasma target with respect to the laser focus. To locate
the plasma waves regardless of the varying laser–plasma
condition, an object detector is used.

3.1.1. Labelling and training
The object detector is applied to up to 200 manually labelled
shadowgrams taken from various days of experimentation.
Datasets of varying sizes are used for training, and a bench-
mark is listed in Table 1. While most of the shadowgrams
have observable plasma waves, about 10% of the images do
not. The labelled classes on the shadowgrams include the
plasma waves, a shock front caused by a deliberate obstacle
in the target’s gas flow and the diffraction pattern caused
by dust in the imaging beam path. The dataset is randomly
split into a training set, a validation set, and a testing set
by 70%, 20% and 10%, respectively. To further increase the
size of the dataset, augmentations are applied to the labelled
images, as shown in the second column in Table 1. In the
augmentation process, copies of the original image are made
and then the brightness and exposure are slightly changed.
Note that augmentation is only applied to the training set and
not the validation set or the testing set.

The training process utilizes the concept of transfer learn-
ing, where the knowledge from a pre-trained model for
general object detection tasks is transferred to our model
for a specific task. YOLOv5 provides a series of such
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Table 1. Inference accuracy versus dataset size. The first col-
umn reports the size of the ground-truth (manually labelled)
datasets for training, validation and testing. The second column
reports the size of the augmented dataset for training, validation
and testing. The third column presents the run time of the
training process associated with each dataset, using a Tesla T4
GPU. The last two columns report the prediction accuracy of
these datasets on two inference datasets, where inference set 1
has 50 images and inference set 2 has 1000 images.

Labelled Augmented Time Inference Inference
set set set of set of
size size 50 accuracy 1000 accuracy

15 35 5 min 68% 52%
30 52 8 min 98% 85%
50 124 11 min 100% 97%
120 299 15 min 100% 92%
200 449 28 min 100% 89%

pre-trained models, and here we use the second-smallest
model (YOLO5s.pt). The run time of the training process is
listed in the third column in Table 1. It is worth pointing out
that the run time can be further reduced by transfer learning
from a learned model using a small training set.

3.1.2. Results
In addition to the test dataset, the trained models are applied
to two inference datasets, as shown in the last two columns in
Table 1. The images in the inference sets are not used in the
training, validation or testing processes. The first inference
set contains 50 shadowgrams with observable and labelled
plasma waves. The second inference set consists of 1000
images from various experiment days, where 68 of them do
not have an observable plasma wave. The model’s perfor-
mance on these two inference datasets further proves that
the training data are not biased to any specific orientation
or location of the objects.

Comparing the five trained networks in Table 1, the
medium-sized dataset with 50 pre-labelled shadowgrams
provides the most accurate model in this case. The trained
model has an mAP of 0.941 for an IoU threshold of 0.5.
The model is then used to detect the target features on a
shadowgram. An example is presented in Figure 2, showing
the detected plasma wave (red), the shock (green) and the
diffraction pattern caused by dust in the beam path (blue).
A threshold confidence of 10% is applied when drawing the
bounding boxes.

The plasma wavelength can be estimated as the plasma
wave is located by the object detector. This is achieved by
taking the Fourier transform of the region of interest (ROI),
which is the red bounding box containing the plasma wave
oscillation feature. The result of the Fourier transform is
demonstrated on the top-right in Figure 2, and the peak is
at approximately 27.5 µm.

As the laser and plasma parameters (pressure, longitudinal
position, etc.) are being tuned during an experiment, the

plasma wavelength changes accordingly. Figure 3 presents
further analysis of the plasma oscillation, given the region
defined by the object detector. In Figure 3(a), the backing
pressure is scanned from 2 to 7 bar (1 bar = 105 Pa).
Each data point represents the mean value of 20 consecutive
laser shots, and the error bar measures the mean absolute
deviation. The plasma wavelength is calculated by taking
the Fourier transform of the plasma wave ROI at each
pressure, and is plotted on the left-hand vertical axis. The
electron density is calculated from the plasma wavelength,
and is labelled on the right-hand vertical axis. Note that the
right-hand vertical axis for the plasma density profile is set
to have linear tick labels, and therefore the left-hand vertical
axis for the plasma wavelength has nonlinear tick labels. The
electron density versus the backing pressure is fit to a linear
relation, with an R2 value as high as 0.98. The curve fitting is
shown by the dashed line. The gas target has also been char-
acterized via separate interferometry measurements, and the
resulting density is approximately 1×1018 cm−3 at a backing
pressure of 2 bar and approximately 3×1018 cm−3 at 7 bar.

