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Abstract
A linearly polarized Laguerre–Gaussian (LP-LG) laser beam with a twist index l = −1 has field structure that
fundamentally differs from the field structure of a conventional linearly polarized Gaussian beam. Close to the axis of
the LP-LG beam, the longitudinal electric and magnetic fields dominate over the transverse components. This structure
offers an attractive opportunity to accelerate electrons in vacuum. It is shown, using three-dimensional particle-in-cell
simulations, that this scenario can be realized by reflecting an LP-LG laser off a plasma with a sharp density gradient. The
simulations indicate that a 600 TW LP-LG laser beam effectively injects electrons into the beam during the reflection.
The electrons that are injected close to the laser axis experience a prolonged longitudinal acceleration by the longitudinal
laser electric field. The electrons form distinct monoenergetic bunches with a small divergence angle. The energy in the
most energetic bunch is 0.29 GeV. The bunch charge is 6 pC and its duration is approximately 270 as. The divergence
angle is just 0.57◦ (10 mrad). By using a linearly polarized rather than a circularly polarized Laguerre–Gaussian beam,
our scheme makes it easier to demonstrate the electron acceleration experimentally at a high-power laser facility.
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1. Introduction

The construction of numerous high-power laser systems
around the world[1–4] has enabled the development of
novel particle (see reports of Bulanov et al.[5] and
Esarey et al.[6] and references therein) and radiation
sources[7–12] for multidisciplinary applications[13,14]. Most
of the improvements of the laser beams used for driving
laser–matter interactions have been focused on increasing
power, on-target intensity, total energy and the contrast of
the compressed pulse. For example, the proposed facility[3,4]

that aims to cross the 100 PW limit is expected to be
in development over the next decade. Concurrently, new
optical techniques for producing helical wave-fronts[15–20]

are also being developed. There now exist multiple
computational[17,21–29] and experimental[15,18,30–32] studies
examining interactions of helical laser beams with plasmas.
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There are also some published works on the terawatt scale
helical laser production using a chirped-pulse amplification
system[19,33]. Even though the techniques for creating helical
beams with higher power are yet to be applied at high-
power high-intensity laser facilities, they offer an exciting
opportunity to create laser pulses with a qualitatively
different field typology that can have a profound impact
on laser–plasma interactions and particle acceleration.

There are several laser-based electron acceleration
approaches with different degrees of maturity. The most
frequently used ones are laser wakefield acceleration[6],
which utilizes plasma electric fields, and direct laser
acceleration[34], which relies on the fields of the laser for
the energy transfer inside a plasma (e.g., see the report of
Arefiev et al.[35]) or in vacuum[36]. These mechanisms are
typically realized using conventional laser pulses. In an
attempt to improve electron acceleration, several studies
also considered radially polarized laser beams[37] and
higher-order Gaussian beams[38]. Recently, there has been
an increased interest in utilizing ultra-high-intensity laser
beams with helical wave-fronts for electron acceleration
in various setups, including vacuum acceleration[39–42],

© The Author(s), 2022. Published by Cambridge University Press in association with Chinese Laser Press. This is an Open Access article, distributed under
the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

1

http://dx.doi.org/10.1017/hpl.2022.37
https://orcid.org/0000-0001-9902-873X
https://orcid.org/0000-0001-7852-4216
https://orcid.org/0000-0001-5627-2011
https://orcid.org/0000-0002-0597-0976
mailto:shiyin@ustc.edu.cn
mailto:aarefiev@eng.ucsd.edu
https://creativecommons.org/licenses/by/4.0


2 Y. Shi et al.

laser wakefield acceleration[43,44] and microstructural target
electron acceleration[45].

Conventional high-power laser systems[1] generate linearly
polarized (LP) laser beams without a twist to the laser
wave-fronts, which prevents one from readily realizing the
interactions utilizing ultra-high-intensity helical laser beams.
The spatial structure of laser beams with helical wave-fronts
can be viewed as a superposition of Laguerre–Gaussian (LG)
modes, which is why these beams are often referred to as
LG beams. An LG beam can potentially be produced from
a standard LP Gaussian laser pulse in reflection from a
fan-like structure[16,17,20]. This approach avoids transmissive
optics and it is well-suited for generating high-power high-
intensity LG beams at high efficiency. Achieving circularly
polarized (CP) LG beams in conventional high-intensity
laser systems is likely to be more challenging than achieving
LP-LG beams, since a native Gaussian beam is LP and extra
steps need to be taken to induce circular polarization. It is
then imperative to study laser–plasma interactions involving
LP-LG beams, as these beams are more likely to be achieved
in the near-term at high-intensity laser systems such as ELI-
NP[2] or the SG-II UP facility[46]. The focus of this paper
is on electron acceleration in vacuum by an LP-LG laser
beam following its reflection off a plasma with a sharp
density gradient. This setup is sometimes referred to as the
‘reflection off a plasma mirror’[47], but we minimize the use
of the term ‘plasma mirror’ to avoid any confusion with
the optical shutters employed for producing high-contrast
pulses. Direct laser acceleration in vacuum by a conven-
tional laser beam is generally considered to be ineffective.
The key issue is the transverse electron expulsion caused
by the transverse electric field of the laser. The expulsion
terminates electron energy gain from the laser and leads
to strong electron divergence. It must be stressed that the
expulsion is closely tied to the topology of the laser field,
which is dominated by the transverse electric and magnetic
fields. In two recent publications[39,40] we showed that a
CP-LG beam with a properly chosen twist can be used to
solve the expulsion problem. The wave-front twist creates
a unique accelerating structure dominated by longitudinal
laser electric and magnetic fields in the region close to the
axis of the beam. The longitudinal electric field provides
forward acceleration without causing electron divergence,
while the longitudinal magnetic field provides transverse
electron confinement. It was shown using 3D particle-in-cell
(PIC) simulations that a CP-LG beam reflected off a plasma
can generate dense bunches of ultra-relativistic electrons via
the described mechanism[39,40]. The distinctive features of
this acceleration mechanism are the formation of multiple
sub-µm electron bunches, their relatively short acceleration
distance (around 100 µm) and their high density (in the
range of the critical density). The purpose of the current
study is to identify the changes introduced by the change in
polarization from circular to linear with the ultimate goal

