BB HoH
2013 4E 6 A

Vol.20 No.6
June 2013

Bk 5 & #

Electronics Optics & Control

doi: 10. 3969/j. issn. 1671 — 637X. 2013. 06. 012

ET SVMBZZTEFHHBE TS AR

% E
(BB HEFIRSERAR, B 200240)

B E: AATELAHAETERT SRS AR ZHET SVM 40w Ja 409 FIAL, itk AR T Mukfe ity
Fk R AME SVM #5)2 — 43R 246 AR I SVM S8 Ja e i R & o X B a0 iR RIE T AT oy kv sk
RER: MATM®; f4FE; B—REET; LTINSV

mESHES: V271.4 XaktRAEE: A XEHS: 1671 -637X(2013)06 - 0050 - 08

Choosing Multiple Parameters for Function
Regression Based on SVM

LIU Luoxia
(Shanghai Aircraft Customer Service Co. Ltd. ,Shanghai 200240)

Abstract: Performance improvement of function regression based on Support Vector Mmachines (SVM) by
automatically tuning multiple parameters of regressors was considered. This was done by minimizing some
estimation of the generalization error of SVM using gradient descent and Genetic Algorithm (GA) over the
set of parameters. Performance of the proposed method was illustrated by extensive experimental results.

Key words: gradient descent; genetic algorithm; normalized error estimation; Support Vector Machine (SVM)

0 Introduction

In many scientific and engineering research files,
many problems such as model identification in control
engineering, channel identification in communication
engineering and density function in statistics, can be
generalized to solve a multivariable function regression
problem. In the problem of function regression ; one takes a
set basis functions (regressors) g,(X, 8,) and a finite set of
input-output data pairs Z = {(X,, 6,), -+, (X, 8,)} and
attempts to find out weight vector W to construct a function

AX,W,0) = Z w,g,(X, 8,). Such that some error criteria

is minimized. There are many method proposed to deal with
this problem, such as linear regression, RBF (Radial Basis
Function) network, neural network, MARS (Multivariable
Adaptive Regression Spline), projection pursuit and fuzzy
system. If we know the type of function (linear, quadratic
or gaussian, etc) with unknown parameters, this problem

is called parametric regression. Otherwise it is called non-

W fs H #9:2011 —09 30 f&E H 5 :2012 - 04 - 16
EFE A BEHE(1969 —), L, WA, BiL, BTN
AT

parametric regression (MARS and fuzzy clustering) .

For each regression model, the question must be
asked ;how we can get the model, built on finite amount of
data, capture the concept underlying the data after learning?
This question is about the generalization performance, which
is closely related to several well-known problems in the
statistics and machine learning literature, such as the
structural risk minimization (SRM)™ | the bias variance

1 and the over-fitting phenomena. Loosely

dilemma
speaking, a model, built up on finite amount of training
data, generalizes the best if the right tradeoff is found
between the training accuracy and the “capacity” of the
model set from which the model is chosen. On the hand, a
low “capacity” model sel may not contain any model that
fits the training data well. On the other hand, too much
freedom may eventually generate a model behaving perfectly
on training data and poorly on generalization.

In statistical learning literature, the Vapnik-Chervone-
nikis (VC) theory™®! provides the general measure of model
set complexity, and gives associated bounds on generalization.
SVM is directly theoretical product when VC theory is

applied to classification problem (similar for regression

6

XHE: ET SVM B R R EH T 51

problem) . By assigning leaming procedure to a quadratic
programming to get global minimize on a convex set, SVM
reduces not only empirical risk but also VG dimension to
get good generalization performance.

The SVM algorithm usually depends on several parameters-
learning parameters and kernel parameters. These parameters
also affect the performance of SVM. We present here
technique that allows to deal with a large number parame-

ters thus to improve function regression performance.

1 VC theory and Support Vector Machines

For gentle tutorials, we refer interested readers to
Burges™ and Smola et al'®. More exhaustive treatments
can be found in the book by Vapnik™'.

1.1 VC Theory

Let’s consider two-class classification problem of
assigning class label y = { + 1, — 1} to input vector X e
R". We give a set of training samples {(x, %,), -,
(x,7,)I CR" x { +1, =1} that are drawn independently
from some unknown cumulative probability distribution
P(x,y). The leamning task is formulated as finding a function
f:R"—{ +1, -1} that “best” approximates the mapping
generating the training set. In order to make learning
feasible, we need to specify a function H, from which a
function is chosen.

