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Abstract
When exposed to intense electromagnetic fields, the quantum vacuum is expected to exhibit properties of a polarizable
medium akin to a weakly nonlinear dielectric material. Various schemes have been proposed to measure such vacuum
polarization effects using a combination of high- power lasers. Motivated by several planned experiments, we provide an
overview of experimental signatures that have been suggested to confirm this prediction of quantum electrodynamics of
real photon–photon scattering.
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1. Motivation

The increasing availability of multi-hundred TW and PW
lasers[1] brings the confirmation of long-predicted phenom-
ena of strong-field quantum electrodynamics (QED)[2, 3]

closer. A multitude of effects on the polarization, wavevector
and frequency of photons that probe the polarization of the
charged virtual pairs of the vacuum have been theoretically
investigated. All of these effects can be understood in
terms of the single process of ‘photon–photon scattering’.
The current best experimental limit on the predicted cross-
section for photon–photon scattering using just high-power
laser pulses lies eighteen orders of magnitude above QED[4],
but recent laser-cavity experiments such as BMV[5] and
PVLAS[6] have reduced this to six and three orders of
magnitude, respectively (or three orders of magnitude and a
factor 50, respectively, at the level of the refractive index).
Moreover, coinciding with the completion of the XFEL
laser at DESY, an experiment at the HIBEF facility[7] plans
to measure one manifestation of photon–photon scattering,
namely the birefringence of the vacuum, using the XFEL
beam and a 1 PW optical laser. This has generated much
interest in vacuum polarization effects.

The aims of this work are two-fold. First, the main an-
alytical approaches used to study photon–photon scattering
will be shown to be essentially equivalent for predictions of
planned laser experiments. Second, an overview of the pre-
dicted signatures of real photon–photon scattering in various
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Figure 1. Vacuum polarization loop in QED. Wavy and straight lines
represent photons and fermions (electrons and positrons), respectively.

experimental scenarios will be provided, which is also hoped
to be useful for the nonspecialist and, in particular, promote
discussions between theorists and experimentalists.

2. Introduction: vacuum polarization

Vacuum polarization, depicted in the Feynman diagram of
Figure 1, is a basic radiative correction that modifies the
propagation of photons in vacuum through the appearance
of virtual pairs in a ‘fermion loop’.

There are two complementary interpretations of this ef-
fect. The first is based on what is called ‘old-fashioned’
perturbation theory which emphasizes energy considerations
at the price of manifest covariance[8]. In this interpreta-
tion, Heisenberg’s uncertainty relation is invoked to show
how quantum mechanics predicts energy and momentum
conservation may be violated. The amount of this viola-
tion is inversely proportional to the space–time scale over
which it occurs. This effect is represented by short-lived
‘virtual’ particles. The second, equivalent interpretation is
manifestly covariant and regards the virtual pairs as quantum
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fluctuations. In this interpretation, at any space–time point
there is a nonvanishing probability amplitude for a photon
to fluctuate into a pair (or a pair and a photon or in fact any
number of particles allowed by the original photon quantum
numbers). In this view, energy–momentum conservation is
not violated, but the virtual particles do not obey Einstein’s
famous equation relating energy and mass.

The main physical effect of vacuum polarization is charge
renormalization due to polarization screening as explained
in any standard quantum field theory text[9]. The electric
charge of a particle increases as one ‘dives’ into its virtual
polarization cloud, hence with decreasing distance from the
particle. As a result, the electric charge becomes scale-
dependent which may be expressed in terms of a distance-
dependent fine structure constant, α = α(R). At distances
large compared to the electron Compton wavelength, R =
λ̄e = h̄/mc, the typical length scale of QED, one has α =
e2/4π h̄c ' 1/137. However, at the much smaller Compton
wavelength of, say, the Z boson, R = λ̄Z = h̄/MZ c, the
QED coupling α increases to α(λ̄Z ) ' 1/128.

At typical laser energies, the dominant screening particles
are indeed pairs of virtual electrons and positrons. Their
(virtual) presence may be probed by coupling them to ad-
ditional photons (see Figure 2), which may represent either
fluctuating quantum fields or classical background fields
such as provided by lasers. In either case, we are led to
consider the probing of vacuum polarization by ‘photon–
photon scattering’. When large numbers of photons are
involved, a classical metaphor of this quantum effect is
of charged vacuum pairs forming a polarizable ‘vacuum
plasma’ medium with a nonlinear susceptibility and perme-
ability. An important consequence of this quantum correc-
tion to Maxwell’s equations is the violation of the principle
of superposition for electromagnetic waves in vacuum.

3. Analytical methods

The microscopic theory describing laser–matter or laser–
laser interactions is QED described by the Lagrangian

LQED = ψ̄(i/∂ − m)ψ − 1
4 FµνFµν − eψ̄ /Aψ, (1)

the separate terms representing the Dirac, Maxwell and
interaction Lagrangians, respectively. The latter derives
from ‘minimal substitution’, that is the replacement of the
ordinary by the covariant derivative, i∂ → i∂ − eA ≡ iDA
in the free Dirac term, which leads to the usual coupling
of the photon field Aµ to the Dirac current jµ = eψ̄γ µψ
as eψ̄ /Aψ = Aµ jµ. An intense laser field will normally be
included as a classical, external background field Aext by the
prescription of replacing A → A + Aext in the interaction
term only. This guarantees that Aext is not altered by the
interaction because the Maxwell term will only contain the

Figure 2. Probing vacuum polarization by photon–photon scattering.

field strength tensor built from the fluctuating fields Aµ,
i.e., Fµν = ∂µAν − ∂ν Aµ.