of determining whether the use of circular polarization is
essential.

In this paper, we present results of a 3D PIC simulation
for a 600 TW LP-LG laser beam reflected off a plasma
with a sharp density gradient. We find that, despite the
loss of axial symmetry introduced by switching from cir-
cular to linear polarization, the key features of electron
acceleration are retained. Namely, the laser is still able to
generate dense ultra-relativistic electron bunches, with the
acceleration performed by the longitudinal laser electric field
in the region close to the laser axis. In the most energetic
bunch, the electron energy reaches 0.29 GeV (10% energy
spread). The bunch has a charge of 6 pC, a duration of
approximately 270 as and remarkably low divergence of
0.57◦ (10 mrad). The normalized emittance in y and z is
ε̃rms,y ≈ 5×10−7,ε̃rms,z ≈ 4×10−7.

Such dense attosecond bunches can find applications in
research and technology[48,49], with one specific application
being free-electron lasers[50]. The rest of this paper is orga-
nized as follows. Section 2 presents the field structure of
the LP-LG beam and the setup of our 3D PIC simulation.
Section 3 discusses the formation of electron bunches that
takes place during laser reflection off the plasma. Section 4
examines the energy gain by the electron bunches during
their motion with the laser pulse. Section 5 summarizes our
key results and discusses their implication.

2. Field structure of the linearly polarized
Laguerre–Gaussian beam and simulation setup

In this section, we present the structure of the LP-LG beam
that we use in our 3D PIC simulation to generate and
accelerate electron bunches. The section also presents the
simulation setup.

The wave-front structure of a helical beam can be param-
eterized using two indices: the twist index l, which specifies
the azimuthal dependence of the transverse electric and
magnetic fields, and the radial index p, which specifies the
radial dependence of the same fields in the focal plane. The
polarization of the transverse laser fields is independent of
their wave-front topology, so a helical beam can be LP or CP.
Detailed expressions for all field components of an LP-LG
beam are provided by Shi et al.[40]. We choose to omit these
expressions here for compactness and instead we summarize
the key features. The twist index l qualitatively changes
the topology of the transverse and longitudinal fields. We
are interested in the field structure close to the central axis.
There are three distinct cases: l = 0, | l | = 1 and | l | > 1.
The case of l = 0 corresponds to a conventional beam, with
the near-axis field structure dominated by transverse electric
and magnetic fields. In the case of | l | > 1, all laser fields
vanish on the central axis. The case that is of interest to us is
the case with | l | = 1, because in this case the longitudinal
rather than transverse fields peak on the axis.
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Table 1. 3D PIC simulation parameters. Here, nc = 1.8 × 1027 m−3 is the critical
density corresponding to the laser wavelength λ0. The initial temperatures for
electrons and ions are set to zero.
Parameters for linearly polarized Laguerre–Gaussian laser
Peak power (period averaged) 0.6 PW
Radial and twist index p = 0, l = −1
Wavelength λ0 = 0.8 µm
Pulse duration (sin2 electric field) τg = 20 fs
Focal spot size (1/e electric field) w0 = 3 µm
Location of the focal plane x = 0 µm
Laser propagation direction −x
Polarization direction y
Other simulation parameters
Position of the foil and the pre-plasma −1.0 to−0.3 µm and −0.3 to 0.0 µm
Density distribution of pre-plasma ne = 180.0nc exp[−20(x+0.3 µm)/λ0]
Electron and ion (C6+) density in foil ne = 180.0nc and ni = 30.0nc
Gradient length L = λ0/20
Simulation box (x× y× z) 10 µm× 20 µm×20 µm
Cell number (x× y× z) 800 cells × 1600 cells × 1600 cells
Macroparticles per cell for electrons 100 at r <2.5 µm, 18 at r ≥ 2.5 µm
Macroparticles per cell for C6+ 12
Order of electromagnetic field solver 4
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Figure 1. Electric and magnetic field components of an LP-LG laser beam before it encounters the plasma. Panels (a) and (d) show Ey; panels (b) and (e)
show Ex; panels (c) and (f) show Bx. The left-hand column ((a)–(c)) shows the field structure in the (x,z)-plane at y = 0. The right-hand column ((d)–(f))
shows the field structure in the (y,z)-plane at the x-position indicated with the dashed line in panels (a)–(c). All the snapshots are taken at t ≈ −9 fs from the
simulation with parameters listed in Table 1.

