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Abstract

Using the Dirac–Heisenberg–Wigner formalism, effects of the asymmetric pulse shape on the generation of electron-

positron pairs in three typical polarized fields, i.e., linear, middle elliptical and circular fields, are investigated. Two

kinds of asymmetries for the falling pulse length, short and elongated, are studied. We find that the interference effect

disappears with the shorter pulse length and that the peak value of the momentum spectrum is concentrated in the center

of the momentum space. In the case of the extending falling pulse length, a multiring structure without interference

appears in the momentum spectrum. Research results show that the momentum spectrum is very sensitive to the

asymmetry of the pulse as well as to the polarization of the fields. We also find that the number density of electron-

positron pairs under different polarizations is sensitive to the asymmetry of the electric field. For the short falling pulse,

the number density can be significantly enhanced by over two orders of magnitude. These results could be useful in

planning high-power and/or high-intensity laser experiments.
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1. Introduction

In intense electromagnetic fields the vacuum state is unsta-

ble and spontaneously generates electron-positron (e−e+)

pairs. This is known as the Schwinger effect, which is

one of the highly nontrivial predictions in quantum elec-

trodynamics (QED)[1–3]. Because of the tunneling nature

of the Schwinger effect, this interesting phenomenon is

exponentially suppressed and the pair production rate is

proportional to exp (−πEcr/E), where the corresponding

Schwinger critical field strength Ecr = m2
ec3/eℏ = 1.3 ×

1018 V/m. The associated laser intensity, e.g., I = 4.3 ×
1029 W/cm2, is too high and beyond current technological

possibilities. Its detection has therefore remained a challenge

for many decades[4]. However, current advances in high-

power laser technology[5–7] and forthcoming experimental
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facilities (for example, the Extreme Light Infrastructure, the

Exawatt Center for Extreme Light Studies, and the Station

of Extreme Light at the Shanghai Coherent Light Source)

have led to the hope of QED predictions entering the realm

of observation. On the other hand, using X-ray free-electron

laser facilities can in principle yield a strong field at about

E = 0.1Ecr = 1.3×1017 V/m[8] and drive interest in studying

pair production under super strong fields.

The Schwinger effect is one of the nonperturbative

phenomena in QED, while the understanding of it is still

far from complete. Therefore, studying pair production in

the nonperturbative regime would deepen our knowledge

about the relatively less tested branch of QED. Motivated

by this, many exploratory studies of the Schwinger effect

based on a number of different theoretical techniques have

been undertaken, for example, within the quantum kinetic

approach[9–11] and the real time Dirac–Heisenberg–Wigner

(DHW) formalism[12–18], the WKB approximation[19, 20] as

well as the worldline instanton technique[21]. Schützhold

et al.[21] found that the pair production rate can be strongly
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enhanced by superimposing the slowly varying strong field

with the rapid oscillating weak field, which is now called the

dynamically assisted Schwinger effect. In Ref. [22], by using

the quantum kinetic approach, the momentum spectrum of

the produced pairs has been computed, and the spectrum

was found to be extremely sensitive to these physical pulse

parameters. The pair production in a pulsed electric field[23]

is to present the signature of the effective mass of the created

particles in the strong oscillating electric field. In Refs. [24–

26] researchers have shown the importance of pulse shape

effects on the pair creation process in different situations.

For a concrete description of the various approaches and

relevant publications, see our review of pair production[27].

In this paper we further investigate the Schwinger effect by

considering the asymmetric pulse shape with Gaussian enve-

lope and different polarizations. We mainly consider asym-

metric pulse shape effects on pair production in different

polarizations, e.g., linear, elliptic and circular polarizations.

We reveal some novel features of the momentum spectra of

created pairs for differently polarized electric fields. In this

study the real-time DHW formalism is employed as it leads

to efficient calculations in the case of a circularly[28–30] or

elliptically polarized electric field[31, 32].