An ideal measure of generalization performance for a

selected function f is expected risk defined as R, ,,, (f)

= J’ - 1}I[f(,o#y}(x,y)clP(x,y). Where 1,(z) is an
i+, =

indicator function such that I, (z) =1 for all z € 4, and
I1,(z) =0 for all z ¢ A. Unfortunately, this is more an
elegant way of writing the error probability than practical
usefulness because P (x,y) is usually unknown. However,
there is family of bounds on the expected risk, which demon-
strates fundamental principle of building function with good
generalization. Here we present one result from the VC theory
due to Vapnik and Chervonenkis; given a set of [training
samples and function space H, with probability 1 — 5, for any f
€ H the expected risk is bounded above by

2Ly 1
h(1+h) ln4

Ryt () <Roy(£) + l (1)

for any distribution P(X,y) on R" x { +1, — 1}. Here

R, (f) is called the empirical risk (or training error), b

is a non-negative integer called the VC dimension. The VC

dimension is a measure of the capacity of a { +1, -1} -

valued function space. Given a training set of size I,
(1) demonstrates a strategy to control expected risk by
controlling two quantities; the empirical risk and the VC
dimension. There are similar results for function regression.
1.2 Support Vector Machines

Let {(x,,5,), % (x,7)} CR*"x{ +1, =1} bea
training set. The SV approach tries to find a canonical
hyperplane{ X e R": < W,X > +b =0, We R", b e R},
that maximally separates two classes of training samples.
Here { +, -) is an inner product in R". The corresponding
decision function f;R"—{ +1, —1}is then given by f{X) =
sgn((W, X) +b). Consideration that the training set may
not be linearly separable, the optimal decision function is

found by solving the following quadratic program
1

minimize J(W, &) = %[W, W] +C zfl (2)
i=1

yi(<WaXi> +b) 21 —gi,gizo,izl’...,

I, where & = [£, ++, £,]" are slack variables introduced to

subject to

allow to for the possibility of misclassification of training
samples, C >0 is some constant.

In order to minimize (2) relate to our ultimate goal of
optimizing the generalization, we need to introduce a theorem
about VC dimension of canonical hyperplanes, which is
stated as follows. For a given set of ! training samples, let
R be the radius of the smallest ball containing all [training
samples, and A C R” x R be the set of coefficients of
canonical hyperplanes defined on the training set. The
VC dimension h of the function space H = {f(X) =
san([W,X] +b):(W,b) eA, | W] <A XeR"} is
bounded above by h<min(R*A*, n) +1.

Thus to minimize in (2) amounts to minimize the VC

dimension of the function space H, therefore the second

:
term of the bound (1).On the other hand, Z £, 1s upper
=1

bound on the number of misclassification on the training
set, thus controls the empirical risk term in (1).For an
adequate positive constant C, minimizing (2), can indeed
decrease the upper bound on the expected risk.

Applying the Karush-Kuhn-Tucker complementarity

condition, we can show that a W, which minimize (2),

1
can be written as W = Z ¥, X,. This is called the dual
=1 t

representation of W. An X, with nonzero «; is called
support vector. Let S be the index set of support

vectors, then the optimal decision function becomes

f(X) = Sgn(zéyiai<xvxi> +b) (3)

52 Bt 5 & #

520%

Where the coefficients can be found by solving the
dual problem of (2) .

1

1
maximize w(a@) = Z o, — % Otiajyi}’j<Xan> (4)
i=1 1

ij=

i
Cza =0,i=1,--1 and Zaiyi =0.
i=1

i

subject to

The decision boundary given by (3) is a hyperplane
in R". More complex decision surfaces can be generated by
employing a nonlinear mapping ¢:R*—F to map the data
into a new feature space F (usually has dimension higher
than n), and solving the same optimization problem in F, i.
e., find the maximal separating hyperplane in F. Note that
in (4) never appears isolated but always in the form of
inner product (X,, X). This implies that there is no need to
evaluate the nonlinear mapping as long as we know the
inner product if any given X, Z € R". So for computational
purposes, instead of defining @: R* — F explicitly, a
function K:R" x R* R is introduced to directly define an
inner product in F,i.e., K(X,X;) = ($(X,), (X)),
where (+, -),is an inner product in F,and ¢ is a
nonlinear mapping induced by K. Such a function K is also
called the Mercer kernel. Substituting K(X,, X;) for (X, X,)

in (4) produces a new optimization problem
1

1
maximize w(a@) =) «, - % o007, K(X, X)) (5)
i=1 1

ij=
subjectto C =, =20,i =1,-, /], and iaiyi = 0.