In our 3D PIC simulations, we use an LP 600 TW laser
with l = −1 and p = 0. We consider a beam that propagates
in the negative direction along the x-axis upon entering the
simulation box. Detailed parameters of the laser beam are
listed in Table 1. In order to facilitate a comparison with
the results for a CP-LG beam published by Shi et al.[40]

(right-CP with l = −1 and p = 0), we use the same peak
power, pulse duration and spot size for our LP-LG beam.
The electric and magnetic field structures of the LP-LG
beam in the (x,z)-plane and the (y,z)-plane are shown in
Figure 1. The plots illustrate the difference in topology
between the transverse and longitudinal field components.
The longitudinal electric and magnetic fields reach their
highest amplitude along the axis of the laser beam (see
Figures 1(b) and 1(c)). On the other hand, the transverse
electric field shown in Figure 1(a) vanishes on the axis of
the beam. The electric field structure in Figure 1 agrees with
the analytical expression given in Appendix C and derived

in paraxial approximation by assuming that the diffraction
angle θd is small. The longitudinal fields are relatively strong
even though θd � 1. We have Emax

‖ /Emax
⊥ = Bmax

‖ /Bmax
⊥ ≈ 0.14

for the considered LP-LG beam with θd ≈ 8.5×10−2, where
θd = λ0/πw0. Note that Emax

‖ ≈ 1.1 × 1013 V/m and Bmax
‖ ≈

36 kT. The peak normalized amplitude of the longitudinal
field a∗ =| e | Emax

‖ /mecω for a given period-averaged power
P in PW is given by Equation (C21), where c is the speed of
light, ω= 2πc/λ0 is the laser frequency and e and me are the
electron charge and mass, respectively. We find that a∗ ≈ 2.7
for the considered power of 600 TW.

It is instructive to compare the field structure of the
LP-LG beam to the field structure of the CP-LG beam
from Shi et al.[40]. In both cases, the longitudinal electric
and magnetic fields peak on the axis of the beam where
the transverse field vanishes. However, in contrast to the CP-
LG beam, the longitudinal electric and magnetic fields of the
LP-LG beam lack axial symmetry (see Figures 1(e) and 1(f)).
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The difference in symmetry can be illustrated by
constructing an LP-LG beam (l = −1) from two co-
propagating CP-LG beams. Following the notations of Shi
et al.[40], we create a CP transverse electric field by adding
Ez = iσEy, where σ = 1 produces a right-CP wave and
σ = −1 produces a left-CP wave. We take a pair of CP-
LG beams: one with l = −1, σ = −1 and the other one
with l = −1, σ = 1. Their superposition produces an LP
transverse electric field, because Ez components of these
beams cancel each other out. It was shown by Shi et al.[39,40]

that the longitudinal fields of the right- and left-CP-LG
beams have different dependencies on r and φ. Specifically,
the longitudinal field of the right-CP-LG beam (lσ = −1)
is axisymmetric, whereas the longitudinal field of the left-
CP-LG beam (lσ = 1) has azimuthal dependence. Moreover,
only the right-CP-LG beam contributes to the longitudinal
fields on the axis, because the fields of the left-CP-LG beam
vanish. The LP-LG beam inherits its azimuthal dependence
from the left-CP-LG beam, which is the reason why the
longitudinal fields still peak on the axis, but lose their
symmetry as we move away from the axis.

As stated earlier, we want to contrast our results with those
for a right-CP-LG beam that has the same power. The key
player in electron acceleration is the longitudinal electric
field of the laser, because it is this field that performs most
of the acceleration for the electrons moving along the laser
axis. We use the discussed decomposition for the LP-LG
beam to compare the longitudinal field strength | Ex | on the
axis of the two beams. We have already shown that | Ex |
of an LP-LG beam is equal to | Ex | of a right-CP-LG beam
whose transverse field amplitude is half of that in the LP-
LG beam. The power of the right-CP-LG beam is two times
lower than the power the LP-LG beam. Since the power
scales as the square of the field strength, we immediately
conclude that | Ex | in a right-CP-LG beam whose power is
the same as the power of the LP-LG beam is going to be
higher by a factor of

√
2. The loss of axial symmetry and

the reduced field strength are likely to alter the injection and
subsequent acceleration of electron bunches by the LP-LG
beam compared to the case of the right-CP-LG beam from
Shi et al.[40].

In our simulation performed using the PIC code
EPOCH[51], the discussed LP-LG beam is reflected off a
plasma with a sharp density gradient. In what follows, we
provide details of the simulation setup that we use in the
next sections to study electron injection and acceleration.
The target is initially set as a fully ionized carbon plasma
with electron density ne = 180nc, where nc = 1.8×1027 m−3

is the critical density for the considered laser wavelength
λ0 = 0.8 µm. Table 1 provides details regarding the density
gradient. The focal plane of the beam in the absence of the
plasma is located at x = 0 µm, which is also the location
of the plasma surface. The resolution and the number of
particles per cell in the PIC simulation are determined

based on a convergence test, discussed in Appendix A.
The test addresses the concern that the parameters of the
accelerated electron bunches might be sensitive to simulation
parameters[39].

3. Electron injection into the linearly polarized
Laguerre–Gaussian laser beam

In this section we discuss the formation of electron bunches
that takes place during laser reflection off the plasma. We
refer to this process as the ‘electron injection’, because, once
the bunches are formed, they continue surfing with the laser
beam.