This paper is organized as follows. In Section 2 we intro-

duce the model of a background field. In Section 3 we

briefly introduce the DHW formalism that is used in our

calculations for completeness. In Section 4 we show the

numerical results for momentum spectra and analyze the

underlying physics. In Section 5 we give the numerical

results for the pair number density. We end the paper with

a brief summary and discussion in Section 6.

2. External electric field model

We focus on the study of e−e+ pair production in differently

polarized and time-dependent asymmetric electric fields.

The explicit form of the external field is given as

E(t)= E0√
1+ δ2

[

e−(t/τ1)2/2θ (−t)+ e−(t/τ2)2/2θ(t)
]

×





cos (ωt +φ)
δ sin(ωt +φ)

0



,
(1)

where E0/
√

1+ δ2 is the field amplitude, τ1 and τ2 are the

rising and falling pulse durations, respectively, θ(t) is the

Heaviside step function, ω is the oscillation frequency, φ

is the carrier phase and δ represents the field polarization

(or the ellipticity). The field parameters are chosen as E0 =
0.1

√
2Ecr, ω = 0.6m, τ1 = 10/m and φ = 0, where m is

the electron mass. For the falling pulse length, we set the

parameter as τ2 = kτ1, where k is the ratio of the falling to

rising pulse length. Throughout this paper, we use natural

units ℏ = c = 1.

The main interest in this study is asymmetric pulse dura-

tion effects on pair production in differently polarized and

time-dependent asymmetric electric fields. We mainly con-

sider two different situations when the rising pulse length

τ1 is fixed. One in which the falling pulse length τ2 = kτ1

becomes shorter with 0 < k ≤ 1, and another in which the

falling pulse length τ2 = kτ1 becomes longer with k ≥ 1.

3. Brief outline of the DHW formalism

The DHW formalism is an approach used to describe the

quantum phenomena of a system by a Wigner function as the

relativistic phase space distribution. It has also been further

adopted in the studies of Sauter-Schwinger QED vacuum

pair production[12–16]. The DHW formalism automatically

combines quantum electrodynamics with notions familiar

from statistical physics[19, 22], and it allows one to incorpo-

rate temporal as well as spatial inhomogeneities[12–18]. Most

importantly, the DHW formalism gives access to the rela-

tivistic phase-space distribution of the produced particles.

In the following, we present a brief outline of the DHW

formalism for completeness.

A convenient starting point is the gauge-invariant density

operator of two Dirac field operators in the Heisenberg

picture

Ĉαβ (r,s)= U (A,r,s)
[

ψβ (r − s/2),ψα (r + s/2)
]

, (2)

where ψα(x) is the electron’s spinor-valued Dirac field, and

r and s are the center-of-mass and relative coordinates,

respectively. The Wilson-line factor before the commutators

U (A,r,s)= exp

[

ies

∫ 1/2

−1/2

dξA(r + ξs)

]

(3)

is used to keep the density operator gauge invariant, and

this factor depends on the elementary charge e and the

background gauge field A. In addition, we use a mean-

field (Hartree) approximation by replacing the gauge field

operator with the background field.

The important quantity in the DHW method is the covari-

ant Wigner operator, given as the Fourier transform of the

density operator (Equation (2)):

Ŵαβ (r,p)= 1

2

∫

d4seips
Ĉαβ (r,s) . (4)

By taking the vacuum expectation value of the Wigner

operator, we obtain the Wigner function

W(r,p)=
〈

8|Ŵ (r,p) |8
〉

. (5)

For numerical convenience, the Wigner function can be

decomposed into a complete basis set {1,γ5,γ
µ,γ5γ

µ,σµν
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:= i[γ µ,γ ν]/2}. Then we obtain the 16 covariant real Wigner

components

W = 1

4

(

1S+ iγ5P+γ µVµ+γ µγ5Aµ+σµνTµν
)

. (6)

Here S, P, Vµ, Aµ and Tµν are scalar, pseudoscalar, vector,

axial vector and tensor, respectively. According to Refs.