In this contribution we are interested in laser–laser inter-
actions. In this case, the centre-of-mass energy (even for
x-rays) will always be much lower than the electron rest
energy, mc2. It is thus sufficient to work with the low-energy
effective field theory obtained from the QED Lagrangian
by ‘integrating out’ the Dirac fields. This can be done by
employing the functional integral representation of the QED
vacuum persistence amplitude Z relating in and out vacua:

Z =
∫

DADψ Dψ̄ exp(iSQED[A, ψ, ψ̄])

≡

∫
DA exp(iSeff[A]). (2)

In the second step, the fermionic degrees of freedom have
been integrated out by performing a Gaussian integral result-
ing in a fermionic determinant,

exp(iSeff[A]) = exp
(

Tr ln
i /D A − m
i/∂ − m

)
, (3)

where we have re-exponentiated using Det = exp Tr ln.
The fermionic determinant depends on the photon field A
and can only be evaluated analytically for special config-
urations such as constant fields. Alternatively, one may
perform a derivative (i.e., low-energy) expansion[10, 11], the
leading order of which coincides with the constant field
evaluation. For QED this has been done long ago (using
different techniques)[12–14], the result being the celebrated
Heisenberg–Euler Lagrangian

LHE = −
m4

8π2

∫
∞

0
ds

exp(−s)
s3

×

[
s2ab cot as coth bs − 1+

s2

3
(a2
− b2)

]
, (4)
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where the dimensionless secular invariants a and b are given
by:

a =
[

√
F2 + G2 + F]1/2

Ecr
; b =

[

√
F2 + G2 − F]1/2

Ecr
.

These contain the two electromagnetic invariants

F = −FµνFµν/4 = (E2
− B2)/2, (5)

G = −Fµν F̃µν/4 = E · B = 0, (6)

with field and dual field strength tensors, electric and mag-
netic fields (Fµν , F̃µν , E and B, respectively) and the critical
field strength:

Ecr =
m2c3

eh̄
≡

m2

e
. (7)

(Note that we now adopt natural units, h̄ = c = 1, for the
remainder of this section unless otherwise explicitly stated.)
The critical, ‘Sauter’[15] or ‘Schwinger’[14] field strength Ecr
is built from the fundamental constants of QED and is the
typical field-scale separating weak (E � Ecr) from strong-
field (E > Ecr) vacuum polarization phenomena.

The Heisenberg–Euler Lagrangian (Equation (4)) is equiv-
alent to QED for arbitrary values of the field strength but
at energies small compared to mc2. For the foreseeable
future, laser experiments will stay well below the critical
field strength, hence in the weak-field limit. Thus, to a very
good approximation, it is sufficient to work with the leading
order in a field strength expansion of Equation (4) given by:

L(2)HE ' c1F2
+ c2G2, (8)

with dimensionless low-energy constants{
c1

c2

}
=

2α2

45m4

{
4
7

}
. (9)

These define effective vertices corresponding to the low-
energy limit of the diagram in Figure 2 with the fermion loop
no longer being resolved, see Figure 3.

The cross-section for the low-energy limit of real photon–
photon scattering depicted in Figure 3 is given by[16]:

σ =
973

10125π
α4
(ω

m

)6
λ̄2

e

[
1+

640
2919

(ω
m

)2
]
; ω � m

whereas the high-energy limit is given by[17–19]:

σ = 4.7α4
(m
ω

)2
λ̄2

e; ω � m.

The maximum of the cross-section is at the pair-creation
threshold of colliding photon centre-of-mass energies ω =
m.

Figure 3. The leading-order Heisenberg–Euler vertex or photon–photon
scattering at low energies.

Figure 4. A probe photon (wavy lines) scattering off a classical laser
background (dashed lines) at low energy (so that the Heisenberg–Euler
vertex can be employed).

3.1. Scattering matrix

In what follows, we will consider a modification of the
4-photon scattering amplitude at low energy by assuming
that two of the photons involved are stemming from a
high-intensity laser which is probed by a dynamical photon
‘passing through’. This is visualized in Figure 4.

We assume that an incoming probe photon with four-
momentum k and four-polarization ε scatters off a laser
background described by a field strength tensor Fµν resulting
in an outgoing photon with quantum numbers k′ and ε′.
The resulting scattering amplitude is given by the S-matrix
element

〈ε′, k′; out|ε, k; in〉 = 〈ε′, k′|Ŝ|ε, k〉 ≡ Sfi(ε
′, k′, ε, k).

