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laser wakeÞeld acceleration[43,44] and microstructural target
electron acceleration[45] .

Conventional high-power laser systems[1] generate linearly
polarized (LP) laser beams without a twist to the laser
wave-fronts, which prevents one from readily realizing the
interactions utilizing ultra-high-intensity helical laser beams.
The spatial structure of laser beams with helical wave-fronts
can be viewed as a superposition of LaguerreÐGaussian (LG)
modes, which is why these beams are often referred to as
LG beams. An LG beam can potentially be produced from
a standard LP Gaussian laser pulse in reßection from a
fan-like structure[16,17,20] . This approach avoids transmissive
optics and it is well-suited for generating high-power high-
intensity LG beams at high efÞciency. Achieving circularly
polarized (CP) LG beams in conventional high-intensity
laser systems is likely to be more challenging than achieving
LP-LG beams, since a native Gaussian beam is LP and extra
steps need to be taken to induce circular polarization. It is
then imperative to study laserÐplasma interactions involving
LP-LG beams, as these beams are more likely to be achieved
in the near-term at high-intensity laser systems such as ELI-
NP[2] or the SG-II UP facility[46] . The focus of this paper
is on electron acceleration in vacuum by an LP-LG laser
beam following its reßection off a plasma with a sharp
density gradient. This setup is sometimes referred to as the
Ôreßection off a plasma mirrorÕ[47] , but we minimize the use
of the term Ôplasma mirrorÕ to avoid any confusion with
the optical shutters employed for producing high-contrast
pulses. Direct laser acceleration in vacuum by a conven-
tional laser beam is generally considered to be ineffective.
The key issue is the transverse electron expulsion caused
by the transverse electric Þeld of the laser. The expulsion
terminates electron energy gain from the laser and leads
to strong electron divergence. It must be stressed that the
expulsion is closely tied to the topology of the laser Þeld,
which is dominated by the transverse electric and magnetic
Þelds. In two recent publications[39,40] we showed that a
CP-LG beam with a properly chosen twist can be used to
solve the expulsion problem. The wave-front twist creates
a unique accelerating structure dominated by longitudinal
laser electric and magnetic Þelds in the region close to the
axis of the beam. The longitudinal electric Þeld provides
forward acceleration without causing electron divergence,
while the longitudinal magnetic Þeld provides transverse
electron conÞnement. It was shown using 3D particle-in-cell
(PIC) simulations that a CP-LG beam reßected off a plasma
can generate dense bunches of ultra-relativistic electrons via
the described mechanism[39,40] . The distinctive features of
this acceleration mechanism are the formation of multiple
sub-µm electron bunches, their relatively short acceleration
distance (around 100µm) and their high density (in the
range of the critical density). The purpose of the current
study is to identify the changes introduced by the change in
polarization from circular to linear with the ultimate goal

of determining whether the use of circular polarization is
essential.

In this paper, we present results of a 3D PIC simulation
for a 600 TW LP-LG laser beam reßected off a plasma
with a sharp density gradient. We Þnd that, despite the
loss of axial symmetry introduced by switching from cir-
cular to linear polarization, the key features of electron
acceleration are retained. Namely, the laser is still able to
generate dense ultra-relativistic electron bunches, with the
acceleration performed by the longitudinal laser electric Þeld
in the region close to the laser axis. In the most energetic
bunch, the electron energy reaches 0.29 GeV (10% energy
spread). The bunch has a charge of 6 pC, a duration of
approximately 270 as and remarkably low divergence of
0.57� (10 mrad). The normalized emittance iny and z is
�� rms,y � 5× 10Š7, �� rms,z � 4× 10Š7.

Such dense attosecond bunches can Þnd applications in
research and technology[48,49] , with one speciÞc application
being free-electron lasers[50] . The rest of this paper is orga-
nized as follows.Section 2presents the Þeld structure of
the LP-LG beam and the setup of our 3D PIC simulation.
Section 3discusses the formation of electron bunches that
takes place during laser reßection off the plasma.Section 4
examines the energy gain by the electron bunches during
their motion with the laser pulse.Section 5summarizes our
key results and discusses their implication.

2. Field structure of the linearly polarized
Laguerre–Gaussian beam and simulation setup

In this section, we present the structure of the LP-LG beam
that we use in our 3D PIC simulation to generate and
accelerate electron bunches. The section also presents the
simulation setup.