[12–16] and by using the equations of motion for the

fermionic Heisenberg operators, the dynamical equation

for the Wigner function is

DtW = −1

2
Dx

[

γ 0γ,W
]

+ im
[

γ 0,W
]

− iP
{

γ 0γ,W
}

,

(7)

where Dt, Dx and P denote the pseudodifferential operators

Dt = ∂t + e

∫ 1/2

−1/2

dλE
(

x+ iλ∇p,t
)

×∇p, (8a)

Dx = ∇x + e

∫ 1/2

−1/2

dλB
(

x+ iλ∇p,t
)

×∇p, (8b)

P = p− ie

∫ 1/2

−1/2

dλλB
(

x+ iλ∇p,t
)

×∇p. (8c)

Inserting decomposition (Equation (6)) into the equation

of motion, Equation (7), for the Wigner function, we obtain a

set of partial differential equations (PDEs) for the 16 Wigner

components. Furthermore, for spatially homogeneous elec-

tric fields like Equation (1), by using the characteristic

method[28, 29] and replacing the kinetic momentum p with

the canonical momentum q via q − eA(t), the PDEs for the

16 Wigner components can be reduced to 10 ordinary differ-

ential equations of the nonvanishing Wigner coefficients

w = (s,vi,ai,ti), ti := t0i −ti0. (9)

For detailed derivations and explicit forms of these 10

equations, we refer the reader to Refs. [16, 17, 33]. Note that

the corresponding vacuum nonvanishing initial values are

svac = −2m
√

p2 +m2
, vi,vac = −2pi

√

p2 +m2
. (10)

In the following, we express the scalar Wigner coefficient

by the one-particle momentum distribution function

f (q,t)= 1

2�(q,t)
(ε− εvac), (11)

where �(q,t) =
√

p2(t)+m2 =
√

m2 +
[

q− eA(t)
]2

is the

total energy of the electrons (positrons) and ε = ms +

pivi is the phase-space energy density. To obtain the one-

particle momentum distribution function f (q,t), referring to

Refs. [28, 29], it is helpful to introduce an auxiliary three-

dimensional vector

vi[q,t] := vi[p(t),t]− [1− f (q,t)]vi,vac[p(t),t]. (12)

So the one-particle momentum distribution function

f (q,t) can be obtained by solving the following ordinary

differential equations, including it as well as the other nine

auxiliary quantities:

ḟ = eE ·v

2�
, (13a)

v̇ = 2

�3

[

(eE ·p)p− eE�2
]

(f −1)

− (eE ·v)p

�2
−2p×a−2mt, (13b)

ȧ = −2p×v, (13c)

ṫ = 2

m

[

m2v− (p ·v)p
]

, (13d)

with the initial conditions f (q,−∞) = 0, v(q,−∞) =
a(q,−∞) = t(q,−∞) = 0. Here the time derivative

is indicated by a dot, a(q,t) and t(q,t) are the three-

dimensional vectors corresponding to Wigner components

and A(t) denotes the vector potential of the external field.

Finally, by integrating the distribution function f (q,t) over

the full momentum space, we obtain the number density of

created pairs defined at asymptotic times t → +∞:

n = lim
t→+∞

∫

d3q

(2π)3
f (q,t) . (14)

4. Momentum spectra of the produced particles

In this section we report some interesting results for the

momentum spectra of the produced particles with several

pulse parameters under typical cases of the polarization field,

such as linear (δ= 0), elliptical (δ= 0.5) and circular (δ= 1)

fields.

4.1. Linear polarization, δ = 0

First, in Figure 1 we show the momentum spectra for dif-

ferent k when we keep the rising pulse length τ1 fixed but

change the falling pulse length τ2 = kτ1 to be shorter with

0 < k ≤ 1. For k = 1, the momentum spectrum is centered

at the origin, and weak oscillation is observed, as shown

in the upper-left panel of Figure 1. The physical origin of

the oscillation is explained in Ref. [20] in terms of the
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Figure 1. Momentum spectra of produced e+e− pairs for linear polarization (δ = 0) at qz = 0 in the
(

qx,qy

)

plane when the rising pulse length τ1 is fixed

but the falling pulse length τ2 = kτ1 becomes shorter with 0< k ≤ 1. The chosen parameters are E0 = 0.1
√

2Ecr, ω = 0.6m and τ1 = 10/m, where m is the

electron mass.

interference between separate complex conjugate pairs of

turning points.