Solving it forex gives a decision functi:ri of the form

AX) = Sgn(ZsyiaiK(X, X)) +b) (6)

whose decision bound;y is a hyperplane in F, and

translates to nonlinear boundaries in the original space.

The SV approach can also be applied to regression
1

problem by replace > £, term in (2) with a new loss
i=1

1
term ZLS(XL., ¥, f) and adjusting the constraints
i=1

accordingly. L°(X, y,, f) is a linear g-insensitive loss
function defined as L(X,y,f) = (|y-f(X)]|-
)\ 150t (Xs 9. /)5 i e., only errors falling outside
the interval[— &, + &]counts. It was shown (Critianini

& Taylor, 2000) that the function minimizing (2) with

the new loss term has a form'”

i

Z) :ZaiK(Z7Xi) +b (7)

i=1

To find the coefficients we have to solve the

following quadratic program

I 1 I
max w(@) = > ya,-e> |al- %Z o, K(X, X))
i=1 i=1 Lj=1

subject to

1
Czaq=-Ci=1,--1and Zai =0.
i=1

A detailed discussion on generalization performance

of SV function regression can be found'®’.
2 Gradient Descent Optimization Approach

2.1 General description

The SVM algorithm usually depends on several
parameters ; learning parameters (C and &) and kernel
parameters, which appear in kernel function K(X, Z). We
can change these parameters to get better performance (for
time limit, only kernel parameters are considered). For
example we will see how to use radial basis function

kernels (RBF) with many different scaling factors (o)
2
as input dimensions; K(X, Z) = exp(- z (96‘27:‘))
i ag;
0-"

The usual approach is to consider ¢ =g, = +++ =
and to try to find the best value for g. Indeed, when no a
priori knowledge is available about the meaning of the
attributes, the only choice is use spherical kemels (i. e.,
give same weight to each attribute). But one may expect
that there is a better choice for shape of the kernel since
many realworld databases contain attributes of very different
natures. There may thus exist more appropriate scaling factors
that give the right weight to the right features.

Usual methods for choosing parameters, based on
exhaustive search become intractable as soon as the number
of parameters exceeds two. Gradient descent algorithm is a
common used method in nonlinear optimization when we
know analytical expression of cost or error function with
multiple parameters, which are independent variables of cost
or error function. Here we propose a minimax approach;
maximize the w (@) over the hyperplane coefficients and
minimize an estimate of the generalization error over the
set of kernel parameters based on gradient descent
approach. This can be achieved by the following iterative
procedure ;

1) Initialize kernel parameters o= [oy, **+, 0'n:|T;

2) Using a standard SVM algorithm, find the maximum
of the quadratic form w, &’ (o) = arg max w(e, o) ;

3) Update the parameter & such that generalization
error T is minimized using gradient descent method ;

4) Go to step 2) or stop when the minimum of 7 is
reached.

Solving step 3) requires estimating how T varies with

6

XHE: ET SVM B R R EH T 53

o. We will thus restrict ourselves to the case where kernel
function can be differentiated with respect to ¢. Since &’
depends implicitly on o, the total derivative of 7° with

respect to o is

o _ T’ T da.

= atined T
do, dJo, da o0,
where " =T(a’, o)and k=1,2, ---, n

Having computed the gradient, a way of performing

(8)

step 3) is to make a gradient step:o(k+1) =0 (k) -

nH,' %—Tﬂ Where 7 is positive learning factor, which is set
T

small and eventually decreasing. H, is Hessian matrix of T”.

It can also be calculated using DFP or BFGS method™

will consider two ways of assessing the generalization

error: validation error and estimate error.

2.2 Computing the gradient on validation error
Without loss of generality, we defined validation error

as sum squared error on validation data set:

T - —z<f<x @) -y (9)

where f(-)is function in (7), (Z,y,),j = 1, -

validation data set and X is training data set. Now we

., m, 1s

write out the formula of derivative of T with respect to o.

1) First part of (8).

;T.].; & fixed Z (X, Z, a o) _ij) afa(Tk) (10)
and
He (n-5)
oo, iZaK(X”Z) . (11)
where k=1, .-, n.

2) Second part of (8).

—T=i(f<x,z

0 a i , 0’) _yZ])

()
e (12)

L) o (1K, 2), KX 2), k(XK 2)] (13)

If a; =0, then ith item will be removed from the
vector. If there are n support vectors, this column vector is
1 X n vector.