Figure 2 shows various aspects of electron injection. All
snapshots are taken at t = 9 fs, with t = 0 fs being defined as
the time when the peak of the laser envelope reaches x = 0
(in the absence of the plasma). The electron density, ne, in
the (x,z)-plane is shown in Figure 2(a). At this point, most of
the laser beam (incident from the right) has been reflected by
the plasma. The reflection process generates bunches that are
solid in the near-axis region, with the peak densities as high
as nc. The plot of ne integrated over the laser beam cross-
section that is shown in Figure 7(a) of Appendix A provides
additional information about the bunches. Figures 2(b) and
2(c) show the transverse areal density ρe and cell-averaged
divergence angle 〈θ〉 of the third bunch marked with a
dashed rectangle in Figure 2(a). The divergence angle for
an individual electron is defined as θ ≡ arctan(p⊥/px). The
angle is averaged on every mesh cell of the (y,z)-plane. It is
instructive to compare the plots of ρe and 〈θ〉 to the results
for the CP-LG laser beam presented by Shi et al.[40] for the
same time instant (t = 9 fs). In the case of the LP-LG beam,
the areal density in the near-axis region is approximately two
times lower, while the divergence angle in the same region is
similar to that of the CP-LG beam. The biggest difference is
the loss of axial symmetry. The LP-LG beam generates two
dense side-lobes in addition to the on-axis part that has been
discussed. To further illustrate the complex structure of the
electron bunches generated by the LP-LG beam, Figures 2(d)
and 2(e) provide 3D rendering of the electron density in the
third bunch. It is clear from Figure 2(d) that the two side-
lobes are slightly behind the on-axis region, which means
that the phase of the laser field at their location is different.
The divergence of the two lobes (shown in Figure 2(c)) is so
high that they are likely to move away from the central axis
while moving in the positive direction along the x-axis with
the laser beam.

To examine this expectation and to provide additional
insights into electron bunch dynamics, we performed
detailed particle tracking for the third bunch. We distinguish
three groups of electrons based on their transverse position
within the bunch at t = 46 fs. Figure 3(a) shows the areal
density of the third bunch at t = 46 fs, while Figure 3(b)
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Figure 2. Structure of electron bunches shortly after laser reflection off the plasma (t = 9 fs). (a) Electron density on a log-scale, with the color representing
log(ne/nc). The blue, red and green contours denote ne = 0.1nc, 0.5nc and nc, respectively. The dashed rectangle marks the third bunch, whose additional
details are provided in the remaining panels. (b) Electron areal density ρe in the third bunch. (c) Cell-averaged electron divergence angle 〈θ〉 in the third
bunch. (d), (e) 3D rendering of the electron density in the third bunch using different viewpoints.

shows the three groups of electrons selected for tracking.
The electrons are picked randomly from the entire electron
population of the third bunch. Note that we choose t = 46 fs
rather than t = 9 fs as our selection time in order to
give enough time for the three groups to become visibly
separated. The selected particles are tracked during the entire
simulation (up to t ≈ 310 fs) to determine their trajectories
and energy gain.

Figures 3(d)–3(f) provide projections of electron trajec-
tories onto the beam cross-section, where the color-coding
is used to show electron energy along each trajectory. The
markers correspond to the electron positions at t = 46 fs. To
see the initial electron positions, we provide Figure 3(c) that
shows electron positions in the (y,z)-plane at t = −2.2 fs.
As seen in Figure 3(d), the ‘blue’ electrons remain close to
the axis of the laser beam and thus within the region with a
strong longitudinal electric field throughout the simulation.
The ‘green’ electrons (see Figure 3(e)) rotate around the axis
and eventually leave the analysis window (y ∈ (−2,2)w0,
z ∈ (−2,2)w0). The ‘red’ electrons (see Figure 3(f)) are
different because they are expelled directly outwards without
any significant rotation. These electrons travel through the
region with a significant transverse electric field. The long-

term energy gain by these three groups of electrons is
discussed in the next section.

4. Electron energy gain in the linearly polarized
Laguerre–Gaussian laser beam

In Section 2 we showed that the reflection of an LP-PG
beam produces dense electron bunches. These bunches can
move with the laser beam, gaining energy. In this section we
examine this energy gain.

Figures 3(g)–3(i) show how the energy of electrons in each
group from Figure 3(b) changes over time. The magnitude
of the longitudinal electron velocity vx is a major factor
determining the electron energy gain. Electrons with smaller
c − vx can stay longer in the accelerating part of the laser
wave-front while moving forward with the laser beam. Due
to the fact that the considered electrons are ultra-relativistic,
it is the divergence angle θ rather than the magnitude of
the velocity that primarily influences vx, with vx ≈ ccosθ .
To assess the difference between vx and c, which can be
extremely small, we use the vertical coordinate that shows
(x− ct)/λ0 in Figures 3(g)–3(i). It is essentially the relative
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Figure 3. (a) Areal density of the electrons in the third bunch at time t = 46 fs. (b) Three groups of electrons (blue, green and red markers) selected from
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Figure 4. Electric and magnetic fields after reflection of the LP-LG laser beam off the plasma. (a) Longitudinal profiles of the transverse electric field Ey
(red curve) and longitudinal magnetic field B‖ (blue line) at t = 21 fs. Here, B‖ is plotted along the axis of the beam (y = 0, z = 0), whereas Ey is plotted at
an off-axis location (y = 0, z = 0.7w0) where its amplitude has the highest value. (b) Frequency spectra of Ey (red line) and B‖ (blue line) from panel (a).