(10)

Using the leading-order Lagrangian (Equation (8)), using
Sfi(q) to denote S f i (ε

′, k′, ε, k), the S-matrix element takes
on the simple form of a Fourier integral

Sfi(q) = −i
∫

d4x eiq·x Sfi(x), (11)
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where q = k′ − k is the momentum transfer and

Sfi(x) = c1(k′, Fε′)(k, Fε)+ c2(k′, F̃ε′)(k, F̃ε), (12)

employing the abbreviated scalar products (k, Fε) ≡
kµFµνεν , etc. Hence, one may introduce an intensity form
factor,

Wµα,νβ(q) ≡ −i
∫

d4x eiq·x (c1 FαµFβ,ν + c2 F̃αµ F̃β,ν),

(13)

which is the Fourier transformation of the background in-
tensity distribution. In terms of the latter, the scattering
amplitude may be written as

Sfi(q) = ε′αk′µWµα,νβ(q)kνεβ . (14)

The results above are reminiscent of elastic electron nucleus
scattering, where the scattering amplitude is proportional
to the nuclear charge form factor which is nothing but
the Fourier transform of the nuclear charge distribution.
In photon–photon scattering, one is naturally probing an
intensity, rather than a charge, distribution. To proceed, one
has to choose a suitable laser background field, Fµν(x), and
calculate its intensity form factor (Equation (13)).

3.2. Polarization operator

An equivalent representation is obtained in terms of a quan-
tity aptly called the polarization operator, denoted Πµν . In
its simplest incarnation it is just the mathematical expression
for the Feynman diagram of Figure 1, namely

Πµν
= −ie2 trγ

∫
d4 p
(2π)4

γ µ
1

/p − m
γ ν

1
(/p − /k − m)

, (15)

where the trace trγ extends over the Dirac matrices γ µ. One
may generalize this to the polarization tensor in an external
field Aext, where one trades the free fermion propagators for
interacting ones through the standard minimal substitution
p→ p−eAext. Indeed, this method has a long history[20–23]

as reviewed by Ref. [24]. For our purposes it is sufficient
to just employ the first-order weak-field Heisenberg–Euler
Lagrangian (Equation (8)) once again and rewrite it as

L(2)HE =
1
2 AµΠµν

[Aext]Aν, (16)

with the polarization tensor thus defining the second-order
term. From Equation (8) one can straightforwardly read off
that

Πµν
[Aext] =

c1

2
kαFαµFβνkβ +

c2

2
kα F̃αµ F̃βνkβ , (17)

where the background field strength Fµν = ∂µAνext−∂
ν Aµext.

To connect this approach with the S matrix formalism
we specialize to forward scattering by setting k = k′ in
Equation (12) which yields the relation

Sfi,fwd(k) = ε′µ(k)Π
µν(k)εν(k). (18)

This makes the link between the polarization operator and
scattering matrix approaches manifest.

3.3. Modified Maxwell equations

In standard quantum field theory notion[9], the total Heisenberg–
Euler action, Seff =

∫
d4x Leff, is nothing but the one-

loop effective (or quantum) action of QED evaluated at low
energies where there are no external electron lines. The
associated effective Lagrangian is the sum of the classical
Maxwell term LM = (E2

− B2)/2 and the first quantum
correction:

Leff = LM + LHE. (19)

By variation of the quantum action, one can derive the
corresponding modified Maxwell equations[25]:

∇ · E = ρvac; ∇ ∧ B = Jvac + ∂t E, (20)

in which:

ρvac = ∇ · Pvac; Jvac = ∇ ∧Mvac + ∂t Pvac (21)

and the vacuum polarization and magnetization are:

Pvac =
∂LHE

∂E
; Mvac =

∂LHE

∂B
. (22)

The wave equations:

∂2
t E−∇2E = −∇ρvac[E,B] − ∂t Jvac[E,B], (23)

∂2
t B−∇2B = ∇ ∧ Jvac[E,B], (24)

can be solved using, for example, the method of Green’s
functions.

4. Signatures of vacuum polarization

The most general vacuum polarization diagram represents
an elastic scattering amplitude that relates an incoming
ensemble of photons |k1, . . . , kn〉, which interact in some
experimental scenario, to an outgoing ensemble of photons
|k′1, . . . , k′n′〉. In this review, we concentrate on processes
that could be measured using high-power lasers. The fields
of these lasers are included in calculations in various ways.
A ‘monochromatic plane wave’ will refer to an infinitely
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Figure 5. Photons from the pump (dashes) interact with those from the
probe to produce a pump-dependent vacuum index of refraction.

extended wave with no transverse structure, a ‘beam’ will
refer to some inclusion of structure, e.g., a cylinder of
radiation is a ‘beam’, a ‘focused beam’ will imply some
approximation to a real beam with focal width as a parameter
and a ‘pulse’ to a field localized in time with pulse duration
as a parameter. Since laser pulse wavelengths are much
larger than the Compton wavelength, and since expected
electric field strengths are much less than the critical Sauter
field, equivalent to an intensity of the order of 1029 W cm−2,
the interaction of laser pulses with virtual electron–positron
pairs can be expanded in terms of weak fields. Starting at
n = 2 as in Equation (8), each perturbative order describes a
vacuum 2n-wave mixing process. It is noteworthy that unlike
when real electrons and positrons interact with intense laser
fields, for virtual electron–positron pairs, the number of laser
photons involved is typically small[26], which is why the
discussion is mostly in terms of four-wave mixing processes
such as in Figure 5. This means the vacuum is often
compared to a nonlinear optical material with a Kerr-like
response[27]. Although there is a large overlap with nonlinear
optics, a major difference is the way the polarization of the
dielectric (here, the vacuum) can be shaped by the pump
laser pulse.