A similar analysis is presented in Figure 3(b), where the
few-cycle optical probe is scanned over 1.2 mm relative to the
shock position, from the upstream end to the centre of the gas
target. At 0 mm, the first plasma bubble of the plasma wave
overlaps with the density shock. The plasma density versus
position before the shock is fitted to an exponential function,
and the density away from the shock approaching the target
centre is almost constant, both shown with blue dashed lines.
The middle section of the density profile, shown as shaded
circles, is lower than expected. There are two reasons for this
method to be less reliable in this area. Firstly, the shock is
overlapping with the plasma wave and the width of the shock
is longer than the length of a plasma bubble. Therefore,
taking the Fourier transform in this area gives a wavelength
longer than it should be, and thus the data points in the
greyed-out region are lower than expected. Secondly, since
the plasma wave ROI is a few hundred micrometres long
and contains over 10 plasma bubbles, the calculated plasma
wavelength or density is an averaged value instead of the
value at the exact probe position. A scale bar showing the
length of the ROI is attached at the bottom right-hand corner.
Therefore, the peak at 0 mm near the shock is less profound
than expected, as it has been averaged with lower densities.
At a long distance from the shock, however, the supersonic
density profile is nearly constant and averaging over distance
still results in a density plateau. To better resolve the density
near the shock, methods that do not average over distance
could be helpful, such as performing a windowed Fourier
transform, a continuous wavelet transform or even a nested
object detector.

Another interesting observation is the position jitter of the
plasma wave. With the object detector, the vertical position
of the plasma wave can be accurately determined, leading
to an estimation of the jitter of the driver. The vertical
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Figure 2. An example: the plasma wave, the shock and the diffraction pattern caused by dust are found by the object detector and located with bounding
boxes. More shadowgrams with different shock positions, without shocks, with multiple dust patterns and with overlapping objects are attached in the
supplementary material. The subplot on the top right is the Fourier transform of the region within the bounding box of the plasma wave (red). The plasma
oscillation wavelength is estimated by integrating along the vertical axis, which peaks at 27.5 µm.

a) b)

Figure 3. Plasma oscillation wavelengths (left-hand vertical axis) and plasma density (right-hand vertical axis) calculated from the Fourier transform results
within the ROI defined by the object detector. (a) The backing pressure of the gas target is scanned from 1 to 6 bar. (b) The probe is moved from the upstream
end to the centre of the gas target, and 0 mm is where the first plasma bubble of the plasma wave is at the density shock front. As mentioned in the main text,
the region where the ROI includes the shock produces unreliable results and is thus greyed out.

position of the plasma waves from all shots is plotted in
Figure 4(a), measured from the centre of the shadowgram,
where a negative value means the plasma wave is on the top
half of the shadowgram.

The plotted data were taken over approximately 5 hours
in one experiment day, and are part of the inference set of
1000 shots mentioned in Table 1. The plasma wave’s vertical
positions in the camera’s field of view of the first and last
shot are manually compared to confirm that the positive drift
is not artificial. Objects not perfectly centred in the bounding
box account for an insignificant offset compared with the
vertical jitter from shot to shot.

Note that the parameter scan performed during the exper-
iment only affects the horizontal position of the plasma
waves, and thus there is no intentional change in the vertical
position of the plasma waves. A slight slope is observed
in Figure 4(a), implying a linear drift of the plasma wave
vertically over the day. The focusing optic is 6 m away from
the gas jet, and the position angle is calculated accordingly.
The shot-to-shot fluctuation is calculated from the difference
in angle between two consecutive shots. As is shown in
Figure 4(b), the majority of the shot-to-shot jitter falls below
4 µrad. This is in line with a separate measurement of the
jitter in the laser driver, which is mostly within 3 µrad
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Figure 4. (a) Vertical position of the plasma wave moves over a day.
(b) Jitter between every two consecutive shots, calibrated into a solid angle.

and, accordingly, the dominant source of the fluctuation
in the plasma wave appears to originate from the pointing
fluctuations of the main laser beam.

To summarize, the analysis in this application is enabled
by the object detector, which tracks the position change of
the plasma wave due to the parameter scan or even the beam
jitter itself. While it is possible to select a fixed ROI for the
Fourier transform without knowing the exact position of the
plasma wave, such as the whole shadowgram, the estimated
wavelength would not be reliable. This is due to the fact
that such a maximum ROI includes too much unnecessary
information, for example, the shock, the background noise
or the tail of the plasma wave without observable oscillating
structures. On the other hand, the object detector locates
the obvious plasma wave structures of the first few bubbles,
making it possible to exclude the interference of irrelevant
information during the Fourier transform. Therefore, the use
of the object detector effectively increases the signal-to-noise
ratio during the Fourier transform calculation. Note that
the shocks and diffraction patterns caused by dust are also
detected on the shadowgrams, as shown in Figure 2. While
these objects are not analysed in this study, they could find
potential use, such as to relate the position of the shock to
the position of the injection point in the accelerator[30].