slip (in the units of λ0) between the electron and a point
moving with the speed of light. The ‘blue’ electrons remain
close to the beam axis and have the smallest c − vx. As seen
in Figure 3(g), they slip by less than 0.2λ0 over 300 fs, which
allows them to gain roughly 290 MeV. The ‘green’ electrons
have a much bigger value of c − vx because there is a trans-
verse component of electron velocity associated with the
rotation. As seen in Figure 3(h), they experience significant
slipping over 100 fs, which prevents them from the prolonged
acceleration required for a substantial energy gain. The ‘red’
electrons have the biggest transverse displacement early on,
so that they are exposed to a strong transverse laser electric
field. This field causes their transverse motion, and it also

transfers energy to the electrons. This is the reason why the
‘red’ electrons shown in Figure 3(i) gain more energy than
the ‘green’ electrons. However, their slipping causes them
to experience a decelerating field before the laser beam has
time to diverge. This is the underlying cause for the energy
reduction at t > 100 fs. The analysis of electron trajectories
leads us to a conclusion that the most energetic electrons in
our setup are the electrons that remain close to the axis of the
beam. In what follows, we focus on their energy gain.

Before we proceed with the analysis of the electron
acceleration, we take a closer look at the reflected fields.
Figure 4(a) shows the transverse electric field away from the
axis (y = 0, z = 0.7w0) and longitudinal magnetic field on
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the axis (y = 0, z = 0) after the laser has been reflected by
the plasma. As we have already seen, the electrons tend to
bunch on the axis. The field of these electrons is difficult to
separate from the longitudinal laser electric field. This is the
reason why B‖ is plotted instead of E‖. The transverse field is
plotted off-axis because it vanishes on the axis of the beam
for the considered helical beam. The most striking feature
compared to the CP-LG beam examined by Shi et al.[39,40] is
the appearance of higher-order harmonics in Ey. In contrast
to Ey, B‖ has a more regular shape. The spectra shown in
Figure 4(b) confirm that Ey contains odd harmonics due
to high-harmonic generation effects[52], whereas B‖ in the
near-axis region seems to be unaffected by the harmonic
generation. According to Zhang et al.[22] and Denoeud
et al.[30], the twist index ln of the harmonics generated during
reflection of an LP-LG laser beam scales as ln = nl, where
n is the harmonic order. The field profiles suggest that the
analysis of electron acceleration in the near-axis region can
be performed without taking into account the higher-order
harmonics, which have a different Gouy phase shift.

The momentum gain of the electrons moving along the
axis of the laser beam can then be obtained by integrating
the momentum balance equation:

dp‖/dt = − | e | E‖, (1)

where E‖ is the on-axis component of the laser electric field.
We neglect high-harmonic generation and beam scattering,
so E‖ is the real part of the on-axis field in the original
beam given by Equation (C18). The longitudinal electric
field has the same dependence on x as the field of the CP-
LG beam considered by Shi et al.[40]. For example, we have
the following:

E‖ = −E∗ sin(�+�0)

1+ x2/x2
R

, (2)

for an electron that is staying close to the peak of the
envelope, where E∗ is the peak amplitude of E‖. Here �0

is a constant that can be interpreted as the injection phase
for an electron that starts its acceleration at x ≈ 0. The
only difference between the fields of the CP-LG and LP-
LG beams is their amplitude. Therefore, we can skip the
derivation here and directly apply the result of Shi et al.[40].
We have the following longitudinal momentum gain for an
electron injected into the laser beam close to the peak of the
envelope:

�p‖
mec

= −a∗
π2w2

0

λ2
0

{
cos�0 − cos

[
�0 −2arctan (x/xR)

]}
,

(3)

where a∗ is the normalized amplitude of the longitudinal
field.

We obtain the terminal momentum gain by taking the limit
of x/xR → ∞ in Equation (3), which yields the following:

�pterm
‖

mec
= 2a∗

π2w2
0

λ2
0

cos (�0 −π) . (4)

One can understand the dependence on �0 by recalling that
the electron is continuously slipping with respect to the
forward-moving structure of E‖ as it moves with the laser
pulse. Delayed injection into the accelerating phase means
that the electron slips into the decelerating phase before the
amplitude of E‖ becomes small due to the beam diffraction.
As a result, the net momentum gain is reduced. The energy
gain occurs only for π/2 < �0 < 3π/2. The assumption
that the electron is moving forward with ultra-relativistic
velocity is no longer valid for 3π/2 < �0 < 5π/2, which,
in turn, invalidates the derived expression. It is useful to
rewrite our result in terms of electron energy. We assume
that the electron experiences a considerable energy gain
due to the increase of its longitudinal momentum, so that the
terminal energy is εterm ≈ cpterm

‖ ≈ c�pterm
‖ . We then have the

following:

εterm

mec2 = 2a∗
π2w2

0

λ2
0

cos (�0 −π) . (5)

We now take into account the expression for a∗ in terms
of the period-averaged power P given by Equation (C21) to
obtain the following practical expression:

εterm [GeV] ≈ 0.5cos (�0 −π)P1/2 [PW]. (6)

In comparison to the acceleration by a CP-LG beam with
the same power P[40], the terminal energy in the LP-LG beam
is lower by a factor of

√
2.

Figure 5 provides information of the long-term electron
acceleration in the 3D PIC simulation. Figure 5(a) shows the
electron energy distribution as a function of x at t = 261 fs.
Note that the plot of ne integrated over the laser beam cross-
section is shown in Figure 7(c) of Appendix A. By this
point, the electrons have roughly traveled a distance of 100λ0

with the laser beam. Note that t = 261 fs is chosen as the
time of the snapshot in order to facilitate a comparison with
the results for the CP-LG beam presented by Shi et al.[40].
The pronounced bunching is maintained by the periodic
accelerating structure of E‖. The third bunch travels close to
the peak of the laser envelope, which results in the highest
electron energy gain. In what follows, we focus on this
specific bunch.