The majority of suggested signals of vacuum polarization
can be described by considering how the photons from a
probe laser change due to interaction with a more intense
pump laser. The pump laser will also be referred to as the
‘background’ or the ‘strong field’ where appropriate. The
probe laser quantities will often be denoted with subscript
p and the pump or strong laser quantities with the subscript
s. The source of probe photons will mostly be a high-power
laser, which, satisfying E/Ecr �

√
α(ω/m)2, often allows

the external field concept to be invoked for the probe[28].
Therefore, the discussion will include interchangeably ef-
fects on probe photons and on the probe electromagnetic
field, which assumes the photon-scattering process can be
summed incoherently over the probe photon distribution. We
begin by reviewing the consequence of real photon–photon
scattering at the level of probe laser photons:

γ (ω,k, ε(k))→ γ (ω′,k′, ε′(k′)). (25)

Three measurable quantities have been highlighted – the
effect on the probe’s frequency ω, its wavevector k and its
polarization ε(k) and these will be discussed in turn.

4.1. Effects on probe photon polarization

Vacuum birefringence refers to the prediction that the re-
fractive index experienced by a probe propagating through
regions of intense, but weakly varying strong fields of
amplitude Es is of the form[20, 29]:

n‖,⊥vac = 1+
(11∓ 3)α

45π
E2

s

E2
cr
, (26)

where the ‖ (⊥) indices apply to a probe polarized parallel
(perpendicular) to the strong background. This result may
be derived from the Heisenberg–Euler quantum equation of
motion,

(∂λ∂
λgµν − ∂µ∂ν +Πµν)Aν = 0. (27)

A plane-wave ansatz for Aν implies two secular equations or
dispersion relations,

k2
−Π1,2(k) = (gµν − c1,2Tµν)kµkν = 0, (28)

where Π1,2 = c1,2(k, T k) are the two nontrivial eigenvalues
of the polarization tensor (Equation (17)), expressed in
terms of the background energy–momentum tensor Tµν =
Fµα Fαν . The dispersion relations (Equation (28)) describe
the change in light propagation caused by the energy–
momentum density stored in the background field and have
been referred to as modified light-cone conditions[30, 31].
They imply group velocities different from the vacuum speed
of light, c, and hence the refractive indices (Equation (26))
different from unity, which can be rewritten as n‖,⊥vac = 1 +
Π1,2/2ω2

p, ωp = k0c being the probe frequency.
The result for the refractive indices has been shown

to hold to all perturbative orders using the polariza-
tion operator[20, 31, 32] and Heisenberg–Euler Lagrangian
numerically[33, 34] and analytically[34]. When the pump field
is space–time-dependent as is the case for laser pulses, the
effect on the probe is calculated by integrating over the
inhomogeneous refractive index of the pump background[35].
There has also been recent work indicating finite-time effects
in an inhomogeneous background may leave a detectable
signal[36].

Polarization flip is the underlying physical mechanism
of vacuum birefringence. The term is used when an
incoming photon’s polarization vector εµ is ‘flipped’ to an
orthogonal one ε′µ due to real photon–photon scattering.
Linearly polarized probe photons can flip if the background
contains some ellipticity and circularly polarized probe
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photons if the background contains some linear polarization.
The flip amplitude (for a head-on collision of probe and
background) after a propagation distance z can be found
from the Heisenberg–Euler forward scattering amplitude
(Equation (18)) and coincides with the birefringence-
induced ellipticity[37],

e ≡ 〈ε′, k|S|ε, k〉 = 2E2
sωpz(c2 − c1), (29)

where ε · ε′ = 0. Note the dependence on the difference
of the low-energy constants. This implies that a confirma-
tion of vacuum birefringence would rule out other versions
of electrodynamics popular in beyond-the-standard-model
physics such as Born–Infeld theory, which has c1 = c2

[38–40].
From Equation (26), the flip amplitude or ellipticity (Equa-
tion (29)) has the equivalent representation

e = ωpz
n⊥vac − n‖vac

2
, (30)

which is proportional to the difference in refractive indices,
hence the phase shift between different polarizations.

Detailed calculations have been performed for photons
propagating in an arbitrary plane-wave background[22, 37],
and the kinematic low-energy limit relevant for laser-based
experiments was found to be consistent with use of the
Heisenberg–Euler approach for calculating birefringence
and ellipticity[41]. A study of the dependency of the flip
and nonflip amplitude on spatial and timing jitter and angle
of incidence[42] was performed, with the results also being
consistent with a previous similar study in the low-energy
limit[43]. Both studies[42, 43] found that modelling the
background as a focused paraxial Gaussian beam without
taking into account the finite pulse duration led to an order of
magnitude discrepancy in the number of scattered photons.