It can be seen that the momentum spectrum of the created

pair is very sensitive to the asymmetry of the electric field.

When the ratio parameter k is changed to k = 0.5, the main

peak of the momentum spectrum is shifted to the positive qx

and the symmetry distribution of the momentum spectrum

is destroyed. This effect is similar to the effect of carrier

phase studied in Ref. [22]. Considering this fact that, for

small k, pulse asymmetry plays the carrier-phase-like role,

the physical explanation of momentum spectrum distribution

due to pulse asymmetry can be understood by assuming

that particles are created with vanishing initial longitudinal

momentum. In the presence of E(t), the produced pairs are

continuously accelerated, and particle momentum is mainly

determined by its creation time[11, 18]. At the earlier time t0
it is created; after t0, it has to be accelerated at the longer

time and finally it gets the higher longitudinal momentum.

In general, most pairs are expected to appear at those times

corresponding to the local maxima of the field. Then those

produced pairs are subject to acceleration by the electric

field, and the gained momenta are[32]

q =
∫ t

t0

eE(t)dt = eA(t0)− eA(t). (15)

Because of the fact that the vector potential vanishes

at asymptotic times t → ∞, the final particle momentum

solely depends on the vector potential at the time when

the particle was created. For example, the peak in Figure 1

when k = 1 at q(t0) = 0 is due to the dominant peak in

the electric field at t = 0. As E(t) decreases at later times,

less particles are produced. However, as A(t) increases at

the same time, these particles are effectively accelerated

more strongly. So the peak positions and/or momentum

spectrum patterns depend on the pulse shape. Furthermore,

when k = 0.3, the main parts of the momentum spectrum

also appear for negative qx beside the positive qx peak,

splitting the momentum spectrum. Therefore, two peaks are

observed. This result is similar to the effect introduced by

the frequencies chirp in Ref. [33]. For the very asymmetric

case of k = 0.1, the momentum spectrum of the particle

is again concentrated in the center but the oscillation of

the momentum spectrum disappears. Finally, we note that

the peak value of the momentum spectrum of the pairs is

increased from 2.94×10−5 (k = 1) to 8.28×10−4 (k = 0.1).

Second, in Figure 2 we show the momentum spectra for

different k when the rising pulse length τ1 is fixed but the

falling pulse length τ2 becomes longer with k ≥ 1. From

this figure we can see that, as the field asymmetry increases,

the main center peak of the momentum spectrum decreases

while some disconnected ringlike structures with peaks
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Figure 2. Same as Figure 1 except that the falling pulse length τ2 = kτ1 becomes longer with k ≥ 1.

appear and gradually become main peaks. This tendency is

more striking with larger k.

We find that the center maximum value of the momen-

tum spectrum decreases until k ≤ 5. For the pulse length

k = 10, the maximum value at the ring is slightly larger

than that of symmetrical pulse when k = 1. Note that the

ring structure in the momentum spectrum is a typical feature

of the multiphoton pair production mechanism. Because the

produced pairs momentum spectrum lines up exactly with

the prediction that

| q |= 1

2

√

(nω)2 − (2m∗)
2, (16)

after the considering of effective mass[23], the Keldysh

parameters are large enough to support multiphoton pair

production. For example, the inner ring is formed by

absorbing four photons and the outermost obscured structure

corresponds to the absorption of five photons.