Figures 5(b) and 5(c) show the time evolution of the
divergence angle and electron energy within the third bunch
(see the dashed rectangle and the inset in Figure 5(a)). After
an initial stage that lasts about 80 fs, the distribution over
the divergence angle reaches its asymptotic shape. It can be
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Figure 5. Result of the long-term electron acceleration in the reflected LP-LG laser beam close to the beam axis. (a) Electron energy distribution as a
function of x at t = 261 fs for electrons with r < 1.5 µm. The inset shows the third bunch that is marked with the dashed rectangle in the main plot. (b) Time
evolution of the electron distribution over the divergence angle θ in the third bunch (r< 2w0). (c) Time evolution of the electron energy spectrum in the third
bunch. The black dashed curve is the prediction obtained from Equation (3) with �0 = 0.8π . The start time of the acceleration is used as an adjustable
parameter. (d) Electron energy versus the divergence angle in the third bunch shown in the inset of panel (a).
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Figure 6. (a) Areal density ρe and (b) cell-averaged divergence angle θ in the cross-section of the third bunch at t = 261 fs and x̃ = 2.3. (c)–(e) Snapshots
of the longitudinal electric field Ex/Ex0 in the cross-section of the laser beam at x̃ = 0.1, t = 9 fs (c), x̃ = 0.45, t = 46 fs (d) and x̃ = 2.3, t = 261 fs (e). Here,
Ex is calculated using the analytical expression Equation (C28) given in Appendix C and Ex0 is the amplitude of Ex at x̃ = 0, r = 0.

seen from the snapshot in Figure 5(b) (taken at t = 261 fs)
that the bunch is monoenergetic, with most electrons having
a divergence angle that is less than 10 mrad. The time
evolution of the energy spectrum, shown in Figure 5(c),
confirms that the bunch accelerates roughly as a whole. The
dashed curve is the solution given by Equation (3). We used
the start time of the acceleration as an adjustable parameter
because our model only captures the acceleration after the
longitudinal motion becomes ultra-relativistic. The phase�0

is another adjustable parameter that we use to match the
time evolution of the electron energy in the bunch. We find
that �0 ≈ 0.8π provides the best fit, the result of which is
shown in Figure 5(c). The large energy spread at the early
stage is likely due to the presence of the two lobes shown in
Figure 2. The good agreement at later times indicates that our

model captures relatively well the key aspects of the on-axis
electron acceleration.

We find that the electron bunches retain noticeable
asymmetry following their prolonged interaction with the
laser beam. To illustrate the asymmetry, Figures 6(a)
and 6(b) show the areal density ρe and the cell-averaged
divergence angle θ in the cross-section of the third bunch
at t = 261 fs. The bunch asymmetry is likely imprinted
by the asymmetry in Ex shown in Figure 1(e). Since the
electron bunches are moving slower than the laser wave-
fronts, each bunch experiences a rotating Ex. This can
be shown by examining the field structure at the location
of a forward-moving ultra-relativistic electron bunch. We
calculate Ex in the beam cross-section using the analytical
expression given in Appendix C. The longitudinal position
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is set by the expression x = ct +�0λ0/2π to mimic the
longitudinal ultra-relativistic motion of an electron bunch.
We set�0 = 0.8π , as this was the injection phase determined
by our analysis. Figures 6(c)–6(e) show Ex at x̃ = 0.1, 0.45
and 2.3, respectively. These locations correspond to the
snapshots in Figures 2, 3 and 5. The plots confirm that the
field is indeed rotating, but they also show that the rotation is
relatively slow, which is likely the reason why the asymmetry
is retained by the electron bunch.

We conclude this section by providing additional parame-
ters of the most energetic electron bunch (the third bunch)
generated by the considered 600 TW LP-LG laser beam.
The electron energy in the bunch is 0.29 GeV with a full
width at half maximum (FWHM) of approximately 10%. The
bunch has a charge of 9 pC and a duration of approximately
270 as. The divergence angle is as low as 0.57◦ (10 mrad).
The normalized emittance in y is ε̃rms,y ≈ 1.6×10−6 and the
normalized emittance in z is ε̃rms,z ≈ 1.4×10−6.

5. Summary and discussion

Using 3D PIC simulations, we have examined electron accel-
eration by a 600 TW LP-LG laser beam with l = −1 reflected
off a plasma with a sharp density gradient. The simulations
show that electrons can be effectively injected into the laser
beam during its reflection. The electrons that are injected
close to the laser axis experience a prolonged longitudinal
acceleration by the longitudinal laser electric field. The
simulations also show that the laser beam generates a train
of mono-energetic ultra-relativistic electron bunches with a
small divergence angle. The distinctive features of this accel-
eration mechanism are the formation of multiple sub-µm
electron bunches, their relatively short acceleration distance
(around 100 µm) and their high density (in the range of the
critical density).

An important conclusion from our study is that the
key features that were previously reported for a CP-LG
beam[39,40] are retained in the case of an LP-LG laser beam.
It is likely that experimentally it will be easier to generate a
high-power LP-LG beam than a high-power CP-LG beam.
This is because the laser beams at high-power laser facilities
are LP. Changing the polarization introduces additional
challenges and complications that our approach of using
an LP-LG beam allows one to circumvent. We hope that this
aspect will make it easier to perform a proof-of-principle
experiment.