Induced ellipticity is a consequence of birefringence as
pointed out in the previous subsection, see Equations (29)
and (30). The polarization of a linearly polarized probe plane
wave can be described with the vector:(

ε‖

ε⊥

)
= cosϕ

(
cos θ
sin θ

)
, (31)

where ϕ is the probe phase. If, over some probe phase ωpz
the ‖ and ⊥ components experience a different refractive
index, then when the phase shift δϕ‖,⊥ = n‖,⊥ωpz � 1, the
polarization changes to:(

ε‖

ε⊥

)
=

[
cos θ −cos θ δϕ‖

sin θ −sin θ δϕ⊥

](
cosϕ
sinϕ

)
, (32)

and the originally linearly polarized probe is now elliptically
polarized. If the background is constant, the ellipticity can

be written[44]:

e = ωpz
n⊥vac − n‖vac

2
sin 2θ, (33)

which generalizes Equation (30). The induced ellipticity in
the interaction of an x-ray probe plane wave of wavelength
λp = 0.4 nm counterpropagating with a Gaussian pump
beam of intensity 1023 W cm−2 and wavelength λs =

745 nm focused to 8 µm was calculated[44] to experience an
ellipticity of e≈ 5×10−9 rad when measured at a distance of
0.25 m from the pump–probe collision. By considering the
same pump energy distributed over two pump Gaussian laser
beams counterpropagating with a Gaussian probe beam, a
modest improvement of around

√
2 was found, and the near-

field-induced ellipticity[45]

e =
2πα
15

Is

Icr

zeff.

λp
sin 2θ; zeff. =

zr,pzr,s

zr,p + zr,s
, (34)

with the effective interaction length between the two
Gaussians zeff. depending on the probe zr,p and pump
zr,s Rayleigh lengths. This agrees with the expressions
calculated for a monochromatic probe plane wave counter-
propagating with a Gaussian pump[46] in the limit zr,p→∞.

Polarization rotation is the macroscopic consequence of
coherent polarization flipping at the photon level. The effect
on the transverse photon polarization states in Equations (31)
and (32) has the consequence that the polarization angle θ
will rotate as the initially linearly polarized probe acquires
an ellipticity. The ellipse traced out by the probe field vector
can be seen to be[47]:

x2
− 2xy cos(δϕ⊥ − δϕ‖)+ y2

= sin2(δϕ⊥ − δϕ‖), (35)

where x cos θ = ε‖ and y sin θ = ε⊥. For an x-ray
probe counterpropagating with an optical Gaussian pump
beam, the rotation angle was found to be the same order of
magnitude as the induced ellipticity[44, 45].

4.2. Effects on probe photon wavevector

On the photon level, four-wave mixing as depicted in Fig-
ure 5 can be understood as two incoming photons, one from
the probe and one from the pump, being scattered to two
outgoing photons, one being back into the pump field and
the other being the signal of the vacuum interaction. Conser-
vation of momentum permits the scattered photons having
a wider transverse distribution than the probe and strong
background, hence allowing one to spatially separate the
photon–photon scattering signal from the large background
of pump and probe laser photons.

On the classical level, a refractive index nvac different from
unity, implies altered transmitted wavevectors via Snell’s
law, and altered transmission T and reflection coefficient R
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Figure 6. Predicted diffracted electric field in a collision of two
counterpropagating Gaussian beams. Adapted from [47].

via Fresnel’s law at perpendicular incidence[48]:

T =
4 nvac

(1+ nvac)2
; R =

(
1− nvac

1+ nvac

)2

. (36)

If the vacuum refractive index is written as nvac = 1+ δnvac,
the effect on probe transmission ∼O(δnvac) whereas the
effect on reflection ∼O(δn2

vac).
If the probe beam is considered to be much wider than

the pump background, the region of polarized vacuum can
be considered to ‘diffract’ the probe. An example of such
a ‘single-slit’ diffraction pattern is given in Figure 6. It is
well known that the far-field diffracted field is related to
the Fourier transform of the aperture function[49], and via
Babinet’s principle, this can be related to an integral over the
region of refractive index different from unity. We underline
the connection of this classical analogue to the intensity form
factor of the scattering matrix approach Equation (13).

Vacuum diffraction was considered in the collision of a
plane probe and a focused Gaussian pump beam[44], and
extended to the collision of focused Gaussian probe and
pump beams[50]. The advantage of this signal is that for
increasing scattering angle, while the focused laser back-
ground is exponentially suppressed, the scattered photon
vacuum signal is power-law suppressed. In the detector
plane then, the number of scattered photons can be cal-
culated in ‘measurable’ regions, where the signal-to-noise
ratio is much larger than unity. One interesting scenario
was calculated of colliding two parallel, highly focused
Gaussian pump beams with a wide weakly focused Gaussian
probe beam, such that the photons scattered in the two
slit-like polarized regions around the pump beams would
interfere and hence together form an all-optical double-slit
experiment[50]. For the case of two colliding Gaussian
pulses, the dependency of the diffracted photon signal on

experimental parameters such as the total beam power,
spatial and timing jitter, angle of collision, pulse duration,
probe wavelength and focal width has been carried out[43].
With 10 PW total laser power split into pump and probe
focused optical pulses, of the order of a few photons were
predicted to be diffracted into measurable regions on a
detector place 1 m from the interaction centre. These
results were verified in a study by different authors[51], who
used a different beam model. The diffraction paradigm
was extended from single and double slits to a ‘diffraction
grating’ of having a probe beam diffract off a regular series
of pump beams[52]. Only on positions of the detector where
the Bragg condition:

nq = 2kp sin
θ

2
,

for integer n, probe wavenumber kp, wavenumber of the
pump beam structure q and angle between incoming and
diffracted probe θ , is there constructive interference of the
signal of scattered photons. Since the addition of diffracted
waves occurs at the level of the field, and since the number
of photons scattered depends upon the total diffracted field
squared, there is an enhancement in such a setup propor-
tional to the square of the number of modulation periods.
Alternatively, rather than using many beams, a single, wide-
angle beam diffracting with itself at the focus has also been
studied[53], with the conclusion that the number of diffracted
photons increases exponentially with the angular aperture.
Since only the near-field signal was presented, more work is
required to determine measurability in this scheme.