3.2. Electron energy spectrometer

The second application regards the electron beams from
a laser-wakefield accelerator. The energy spectra of the
produced electron beams are measured by a magnetic elec-
tron spectrometer. The magnetic spectrometer consists of
an 80 cm long, 0.85 T permanent magnet with a 4 cm
gap. The electrons are deflected as they pass through the
magnetic spectrometer, and intersect with the detector plane
at different positions. The radius of the trajectory is deter-
mined by the energy of the electron, and thus the magnetic
spectrometer is calibrated by particle tracking. Peaks on

the electron energy spectra are identified and the associated
charge numbers are calculated, not only for mono-energetic
beams but also for multi-energy and broadband beams. A
calibrated tritium capsule is used as a constant absolute light
source in order to calibrate the detected charge. The signal
of the tritium capsule is also detected and labelled on the
images, from which the charge value is calculated from the
pixel intensity[29].

3.2.1. Labelling and training
The training and validation dataset consists of 50 images of
electron energy spectra taken from various experiment days.
The two labelled classes on the energy spectra are the peaks
of the electron beam and the tritium capsule. The dataset is
expanded to 82 images using rotational augmentation.

The model is transfer-learned from the YOLO5s.pt model
and then fine-tuned with a lower learning rate. Both the train-
ing and the fine-tuning process take approximately 10 min-
utes on a Tesla T4 GPU.

3.2.2. Results
The trained model has an mAP of 0.904 for an IoU threshold
of 0.5. After training, the algorithm can detect peaks in the
electron energy spectra, as well as the location of the tritium
capsule for charge calibration. The charge number of each
peak is calculated and annotated alongside; see Figure 5. A
threshold confidence of 20% is applied when drawing the
bounding boxes.

Figure 5 presents six electron energy spectra with various
shapes, positions and numbers of peaks. The spectra were
taken on different experiment days. The peaks on the energy
spectra are detected and labelled with the charge number,
and the tritium capsule is also detected and highlighted in
the small bounding box at the bottom of each image. The
charge number in pico-coulomb is calibrated by the tritium
capsule. Although it might be possible to estimate the charge
of the peaks using pre-defined methods, applying an object
detector has several advantages. Firstly, it allows for defining
the region of a peak even if the peak is in an irregular
shape. For instance, in Figures 5(b) and 5(f), it could be
difficult to determine a peak using FWHM or other pre-
determined definitions. While traditional methods tend to
implement human judgement via such definitions, object
detection algorithms aim to imitate human decisions directly.
Namely, the algorithm draws the bounding box the same
way a human would draw it based on his/her knowledge
and experience. Another advantage is that the object detector
enables accurate recognition of multiple peaks, such as in
Figures 5(d) and 5(e). While traditional methods may be
able to select an area of interest and automize the charge
estimation for electron energy spectra taken at similar energy
featuring only a single peak, they cannot handle spectra
with multiple peaks at changing positions. On the other
hand, object detection algorithms can label spectra with
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Figure 5. Labelled peaks with charge number on electron energy spectra. The charge numbers are calculated from the integral within each bounding box.

multiple peaks without knowing the number of peaks in
advance due to the intrinsic nature of the algorithm. Lastly,
live information on the electron charge would benefit the
experimental logistics, giving extra feedback when tuning
the laser–plasma parameters during experiments.

In addition to the mAP, the error in this method is further
evaluated by comparing the estimated charge values of the
predicted peaks with those of the manually labelled ground-
truth peaks. The average prediction error is 9.6% for all
the peaks shown in Figure 5. The charge value within the
ground-truth boxes is calculated and labelled on the energy
spectra in Figure 2 in the supplementary material. The
charge value within the ground-truth boxes is calculated and
labelled accordingly.

3.3. High-power laser damage on optics

The peak power of lasers has been ramping up since the
invention of chirped-pulse amplification technology[31],
entering the petawatt regime in several facilities world-
wide[1,3,4,32–36]. While optics are carefully chosen for their
high damage threshold, the large size of PW laser optics
makes optical damage a main cost driver for operating
high-power laser systems. In order to minimize damage
propagation along the beam path, it is therefore crucial to
detect the first occurrence of a damage spot on any optic
and to use such an event to trigger a laser shutdown. In this
section, we present the detection of laser damage on an optic
in the laser chain (wedge) by imaging the stray light off the
main compressor grating and analysing the imaging results
using an object detector. In this proof-of-principle setup,
the damages occurred on the wedges in the amplification
chain; cameras looking at the compressor grating at the end
of the chain saw diffraction patterns that can be recognized
by an object detector. Of course, the same imaging/object
detection algorithm could be applied for directly imaging
the diffuse reflection off any laser optic.