Even though there are key similarities, there are also
differences in electron injection and acceleration between
the cases of LP-LG and CP-LG beams. The injection into
the LP-LG beam is more complex, leading to a forma-
tion of two side-lobes that accompany the on-axis bunch.
The asymmetry of the longitudinal electric field causes
the on-axis electron bunches to become asymmetric. In
contrast to that, the bunches generated by a CP-LG beam

are axisymmetrical. For two beams with the same power,
the LP-LG beam has weaker on-axis electric and magnetic
fields. The reduction in the field strength leads to a reduced
energy gain, with the terminal electron energy being lower
by roughly a factor of

√
2.

Our mechanism relies on electrons becoming relativistic
during the injection process. It is this feature that allows the
injected electrons to surf with the laser pulse without quickly
slipping from an accelerating phase into an adjacent deceler-
ating phase. Since the longitudinal laser electric field plays
a critical role in the injection process, its amplitude needs
to be relativistic to generate relativistic injected electrons. A
reduction of the incident laser power can thus degrade the
mono-energetic spectra of the electron bunches by reducing
the amplitude of the longitudinal field. To examine this
aspect, we ran an additional simulation with a reduced inci-
dent power of 60 TW. Even though the laser still generates
electron bunches in this case, the bunches are no longer
mono-energetic. The peak energy is also noticeably lower
than the value predicted by Equation (6). The underlying
cause is most likely the inability of electrons to stay for a
prolonged period of time in an accelerating phase.

In this work, we primarily focused on the most energetic
(third) electron bunch. The considered laser pulse generates
five distinct electron bunches. Their parameters are given
in Table 3 of Appendix A. We want to point out that the
front and tail of the considered laser pulse are steeper than
what one would expect for a Gaussian pulse with the same
FWHM, which was a deliberate choice made to reduce the
size of the moving window and thus computational costs.
The electrons must be relativistic during their injection, so
that they can start moving with the laser beam without
significant slipping. If this is not the case, then the mono-
energetic feature discussed earlier might be hard to achieve.
A dedicated study is required to determine the role of the
temporal shape of the laser pulse and its overall duration.
We anticipate that a longer laser pulse would produce a large
number of ultra-relativistic electron bunches. For example,
an 800 fs 600 TW LP-LG laser beam[46] contains roughly
300 cycles, so it has the potential to generate a similar
number of bunches. Such a pre-modulated electron beam
with high charge can potentially be used to generate coherent
undulator radiation and to create a free-electron laser[50,53].

Appendices

A. Convergence test

It was shown by Shi et al.[39] that the characteristics of the
accelerated electron population in the setup considered in
this paper can be sensitive to the resolution used by the 3D
PIC simulation. We ran a series of 3D PIC simulations using
a 600 TW LP-LG beam with l = −1 and p = 0 to identify the
simulation parameters that provide convergent results. In our
convergence test, we varied the cell size and the number of
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Table 2. Parameters used for the four simulations depicted in Figure 7.

Sim. No. Cell size Cell number Macro-particles per cell Order of electromagnetic
(window size is the same) e (r < 2.5 µm), e (r > 2.5 µm), C6+ field solver

#1 1/40 µm 400×800×800 200, 36, 24 2
#2 1/40 µm 400×800×800 400, 72, 48 4
#3 1/50 µm 500×1000×1000 200, 36, 24 4
#4 1/80 µm 800×1600×1600 100, 18, 12 4
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Figure 7. (a), (c) Linear density profiles early in the formation process of electron bunches, t = 9 fs (panel (a)), and after the bunches have experienced
prolonged acceleration, t = 261 fs (panel (c)). (b) Energy spectra of the third bunch (inside the dashed rectangle) from panel (a). (d) Energy spectra of the
third bunch (inside the dashed rectangle) from panel (c). The legend in each plot provides the simulation number from Table 2.

macro-particles per cell. All relevant simulation parameters
chosen for the convergence test are given in Table 2. The
simulations were performed using EPOCH[51,54].

There are two features that we use to compare the simula-
tions: the electron spectrum and the electron density. We use
the linear densitye, which is the number density integrated
in the cross-section of the laser beam. Figure 7(b) shows
e early in the simulation at t = 9 fs. The formation of
individual electron bunches is clearly visible in this plot. The
curves for higher resolution simulations, that is, simulations
#3 and #4, are similar, which suggests that reducing the
cell size below 1/80 µm may not be necessary. Figure 7(d)
shows four bunches generated by the laser pulse after they
travel a significant distance in vacuum. Again, the curves for
simulations #3 and #4 are very similar.

Electron bunches experience longitudinal acceleration
while they travel in vacuum with the laser pulse. It is
therefore important to check not only the density of the
bunches, but also their energy spectrum dN/dεe, where N
and εe are the electron number and energy, respectively.
Figure 7(b) shows the spectrum of the third bunch (inside
the dashed rectangle) in Figure 7(a). Figure 7(d) shows the
spectrum of the same bunch (inside the dashed rectangle in
Figure 7(c)) after it has experienced extended acceleration.
These spectra confirm that simulations #3 and #4 produce
similar results. In the main text, we use the results of
simulation #4. This simulation is deemed to be reliable
based on the presented convergence test.

B. Parameters of all the bunches generated by the linearly
polarized Laguerre–Gaussian beam

In the main text, we focused on the most energetic bunch,
which is the third bunch out of the five bunches generated by
the considered 600 TW LP-LG laser beam. Table 3 provides
various parameters for all five bunches. The parameters are
calculated at t = 261 fs.