The idea of using the diffracted photons’ flipped polariza-
tion as well as their altered wavevector in an experimental
measurement was explored for the wide-angled single-beam
setup[53], a single propagating Gaussian beam taking into
account higher orders in a Hermite–Gauss expansion[54] and
has been most recently applied to the upcoming HIBEF
experiment[55].

Vacuum reflection refers to the back-scattering of photons
in real photon–photon scattering. Static magnetic inhomo-
geneities of the form of a Lorentzian, Gaussian and oscillat-
ing Gaussian have been studied[56] and more recently static
electromagnetic inhomogeneities but most significantly scat-
tering in a Gaussian beam[57], although calculations for
pulses of a finite duration are still to be performed.

4.3. Effects on probe photon frequency

The frequency of probe photons can change via interac-
tion with the polarized vacuum. However, this effect is
much more difficult to measure experimentally because of
the limited range of energy and momenta for which it is
permitted. Suppose via the four-photon interaction, two
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Figure 7. Parametric frequency upshifting (left) and downshifting (right)
can occur between pump and probe through the vacuum interaction.

photons from the strong pump background merge with a
probe photon as depicted in Figure 7. Then via energy–
momentum conservation:

ωp + ωs,1 + ωs,2 = ω
′
; kp + ks,1 + ks,2 = k′, (37)

but at the same time, the photon must be real to propagate to
the detector so ω′2 = k′ · k′. This constrains the allowed fre-
quencies, momenta and angles that can be combined. Similar
relations occur for Raman and Brillouin scattering[58], except
all the waves here are electromagnetic.

Vacuum parametric frequency shifting has been calcu-
lated for special beam configurations. Combining three
monochromatic plane waves at right angles, whose wave-
lengths are 800, 800 and 400 nm, was predicted to produce
a signal that is spatially and frequentially (at 267 nm)
separated from the background[59]. For respective beam
powers 0.1, 0.1 and 0.5 PW, taking the interaction region to
be cuboidal, on average 0.07 photons would be frequency-
upshifted per collision of the beams, which is predicted to be
larger than the Compton-scattering background. A signature
of the frequency-shifting four-wave mixing process on
the number of total measurable diffracted photons for a
collision of two ultra-short focused Gaussian pulses was also
calculated[43]. For 10 PW total beam power split into a probe
with wavelength 228 nm and duration 2 fs, as the duration
of the 910 nm pump is reduced to 1 fs, the total number of
diffracted photons is predicted to change by around 20%,
equal to one photon per shot. Calculations beyond the
paraxial approximation recently performed[60] for two co-
propagating beams of different frequencies incident on a
parabolic mirror suggest 1–10 PW laser beams are required
to observe vacuum frequency mixing, although the method
of detecting the signal needs to be given more attention.

Vacuum high-harmonic generation can take place if the
colliding laser pulses have the same frequency. Then via the
four-wave mixing process in Equation (37), if ωp = ωs,1 =

ωs,2 = ω, the signal of the vacuum process has a frequency
ω′ = 3ω and so is at the third harmonic of the probe. By
considering six-, eight- and in general 2n-wave mixing as
depicted in Figure 8, it can be seen that a harmonic spectrum
for the vacuum interaction can be produced. As each extra
interaction between the virtual pair and a laser photon is
weighted at the amplitude level with a factor E/Ecr � 1,

Figure 8. Vacuum high-harmonic generation of the nth harmonic of the
probe via 2n-photon scattering.

Figure 9. Vacuum high-harmonic generation of the nth harmonic of the
probe via a chain of six-photon scattering.

higher harmonics are in general exponentially suppressed.
Nevertheless, the harmonic spectrum produced by a standing
wave formed of two monochromatic pump laser beams was
calculated for subcritical (E < Ecr) strengths where higher
harmonic orders j were found[61] to follow the hierarchy
(E/Ecr)

4 j . In a setup involving three beams, the minimum
power of each laser required to scatter one photon was found
to be:

Pmin ≈ 33.5
λ

1 nm
w0

1 nm

(
1 fs
τ

)1/3 (1 fs
τc

)2/3

GW, (38)

for typical beam cross-sectional dimension w0, interaction
duration τ and coherence time τc. The most likely fre-
quency of the scattered photon is, however, the fundamental
harmonic. The intensity at which a single focused laser
pulse will begin to produce harmonics via self-interaction
has been studied[62], with the conclusion that a pulse of
1000 nm photons focused within a cone of angle 0.1 rad
will produce one photon per period at 5 × 1027 W cm−2.
A recent calculation of an alternative route to high-harmonic
generation through having many scattering events involving
low numbers of photons[63–68] (as in Figure 9) has recently
been suggested to be more efficient. For the collision
of a Gaussian probe at much higher frequency than the
background, if the parameter (64α/105π)(E3

s E p/E4
cr)ωpτs ,

where τs is the duration of the pump, can be made close to
unity, harmonic generation will dominate, with the spectrum
displaying a power-law behaviour and the appearance of a
corresponding electromagnetic shock[34].