The wave-front structure of a helical beam can be param-
eterized using two indices: the twist indexl, which speciÞes
the azimuthal dependence of the transverse electric and
magnetic Þelds, and the radial indexp, which speciÞes the
radial dependence of the same Þelds in the focal plane. The
polarization of the transverse laser Þelds is independent of
their wave-front topology, so a helical beam can be LP or CP.
Detailed expressions for all Þeld components of an LP-LG
beam are provided by Shiet al.[40] . We choose to omit these
expressions here for compactness and instead we summarize
the key features. The twist indexl qualitatively changes
the topology of the transverse and longitudinal Þelds. We
are interested in the Þeld structure close to the central axis.
There are three distinct cases:l = 0, | l | = 1 and| l | > 1.
The case ofl = 0 corresponds to a conventional beam, with
the near-axis Þeld structure dominated by transverse electric
and magnetic Þelds. In the case of| l | > 1, all laser Þelds
vanish on the central axis. The case that is of interest to us is
the case with| l | = 1, because in this case the longitudinal
rather than transverse Þelds peak on the axis.
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Table 1. 3D PIC simulation parameters. Here,nc = 1.8× 1027 mŠ3 is the critical
density corresponding to the laser wavelength� 0. The initial temperatures for
electrons and ions are set to zero.

Parameters for linearly polarized Laguerre–Gaussian laser
Peak power (period averaged) 0.6 PW
Radial and twist index p = 0, l = Š 1
Wavelength � 0 = 0.8µm
Pulse duration (sin2 electric Þeld) � g = 20 fs
Focal spot size (1/ e electric Þeld) w0 = 3 µm
Location of the focal plane x = 0 µm
Laser propagation direction Šx
Polarization direction y
Other simulation parameters
Position of the foil and the pre-plasma Š1.0 toŠ 0.3µm andŠ0.3 to 0.0µm
Density distribution of pre-plasma ne = 180.0nc exp[Š20(x+ 0.3µm) /� 0]
Electron and ion (C6+ ) density in foil ne = 180.0nc andni = 30.0nc

Gradient length L = � 0/20
Simulation box (x× y× z) 10µm× 20µm× 20 µm
Cell number (x× y× z) 800 cells× 1600 cells× 1600 cells
Macroparticles per cell for electrons 100 atr < 2.5µm, 18 atr � 2.5µm
Macroparticles per cell for C6+ 12
Order of electromagnetic Þeld solver 4
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Figure 1. Electric and magnetic Þeld components of an LP-LG laser beam before it encounters the plasma. Panels (a) and (d) showEy; panels (b) and (e)
showEx; panels (c) and (f) showBx. The left-hand column ((a)Ð(c)) shows the Þeld structure in the(x,z)-plane aty = 0. The right-hand column ((d)Ð(f))
shows the Þeld structure in the(y,z)-plane at thex-position indicated with the dashed line in panels (a)Ð(c). All the snapshots are taken att � Š 9 fs from the
simulation with parameters listed in Table1.

In our 3D PIC simulations, we use an LP 600 TW laser
with l = Š 1 andp = 0. We consider a beam that propagates
in the negative direction along thex-axis upon entering the
simulation box. Detailed parameters of the laser beam are
listed in Table 1. In order to facilitate a comparison with
the results for a CP-LG beam published by Shiet al.[40]

(right-CP with l = Š 1 andp = 0), we use the same peak
power, pulse duration and spot size for our LP-LG beam.
The electric and magnetic Þeld structures of the LP-LG
beam in the(x,z)-plane and the(y,z)-plane are shown in
Figure 1. The plots illustrate the difference in topology
between the transverse and longitudinal Þeld components.
The longitudinal electric and magnetic Þelds reach their
highest amplitude along the axis of the laser beam (see
Figures 1(b)and 1(c)). On the other hand, the transverse
electric Þeld shown inFigure 1(a)vanishes on the axis of
the beam. The electric Þeld structure inFigure 1agrees with
the analytical expression given in Appendix C and derived

in paraxial approximation by assuming that the diffraction
angle� d is small. The longitudinal Þelds are relatively strong
even though� d � 1. We haveEmax

� / Emax
� = Bmax

� / Bmax
� � 0.14

for the considered LP-LG beam with� d � 8.5× 10Š2, where
� d = � 0/� w0. Note thatEmax

� � 1.1× 1013 V/m andBmax
� �

36 kT. The peak normalized amplitude of the longitudinal
Þelda� =| e | Emax

� / mec� for a given period-averaged power
P in PW is given byEquation (C21), wherec is the speed of
light, � = 2� c/� 0 is the laser frequency andeandme are the
electron charge and mass, respectively. We Þnd thata� � 2.7
for the considered power of 600 TW.