4.2. Elliptic polarization, δ = 0.5

For the middle-elliptical polarization case, δ = 0.5, in

Figure 3 we show the momentum spectrum for shorter

pulses. From the upper-left panel of Figure 3, where k = 1,

we see that the momentum spectrum is symmetrically

distributed about the qx axis, and that the spectrum

peak is located at q = 0. With decreasing k, we observe

that distortion of the momentum spectrum occurs, or,

equivalently, the mirror symmetry about qx is lost. As

the peak position shifts, the maximum value of the peak

increases. For example, when k = 0.5, the main peak shifts

along the positive qy direction, while, when k = 0.3, the main

peak shifts along the negative qx direction with a slightly

larger peak value. For the very asymmetric case of k = 0.1,

the momentum spectrum is concentrated around the center

and the main peak is almost located at the center again.

Now let us consider the elongated falling pulse cases with

k ≥ 1 for the middle-elliptical polarization case, δ = 0.5;

see Figure 4. For k = 2, the symmetry of the momentum

spectrum about the qx axis is destroyed. The peak position

shifts to the positive and negative qy direction, while the peak

value decreases compared to the symmetric case, k = 1. For

larger k, the spectrum at the center vanishes gradually with

increasing k, and a complete ringlike shape appears. The

peak positions are very interesting which form two elongated

strips by locating at the relative narrower regime of positive

and negative qy but relative broader regime of positive

and negative qx. Finally, the additional outer ring structure

again appears, which is a clear signal of multiphoton pair

production processes. This can be understood from the fact

that, with increasing pulse length kτ1, the electric field has

long enough duration and changes its direction during the

pair creation process. Thus, the created particles may be
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Figure 3. Same as Figure 1 except for elliptic polarization, δ = 0.5.
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accelerated in different directions depending on the field

direction at the time of production. This results in a ring

structure of the spectrum. On the other hand, as the pulse

duration increases with k, the number of oscillation cycles

within the Gaussian envelope also increases, and there will

be more photons contributing to pair production by the

multiphoton absorption mechanism, so in the spectrum the

signal of multiphoton pair creation becomes pronounced

with a ring shape. However, for the shorter pulse cases,

the number of oscillation cycles in the envelope is very

small, which does not show the complete multiphoton pair

production signal in the momentum spectrum clearly since,

for small pulse length τ , the Keldysh parameter γ = mω/eE0

will be influenced by the time scale τ . This phenomenon also

appears in the linear and circular polarizations.

4.3. Circular polarization,δ = 1

For the circular polarization, δ = 1, we show the momentum

spectra in Figure 5 when the pulse length is shorter with

0< k ≤ 1. It can be seen that in the symmetric case, k = 1, the

momentum spectrum has an obvious ring structure centered

around the origin, meanwhile a weak interference effect

and/or oscillation is also observed between the hole and outer

ring along the negative values of the qy axis; see Figure 5

for k = 1. On the one hand, the ring shape arises from

absorbing four photons in the multiphoton pair production.

We know that the ring radius can be calculated using energy

conservation, including the effective mass consideration, as

| q |= 1
2

√

(nω)2 − (2m∗)2, where n is the number of photons

participating in the pair creation and m∗ is the effective

mass[23]. On the other hand, the weak interference effect can

be explained by analyzing the distribution of turning points

in the semiclassical picture[33]. The complex-valued turning

points are those tp that are obtained by �
(

q,tp
)

= 0, which

is responsible for the interference effects of the spectrum.

We refer the reader to Ref. [33] for the interference pattern

associated with the turning points.

With decreasing k, the peaks of the momentum spectra

display quite a rich structure and the interference effects

gradually vanish. When k = 0.7, the peak appears in

the upper-left side of the momentum spectrum space.

When k = 0.3, the partial ring structure vanishes and

the momentum spectrum becomes distorted. For the very

asymmetric case of k = 0.1, the peak position is located at the

near central region. Note that, for the circular polarization,

the peak value of the momentum spectrum is remarkably

enhanced by two orders of magnitude compared to that in

the symmetric case, k = 1.