C. Longitudinal electric field of a linearly polarized
Laguerre–Gaussian laser beam

Here we follow the notations introduced by Shi et al.[40]

to provide analytical expressions for the fields of an LP
helical beam in the paraxial approximation. Specifically, it
is assumed that the diffraction angle, defined as θd = w0/xR,
is small, where w0 is the beam waist and xR = πw2

0/λ0 is the
Rayleigh range. We consider a beam propagating along the
x-axis. Its transverse electric field is polarized along the y-
axis. It is convenient to normalize x to xR and y and z to w0

or w(x):

x̃ = x/xR, (C1)

ỹ = y/w0, (C2)

z̃ = z/w0, (C3)

r̃ =
√

ỹ2 + z̃2. (C4)
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Table 3. Parameters of all five electron bunches at t = 261 fs.
#1 #2 #3 #4 #5

εe[GeV] (�εe/εe) 0.02–0.1 0.02–0.28 0.29 (10%) 0.22 (6%) 0.1 (15%)
ε̃rms,yz [µm] 0.95 0.88 1.5 0.64 0.92
W [mJ] 0.06 1.5 2.2 1.3 0.06
Q [pC] 1.4 8 9 6.8 0.7
�t [as] 300 360 270 260 540

The solution of the wave equation corresponding to an LG
beam is given by the following:

Ey = E0g(ξ)exp(iξ)ψp,l (x̃, r̃,φ), (C5)

where g is the envelope function with max(g)= 1,

ξ ≡ 2x̃/θ2
d −ωt (C6)

is the phase variable, and

ψp,l (x̃, r̃,φ)= Cp,lf (x̃)
|l|+1+2p(1+ x̃2)p

L|l|
p

(
2r̃2

1+ x̃2

)(√
2r̃

)|l|

× exp
[−r̃2f (x̃)

]
exp(ilφ) (C7)

is a mode with a radial index p and twist index l. Here we
introduced the following:

φ = arctan(z̃/ỹ), (C8)

f (x̃)= 1− ix̃
1+ x̃2 = 1√

1+ x̃2
exp(−iarctan x̃) . (C9)

The L|l|
p function is the generalized Laguerre polynomial

and Cp,l is a normalization constant. The modes ψp,l (x̃, r̃,φ)
are orthonormal at a given x̃[55], with the following:

Cp,l =
√

2p!
π (p+|l|) !, (C10)

such that

∫ 2π

0
dφ

∫ ∞

0
ψl,p (x̃, r̃,φ)ψ∗

p,l (x̃, r̃,φ) r̃dr̃ = 1. (C11)

The period-averaged power in this beam is as follows:

P = cw2
0

8π
E2

0, (C12)

where c is the speed of light. Note that E0 is not the peak
amplitude of Ey in the case of an LG beam.

The mode considered in the main text has p = 0 and
l = −1. The next equation then follows from Equation (C5):

Ey = E0g(ξ)C0,−1
[
f (x̃)

]2√2r̃ exp
[−r̃2f (x̃)

]
× exp(−iφ)exp

(
2ix̃/θ2

d − iωt
)

. (C13)

As shown by Shi et al.[40], the corresponding longitudinal
electric field is as follows:

Ex = iθd

2

(
1
r̃

eiφ −2f r̃ cosφ
)

Ey, (C14)

where it is taken into account that p = 0 and l = −1.
The longitudinal electric field on the axis is given by the
following:

E‖ ≡ Ex(r̃ = 0)= iθd√
π

E0g(ξ)
1+ x̃2 exp

(
2ix̃/θ2

d −2iarctan x̃− iωt
)
.

(C15)

It is convenient to rewrite this expression by introducing
the phase as follows:

�= 2x̃/θ2
d −2arctan x̃−ωt, (C16)

and amplitude:

E∗ ≡ θdE0/
√
π, (C17)

so that

E‖ = iE∗g(ξ)
1+ x̃2 exp (i�) . (C18)

The expression for P, recast in terms of the normalized
amplitude, is as follows:

a∗ ≡ | e | E∗
mecω

, (C19)

and reads as follows:

P = a2
∗
π4

2

(
w0

λ0

)4 m2
ec5

e2 . (C20)

It follows from this relation that:

a∗ ≈ 50
(
λ0

w0

)2

(P [PW])1/2. (C21)

In the main text, we examine the field structure of Ex away
from the axis. The corresponding expression follows from
Equation (C14):

Ex = iEx0ei�∗ e−r2∗

1+ x̃2

[
1−2(1− ix̃)r2

∗ cosφe−iφ], (C22)
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where, for compactness, we used the following notations:

y∗ ≡ y/w0

√
1+ x̃2, (C23)

z∗ ≡ z/w0

√
1+ x̃2, (C24)

r∗ ≡ r̃/
√

1+ x̃2, (C25)

�∗ ≡ 2x̃/θ2
d + x̃r2

∗ −2arctan (x̃)−ωt, (C26)

Ex0 ≡
(

C0,−1/
√

2
)
θdE0g(ξ) . (C27)

The real part, under the assumption that g(ξ) has no
imaginary part, is given by the following:

Re(Ex)= −Ex0
e−r2∗

1+ x̃2

[(
1−2y2

∗ +2x̃y∗z∗
)

×sin�∗ +2y∗ (x̃y∗ + z∗)cos�∗
]
,

(C28)

where y∗ = r∗ cosφ and z∗ = r∗ sinφ.
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Code availability
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