3.3.1. Labelling and training
The training and validation dataset consists of 50 images
of the grating surface taken from various experiment days.
The only labelled class on the images is the damaged spot.
The dataset is expanded to 114 images using augmentation
in the image-level brightness and the exposure.

The model is transfer-learned from the YOLO5s.pt model
and then fine-tuned with a lower learning rate. The training
takes approximately 50 minutes and the fine-tuning takes
approximately 30 minutes on a Tesla T4 GPU.

3.3.2. Results
The trained model has an mAP of 0.995 for an IoU threshold
of 0.5. The model is applied to two inference sets. The first
inference set has 1000 images when there is no optical
damage in the beam path, and the second inference set
has 1000 images when there is an optical damage in the
beam path. The images were taken from different experiment
days. The model detects no signal of damage in any of the
images in the first set, while it detects the diffraction patterns
from the optical damage in all 1000 images in the second
set. The results prove the good consistency of the object
detector, since it neither misses any damaged optics nor
gives false labels. Figure 6 presents two examples of the
prediction results in the inference sets, where Figure 6(a) is
from the first set and Figure 6(b) is from the second set. A
threshold confidence of 40% is applied when drawing the
bounding boxes. This application demonstrates the potential
to use object detection in any high-power laser system for
immediate warnings on crucial optical elements, providing
timely protection to the rest of the optics in the system. It has
to be pointed out that this application, unlike the previous
two, can also be treated as a classification problem to judge
if there is an optical damage. A recent work by Tudor[37]

finds an abnormal laser beam profile using a CNN. Amorin
et al.[38] classified the microscopic damages on National
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a) b)

Figure 6. Detected interference pattern on a grating surface, originated
from damages of previous optics in the amplification beam path: (a) is an
image of the grating surface without damaged optics in the beam path, while
(b) is an image of a grating surface with damaged optics in the beam path.
The bounding boxes are drawn around the detected damage spots.

Ignition Facility (NIF) optics using a CNN connected by
an ensemble of decision trees, which combines the feature
extraction ability of CNNs and the decision-making strength
of decision trees. It is also possible to trace where the damage
occurs in the beam path. Li et al.[39] detected the laser
damage using a CNN with the input being the diffraction
ring feature itself instead of the image. Likewise, our future
work is to narrow down the damage location to a range of
longitudinal positions based on the size and periodicity of
the ring structures, while utilizing the fast inference speed of
this algorithm for real-time multi-damage positioning.

4. Summary and outlook

In this paper, we have provided three examples of how
advanced computer vision techniques can be applied to assist
online and offline experimental analysis in high-power laser
facilities. We have shown satisfying predictions by fine-
tuning a pre-trained network for general object detection
tasks using only approximately 50 hand-labelled images. The
learned model has been examined using not only the test
dataset split from the input data, but also a separate inference
set of 1000 images with various laser–plasma parameters.
The model training is performed using accessible computa-
tional resources in GPU hours or below, while the inference
time on an unseen image with the trained models takes only
tens of milliseconds.

The main benefit of object detection is the possibility
of real-time data analysis. For a human it is not possible
to process all the important information of an experiment
running at a 1-Hz shot rate. The object detector allows some
degree of real-time, in-depth data analysis and visualization
during an experimental campaign, which goes beyond that
of what a human operator could achieve.

The presented methodology is widely adaptable and easy
to implement. From a practical perspective, it does not

require much expertise in machine learning to construct
an architecture, and users only have to label a few dozen
diagnostic images. For readers with slightly different laser
parameters and diagnostics, we have shared our code in
a GitHub repository linked in the supplementary material.
The method can also be applied to kHz laser systems with
little loss in the repetition rate. The algorithm can operate at
approaching 100 Hz with lower prediction accuracy, while
experimentalists usually have to average over approximately
10 laser shots to reduce fluctuations. Therefore, the presented
methodology is not much slower than the ‘effective’ repeti-
tion rate of a kHz laser.

With the superiority in time and consistency, the predic-
tion results are reliable and robust compared with manual
human recognition. Thus, we anticipate that the concept of
object detection will find wide applications in more image-
related measurements and diagnostics in high-power laser
experiments.
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