We again consider the opposite situation of falling pulse

change, i.e., the falling pulse length τ2 becomes longer with

k ≥ 1. The momentum spectra are shown in Figure 6. It is

obvious that in this case the momentum distribution at the
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Figure 5. Same as Figure 1 except for circular polarization, δ = 1.
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Table 1. The peak values of the particle distribution function

f (q,∞) for the typical polarization δ when the rising pulse length

τ1 = 10/m is fixed and the falling pulse length τ2 = kτ1 is short

and/or elongated. Note that these peaks occur at different values

of the momentum q.

fmax (q,∞) at peak

k = 1 k = 0.1 k = 10

δ = 0 29.40×10−6 8.28×10−4 5.24×10−5

δ = 0.5 9.65×10−6 7.50×10−4 6.36×10−5

δ = 1 2.36×10−6 6.46×10−4 6.38×10−5

inner part of the ring gradually vanishes with increasing k,

and that the red ring distribution becomes thin with lacking

interference effect. Finally, the additional outer ring shape

again appears, although it is a little obscure. The red inner

ring in the momentum spectrum corresponds to the absorp-

tion of four photons; however, the outer ring corresponds to

the absorption of five photons.

In Table 1 we list some corresponding peak values of

the momentum distribution for different polarizations. We

find that in the shorter falling pulse cases the peak value of

the momentum spectrum is enhanced but this enhancement

decreases as the field polarization increases. In the elongated

falling pulse cases the peak value is also enhanced. How-

ever, on the one hand, this enhancement increases as the

field polarization increases, while, on the other hand, the

enhancements in the elongated cases are weaker globally

compared to the shorter pulse cases.

5. Number density of pair production

In this section we calculate the change of the pair number

density generated in different polarization electric fields with

asymmetric shape and different pulse length ratio k. The

results are shown in Figures 7 and 8 for shorter and elongated

falling pulses, respectively.

We find that, when the falling pulse width is shorter, i.e.,

0< k ≤ 1, the number density of created pairs decreases with

the increasing electric field polarization. We also find that

the number density of e−e+ pairs in different polarizations

increases with decreasing pulse length ratio value k. For the

larger compression, it is more obvious, especially for k = 0.4

to k = 0.1. When the pulse length is shorter, the number

density increases by more than two orders of magnitude for

each polarization. As k decreases, the electric field com-

prises a strong pulse (when t< 0) superimposed with a weak

pulse (when t > 0, but having wider frequency components

in the sense of Fourier decomposition); therefore, these two

half pulses with different time scales act as an effective

dynamically assisted mechanism. Thus, this results in an

enhancement of the number density of produced pairs.

Concretely, for linear polarization, the number density

increases from 1.20 × 10−7 when k = 1 to 1.853 × 10−5
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Figure 8. Same as Figure 7 except for the elongated falling case with k ≥ 1.

when k = 0.1. For elliptical polarization, it increases from

8.799 × 10−8 when k = 1 to 1.673 × 10−5 when k = 0.1. For

circle polarization, it increases from 7.237×10−8 when k = 1

to 1.414×10−5 when k = 0.1.

On the other hand, in the case of the elongated falling

pulse, the number density of created pairs increases almost

linearly with the field polarization parameter δ as well

as the pulse elongation parameter k except that for linear

polarization, it decreases little when the falling pulse elon-

gation is not large, but still increases with larger k. This

is mainly attributed to effect of field asymmetry due to

the puse length on the pair production processes. These

results therefore show that the degree of pulse asymmetry

is an important parameter in the pair production process for

polarized electric fields. Note that our results are similar to

the findings of Kohlfürst et al.[24], who considered the single

Sauter pulse. They found that the particle number increases

first with increasing pulse length until it reaches τ = 0.5m−1,

then decreases and reaches its minimum at τ = 30m−1 and

finally increases again slowly; see Figure 4 of Ref. [24].