Photon splitting as depicted in Figure 10, is sometimes
thought of as the opposite of high-harmonic generation,
but unlike harmonic generation, the emitted photons can
have a continuum of energies. If one considers splitting
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Figure 10. An incoming probe photon can split into k outgoing ones, due
to interaction with the background.

to two photons via four-wave mixing then via energy and
momentum conservation, one possibility is:

ωp + ωs = ω
′

1 + ω
′

2; kp + ks = k′1 + k′2, (39)

where now two constraints on these equations are (ω′1,2)
2
=

k′1,2 · k′1,2. The continuum of allowed energies and the
possibility for a wide angular distribution of emitted photons
makes this process worthy of study. The process has been
comprehensively studied for a probe photon propagating
through a plane-wave background of arbitrary form and
polarization[69], which was found to depend on the two
parameters η = ωpωs/m2 and χ = (ωp/m)(E/Ecr). Two
events per hour were predicted using 108 250 MeV tagged
photons per second almost counterpropagating with 100 fs
1015 W cm−2 1 keV XFEL beams separated by 93 ns.
Alternatively, two events per hour were also predicted using
108 100 MeV tagged photons counterpropagating with a
1 Hz 1 eV optical pump of intensity 1025 W cm−2. The
conclusion was that a different experimental setup must
be considered if this effect is to be observed in the near
future[69].

4.4. Effects on probe pulse form

In addition to the effects on single photons, one can consider
the consequence of real photon–photon scattering on the
propagation of an ensemble of photons. A probe laser pulse
can be understood as a superposition of photons with a range
of frequencies and phases. From the study of nonlinear
dispersive media, it is well known that a refractive index that
depends on a probe’s intensity directly or indirectly can lead
to pulse shape effects[58]. In particular, for the interaction
with vacuum, probe pulse effects can occur if the next-to-
leading-order effect of a probe-dependent refractive index is
taken into account.

Nonlinear phase shift is a term used to denote the relative
difference in phases between parts of a probe beam that
have experienced different vacuum refractive indices. For
a constant refractive index, the relative phase difference
compared to a unitary refractive index is:

δφ = (nvac − 1)ωpz,

where ωpz is the phase over which δφ has been accrued.
For two counterpropagating initially monochromatic plane
waves, with the envisaged ELI parameters of 800 nm wave-
length, 1025 W cm−2 intensity, 10 fs duration and 10 µm
focal spot diameter, a phase shift of the order of δφ ≈
10−7 rad has been calculated[33, 70]. This nonlinear phase
shift can be enhanced by using multiple crossings of the
interacting beams. For Nr reflections from plasma mirrors
of reflectivity Rmir of two beams crossing each other at an
angle θc, the gain factor has been calculated to be[71]:

sin4
(
θc

2

) Nr+1∑
n=0

Rn
mir.

The measurement of this phase shift using Fourier imaging
has also been explored[72].

Vacuum self-focusing is an analogue to the well-known
plasma self-focusing or ‘Benjamin–Weir’ instability[58] in
which there is positive feedback between a refractive index
increasing the intensity of a pulse via focusing, and a higher
intensity resulting from that focusing in turn increasing the
refractive index. Mutual channelling of counterpropagating
laser pulses and large-scale focusing have been considered,
but either YW powers are predicted as necessary[66] or inten-
sities above critical[73], before which vacuum pair-creation
would have set in. In considering the idealized geometry of
a Gaussian plane-wave probe pulse counterpropagating and
interacting via six-wave mixing with a much slower varying
pump, the probe-dependent refractive index:

n‖vac = 1+
α

π

E2
s

E2
cr

[
8

45
+

64
105

Es

Ecr

E p

Ecr

]
(40)

was predicted to lead to the generation of a shock wave, a
signature of self-focusing, when the phase difference due
to the probe-dependent refractive index tended to a quarter
wavelength[34]. The mutual attraction between two photons
due to mutual exchange of virtual photons on two vacuum
loops has also been considered[74], and a self-focusing angle
of θ =

√
157/16π3(α2/180m4 R4) for photon separation R.

Pulse collapse is predicted to occur for high-intensity probe
pulses propagating through an even higher-intensity back-
ground. The wave equation for the probe can be recast as
a nonlinear Schrödinger equation[58] with the consequence
that the pulse envelope becomes space–time-dependent, even
if assumed initially homogeneous. Unlike typical optically
nonlinear dispersive media, the nonlinearity of the vacuum
is ‘formed’ by the pump laser background, which is then
probed by a second pulse. Even when the leading-order
effect on the probe is a nonlinear refractive index that is
independent of the probe pulse, because of its effect on the
pump’s evolution, it can indirectly effect the probe’s propa-
gation. This interplay between a Gaussian probe distribution
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Figure 11. Cerenkov-like radiation (right) generated by pulse collapse into photon bullets (left) against longitudinal z and transverse r co-ordinates of an

initially Gaussian pulse of central wavenumber k0. Reproduced with permission[75].

propagating through a radiation gas has been demonstrated
to lead to self-focusing and collapse of the probe into ‘photon
bullets’, thereby driving acoustic waves[75] as demonstrated
in Figure 11. Depending on initial parameters, probe col-
lapse can occur before or after the critical Schwinger limit is
reached[76].