It is instructive to compare the Þeld structure of the
LP-LG beam to the Þeld structure of the CP-LG beam
from Shi et al.[40] . In both cases, the longitudinal electric
and magnetic Þelds peak on the axis of the beam where
the transverse Þeld vanishes. However, in contrast to the CP-
LG beam, the longitudinal electric and magnetic Þelds of the
LP-LG beam lack axial symmetry (seeFigures 1(e)and1(f)).
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the axis (y = 0, z = 0) after the laser has been reßected by
the plasma. As we have already seen, the electrons tend to
bunch on the axis. The Þeld of these electrons is difÞcult to
separate from the longitudinal laser electric Þeld. This is the
reason whyB� is plotted instead ofE� . The transverse Þeld is
plotted off-axis because it vanishes on the axis of the beam
for the considered helical beam. The most striking feature
compared to the CP-LG beam examined by Shiet al.[39,40] is
the appearance of higher-order harmonics inEy. In contrast
to Ey, B� has a more regular shape. The spectra shown in
Figure 4(b)conÞrm thatEy contains odd harmonics due
to high-harmonic generation effects[52] , whereasB� in the
near-axis region seems to be unaffected by the harmonic
generation. According to Zhanget al.[22] and Denoeud
et al.[30] , the twist indexln of the harmonics generated during
reßection of an LP-LG laser beam scales asln = nl, where
n is the harmonic order. The Þeld proÞles suggest that the
analysis of electron acceleration in the near-axis region can
be performed without taking into account the higher-order
harmonics, which have a different Gouy phase shift.

The momentum gain of the electrons moving along the
axis of the laser beam can then be obtained by integrating
the momentum balance equation:

dp� / dt = Š | e| E� , (1)

whereE� is the on-axis component of the laser electric Þeld.
We neglect high-harmonic generation and beam scattering,
so E� is the real part of the on-axis Þeld in the original
beam given byEquation (C18). The longitudinal electric
Þeld has the same dependence onx as the Þeld of the CP-
LG beam considered by Shiet al.[40] . For example, we have
the following:

E� = Š
E� sin(� + � 0)

1+ x2/ x2
R

, (2)

for an electron that is staying close to the peak of the
envelope, whereE� is the peak amplitude ofE� . Here � 0

is a constant that can be interpreted as the injection phase
for an electron that starts its acceleration atx � 0. The
only difference between the Þelds of the CP-LG and LP-
LG beams is their amplitude. Therefore, we can skip the
derivation here and directly apply the result of Shiet al.[40] .
We have the following longitudinal momentum gain for an
electron injected into the laser beam close to the peak of the
envelope:

� p�

mec
= Š a�

� 2w2
0

� 2
0

{
cos� 0 Š cos

[
� 0 Š 2arctan(x/ xR)

]}
,

(3)

where a� is the normalized amplitude of the longitudinal
Þeld.

We obtain the terminal momentum gain by taking the limit
of x/ xR � � in Equation (3), which yields the following:

� pterm
�

mec
= 2a�

� 2w2
0

� 2
0

cos(� 0 Š � ) . (4)

One can understand the dependence on� 0 by recalling that
the electron is continuously slipping with respect to the
forward-moving structure ofE� as it moves with the laser
pulse. Delayed injection into the accelerating phase means
that the electron slips into the decelerating phase before the
amplitude ofE� becomes small due to the beam diffraction.
As a result, the net momentum gain is reduced. The energy
gain occurs only for�/ 2 < � 0 < 3�/ 2. The assumption
that the electron is moving forward with ultra-relativistic
velocity is no longer valid for 3�/ 2 < � 0 < 5�/ 2, which,
in turn, invalidates the derived expression. It is useful to
rewrite our result in terms of electron energy. We assume
that the electron experiences a considerable energy gain
due to the increase of its longitudinal momentum, so that the
terminal energy is� term � cpterm

� � c� pterm
� . We then have the

following:

� term

mec2
= 2a�

� 2w2
0

� 2
0

cos(� 0 Š � ) . (5)

We now take into account the expression fora� in terms
of the period-averaged powerP given byEquation (C21)to
obtain the following practical expression:

� term[GeV] � 0.5cos(� 0 Š � ) P1/ 2 [ PW] . (6)

In comparison to the acceleration by a CP-LG beam with
the same powerP[40] , the terminal energy in the LP-LG beam
is lower by a factor of

	
2.