From Figures 7 and 8, we can infer that the number density

exhibits polarization dependence for shorter pulse asymme-

try and elongated pulse asymmetry of the field. For shorter

pulse asymmetry cases, the number density decreases with

increasing field polarization, while for elongated pulse

cases, the number density increases with increasing field
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polarization except for the case in which k = 1. However,

the number density has a minimum at some k for each

polarization field, for example, k = 2 and k = 0.8 correspond

to linear (δ = 0) and circular (δ = 1) polarization fields,

respectively. The number density exhibiting this nonlinear

behavior with k can be attributed to the following two

features. For larger k, because the duration is elongated,

the number increases almost linearly with k for an almost

constant pair production rate. On the other hand, for

progressively smaller k, progressively wider frequencies

make the dynamically assisted mechanism progressively

more effective so that it enhances the number density.

In summary, when the falling pulse length is shortened, the

number density can be increased by two orders of magnitude;

however, when the falling pulse length is extended, the

number density is enhanced to within only half orders of

magnitude. Therefore, for asymmetric electric fields with

different polarizations, in order to effectively increase the

number density of the produced electron-positron pairs, it is

better to shorten the falling pulse. Note that in our previous

work on the linearly polarized case[25], in which we used the

quantum Vlasov equation approach, a similar finding was

qualitatively presented.

6. Summary and discussion

In this study we have investigated the effects of the asymmet-

ric pulse shape on the momentum spectrum of created e−e+

pairs in strong electric fields for three different polarization

fields, linearly, middle elliptically and circularly polarized

fields, on the momentum spectrum of created particles by

applying the DHW formalism. The main results for the

spectra of produced pairs can be summarized as follows.

When the falling pulse length is shorter, for linear polar-

ization, the spectra of the produced pairs exhibit a shift

and split of the peaks. For middle elliptic polarization as

well as circular polarization, the momentum spectra become

distorted and exhibit a shift of the peaks. Finally, for each dif-

ferent polarization, the peaks shifted to the central region in

the momentum plane; therefore, peak values were enhanced

by two orders of magnitude compared to the symmetric

situation. When the falling pulse length is elongated, ring

structures appear for different polarizations. We also noted

that, for this asymmetric situation, the peak values increased

with the field polarization compared to the symmetric case,

but were smaller than in the shorter pulse cases. Some

phenomena of the momentum spectra are consistent with the

effect of frequency chirp[33].

We also studied the effect of asymmetric falling pulse on

the obtained number density. We found that the number den-

sity decreases and/or increases with polarization for shorter

and/or elongated falling pulses. It is important to note that,

when the falling pulse is shorter, the number density of the

produced pairs can be significantly enhanced by more than

two orders of magnitude.

The results are helpful to understand the influence of

the pulse duration, which is an important parameter of

the external field, and to deepen our understanding of the

external pulse structure. Although these results reveal some

useful information about the production of e+e− pairs in dif-

ferent elliptical polarization cases, in this study we restricted

ourselves to multiphoton pair creation, so asymmetric pulse

shape effects for pair creation under the Schwinger mecha-

nism need to be studied further for different polarized fields.

To understand why the multiphoton process is not obvious

for shorter pulse cases k < 1, we note that the traditional

standard multiphoton pair production is weaker because the

Keldysh parameter γ = mω/eE0 is modified by the inverse

of another time scale τ of the pulse duration. For very

small τ , this means that the oscillation number of the field

includes fewer cycles and/or subcycles so that it is strictly

not a complete multiphoton process. However, in this case,

the number density of pairs can be increased remarkably

due to the dynamically assisted mechanism. On the other

hand, for the elongation pulse k > 1, as k increases, pair

creation is dominated by the multiphoton mechanism; at this

time for ω = 0.6m, the corresponding number density for

the circular polarization is greater than that for the middle

elliptical polarization, with the latter greater than that for the

linear polarization case (see also Figure 4 of Ref. [31]).

The other important phenomenon observed in our numer-

ical results is the spiral structure in the momentum spectrum

that has an intrinsic connection with the spin and/or orbital

angular momentum of field photons as well as the produced

e−e+ particles. The theoretical analysis for this characteristic

is not easy and almost completely ignored in the present

study. However, its abundant information about the rotation

degree is very important and helpful in understanding the

involved strong external field interaction with a vacuum and

possible applications in future real experiments.
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