4.5. Finite-time effects

Similar to the case for regular plasmas, there are effects on
the probe when propagating through regions of the polarized
‘vacuum plasma’ that do not persist long enough to be
directly detected.

Photon acceleration is well known from plasma physics[77]

and corresponds to the frequency downshift (upshift) as
probe photons traverse an increasing (decreasing) plasma
gradient. The possibility of measuring this effect in vacuum
has been considered for a probe photon propagating almost
parallel with a pump pulse[78], with a frequency up (down)
shift occurring at the rear (front) of the pump beam.

High-harmonic generation can also occur due to the in-
homogeneity of the pump pulse background, in an effect
distinct from standard vacuum high-harmonic generation.
For a probe pulse counterpropagating with a slowly varying
background, this is predicted to occur at finite time during
overlap of the probe and pump pulses at an order earlier (via
four-photon scattering), than for those photons that reach
a detector (via six-photon scattering)[79]. This finite-time
signal disappears when the probe and pump pulses are well
separated again, but is calculated to dominate the signal of
frequency-shifted photons when the pulses overlap in this
setup if (Es/Ecr)

2ωpτs � 1 for strong-pulse duration τs .

Gradient-dependent vacuum refractive index is a way to
describe the addition to the standard predicted vacuum re-
fractive index that occurs when the pump laser is time
varying. This has been calculated for a probe propagating
through the electric/magnetic antinode of a pump standing

wave[36]. The change in vacuum refractive index ∆nvac can
be written in the form:

∆n‖,⊥vac (ϕ) =
E p

E ′p
n‖,⊥ ′vac (ϕ). (41)

In a setup of two colliding plane waves with no transverse
structure, it was shown that this term is a surface term and
is zero initially and finally, when the probe and background
are well separated[79]. The contact term was also noted
in a recent study of polarization flipping in arbitrary plane
waves[37]. Although it has been suggested that this part
of the interaction could be a useful probe of dark matter
particles[36], a consistent finite-time calculation has yet to be
performed to establish the nature of this effect.

4.6. Nonperfect vacua

In any realistic experiment, the vacuum will be synthetic and
hence imperfect. Residue particles in interaction chambers
will also be affected by intense laser pulses and can produce
a source of background that may obscure the measurement of
real photon–photon scattering. The Cotton–Mouton effect,
in which a dilute gas becomes birefringent in the presence
of an electromagnetic wave is just one such example[80].
In light of this, various proposals have been considered
that instead use an altered vacuum to enhance the signal of
vacuum polarization.

Resonant cavities can be employed in order to increase the
sensitivity of whatever eigenfrequencies are resonant for that
particular cavity[48]. For example, a cavity can be designed
such that the frequency that is generated by vacuum four-
wave mixing of two modes of the cavity, is resonant. This
idea has been studied for the TE01 modes of such a cavity
and the growth of the mixing signal in the form of the
longitudinal standing-wave magnetic field, found to increase
linearly with time[81] as

B3(t) =
i tV
2ω3

B2
1 B∗2 ,
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for source magnetic standing-wave strengths B1, B2 and
coupling constant V . The vacuum signal was predicted to
be detectable if an electric field 2 × 10−8 times the criti-
cal Schwinger field was employed with a superconducting
cavity with a resistance of 1 n� and a resonant, vacuum-
mixing frequency of 13.2 µeV. This idea was refined[82]

and the prediction made that 18 photons can be produced by
a magnetic field of around 0.28 T in a cylindrical cavity of
length 2.5 m, radius 25 cm and quality factor 4× 1010.

Real plasmas already have a refractive index different from
unity, and this can combine with the shift of the refractive
index due to vacuum polarization and lead to an enhance-
ment. The system of equations by Akhiezer and Polovin[83]

for the propagation of a circularly polarized plane wave
through a cold collisionless plasma was updated to include
the vacuum current in Maxwell’s equations and also take
into account collisions[84]. For the collisionless case, the
modified refractive index of the combined system was found
to be:

n =
√

n2
pl +

1
4δn
⊥
vac(1− n2

pl)
2

with npl the plasma refractive index and δn⊥vac = n⊥vac − 1
as defined in Equation (26). Another detectable signal of
photon–photon scattering has been calculated to exist when
an overdense plasma channel is subjected to an intense laser
beam[85]. In addition, the altered dispersion relation for elec-
tromagnetic waves due to vacuum polarization effects in a
strongly magnetized cold plasma has been calculated[86–88],
which is particularly relevant for the dynamics of strongly
magnetized neutron stars.

5. Summary

There has been a proliferation of labels to describe polar-
ization effects of the quantum vacuum due to intense laser
pulses. However, as we have discussed, all of these are mani-
festations of the QED prediction that real photons can scatter
off one another. The commonality of the main approaches
of describing real photon–photon scattering, through cal-
culation of the polarization operator, scattering matrix ele-
ments and Heisenberg–Euler-modified Maxwell equations,
has been made manifest. Many signals of this long-predicted
phenomenon, whether at the level of individual photons or
at the level of electromagnetic fields, have been calculated
and found measurable in experiments using high-intensity
laser pulses. This implies that the first measurement of real
photon–photon scattering will finally be performed in the
near future.
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