Figure 5provides information of the long-term electron
acceleration in the 3D PIC simulation.Figure 5(a)shows the
electron energy distribution as a function ofx at t = 261 fs.
Note that the plot ofne integrated over the laser beam cross-
section is shown inFigure 7(c)of Appendix A. By this
point, the electrons have roughly traveled a distance of 100� 0

with the laser beam. Note thatt = 261 fs is chosen as the
time of the snapshot in order to facilitate a comparison with
the results for the CP-LG beam presented by Shiet al.[40] .
The pronounced bunching is maintained by the periodic
accelerating structure ofE� . The third bunch travels close to
the peak of the laser envelope, which results in the highest
electron energy gain. In what follows, we focus on this
speciÞc bunch.

Figures 5(b)and 5(c) show the time evolution of the
divergence angle and electron energy within the third bunch
(see the dashed rectangle and the inset inFigure 5(a)). After
an initial stage that lasts about 80 fs, the distribution over
the divergence angle reaches its asymptotic shape. It can be
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Figure 5. Result of the long-term electron acceleration in the reßected LP-LG laser beam close to the beam axis. (a) Electron energy distribution as a
function ofx at t = 261 fs for electrons withr < 1.5µm. The inset shows the third bunch that is marked with the dashed rectangle in the main plot. (b) Time
evolution of the electron distribution over the divergence angle� in the third bunch (r < 2w0). (c) Time evolution of the electron energy spectrum in the third
bunch. The black dashed curve is the prediction obtained fromEquation (3)with � 0 = 0.8� . The start time of the acceleration is used as an adjustable
parameter. (d) Electron energy versus the divergence angle in the third bunch shown in the inset of panel (a).
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Figure 6. (a) Areal density
 e and (b) cell-averaged divergence angle� in the cross-section of the third bunch att = 261 fs and�x = 2.3. (c)Ð(e) Snapshots
of the longitudinal electric ÞeldEx/ Ex0 in the cross-section of the laser beam at�x = 0.1,t = 9 fs (c), �x = 0.45,t = 46 fs (d) and�x = 2.3,t = 261 fs (e). Here,
Ex is calculated using the analytical expressionEquation (C28)given in Appendix C andEx0 is the amplitude ofEx at �x = 0, r = 0.

seen from the snapshot inFigure 5(b)(taken att = 261 fs)
that the bunch is monoenergetic, with most electrons having
a divergence angle that is less than 10 mrad. The time
evolution of the energy spectrum, shown inFigure 5(c),
conÞrms that the bunch accelerates roughly as a whole. The
dashed curve is the solution given byEquation (3). We used
the start time of the acceleration as an adjustable parameter
because our model only captures the acceleration after the
longitudinal motion becomes ultra-relativistic. The phase� 0

is another adjustable parameter that we use to match the
time evolution of the electron energy in the bunch. We Þnd
that � 0 � 0.8� provides the best Þt, the result of which is
shown inFigure 5(c). The large energy spread at the early
stage is likely due to the presence of the two lobes shown in
Figure 2. The good agreement at later times indicates that our

model captures relatively well the key aspects of the on-axis
electron acceleration.

We Þnd that the electron bunches retain noticeable
asymmetry following their prolonged interaction with the
laser beam. To illustrate the asymmetry, Figures6(a)
and 6(b) show the areal density
 e and the cell-averaged
divergence angle� in the cross-section of the third bunch
at t = 261 fs. The bunch asymmetry is likely imprinted
by the asymmetry inEx shown in Figure 1(e). Since the
electron bunches are moving slower than the laser wave-
fronts, each bunch experiences a rotatingEx. This can
be shown by examining the Þeld structure at the location
of a forward-moving ultra-relativistic electron bunch. We
calculateEx in the beam cross-section using the analytical
expression given in Appendix C. The longitudinal position