For computing the derivative of a with respect to ¢ of
the kernel, we need an analytical formulation for a.
First, we suppose that the points, which are not support
vectors, are removed from train set. This assumption can
be done without any loss of generalization since removing

the point, which is not support vector, does not affect the

@
solution. If there are n support vectors, then H [b] =

K(X,X)
[v

n matrix, V is n x 1 vector which elements are all unity, ¥

][] = [(I;], where K; =K(X, Xj)is nx

is nx1 vector which contains support vectors’ function

values on training set. Then we have(a, b) =H ' (Y,0)".

d(a, b L 0H
i = A COUN(T
k
and
(x'k_x‘k)z
KX, X)——=— 0
ol | KA (15)
k
0 0

2.3 Computing the gradient on error estimate

It was shown that there are also some error bounds for
function regression for any probability distribution'”),
which is stated below ; consider performing regression with
linear function & on an inner product space X and fixed &
e R™. There exits a constant ¢, such that for any probabi-
lity distribution ¥ on X x R with support in a ball of radius
R around the origin, with probability 1 — n over ! random
examples S, the probability that a hypothesis w € ¥ has
output more than & away from its true value is bounded by

W1l 2 R +Ss

g(f)S%(1g°1 + lg%) where S is

the sum squared error on the training set S. In particular
we want to show how variations of the estimates relate to
variations of the test error rather than how their values are
related, so the item || w || 3R® + S is considered only
when computing the derivative of T.
Derivative of ||[W || 3R’
1
W5 = (W, W) => aoK(X,X) (16)

=1

JL7E - [23 (X, XD, =2 k(X 5] (17)

If @, =0, then ith item will be removed from the vector.
If there are n support vectors, this column vector is 1 x n

vector.

o K(X, X))

dLiE S CTRT D

a'k
It was shown that the radius of the smallest sphere
enclosing the train points can be achieved by solving
the following quadratic problem[g]

R = maxsz(X,,X) —ZIB,BK(XL,X) (19)

ij=1

Z:Bi =landB, =0 and
i=1

subject to

54 Bt 5 & #

520%

l aK(XL,X) !

=2 B -> BB

hj=1
where ﬁ maximizes the previous quadratic form.

6K(XL,X) (20)

a(|W| iR aC W2 2
(||a [)laﬁmdsz ClIwll2) . ||W||§‘9(R) (21)

T, do do,

a(|W| R a\w] 2
CWIR) o 2 IV 22)
o Ja
ACIWIRY) a(W] 3R) = AW 113) oa 3
o = o a fived T ()
k 3

Substitute (14), (21) and (22) into (23), we get
derivative of ||W | 2R’.

Derivative of Sg;

SE = 2 Z(f(x va «, 0') _yj)z (24)

The Sg; is defined on training set. The derivate of Sg;
with respect to o is the same as what we do in (2.2),
provided that we replace test set(m with

ijv yj)vjzlv) L

Zjv ij)vjzlv)
training set (

3 GA Optimization Approach

It is well known that gradient approach is very easily
trapped by local minimum when it is used for multivariable
optimization™. GA is a global gradient-free optimization,
so the GA also be used in this paper for contrasting with
gradient approach.

The GA is a stochastic global search method that mimics
the metaphor of natural biological evolution. GAs operate on a
population of potential solutions applying the principle of
survival of the fittest to produce (hopefully) better and
better approximations to a solution. At each generation, a
new set of approximations is created by the process of
selecting individuals according to their level of fitness in
the problem domain and breeding them together using
operators borrowed from natural genetics. This process
leads to the evolution of populations of individuals that are
better suited to the environment than the individuals that
they were created from, just as in natural adaptation.

Individuals, or current approximations, are encoded as
strings, chromosomes, composed of some alphabets, so that
the genotypes (chromosome values) are uniquely mapped
onto the decision variable domain. The most commonly
used representation in GAs is the binary alphabet {0, 1}.
The three major steps (operations) of GAs are reproduc-
tion, crossover, and mutation. Details of the process is in-
troduced as follows.

1) Code the variable(s) x,, %, **

-, into a population of

binary streams (v,,v,, **+) of length m,, with the population
size prespecified as p .

2) Calculate the fitness value e, (v,) for each
chromosome v, i =1, **-, p,..

3) Find the total fitness of the population
F=Yeu(n) (25)

4) Calculate the probability of a selection p, for each

chromosome v,, i =1, ---, p_,. ..

p, =t (26)

5) Calculate the cumulative probability ¢, for each

chromosome v,

@ =2p (27)

Then comes the reprodu(;tion process. Each time we
select a single chromosome for a new population in the
following way ; generate a random number r from the range
[0,1], if r <q,, then select the first chromosome v, ;otherwise
select the ith chromosome v, 2<<i<<p_, such that ¢, <r<
g.- In this way, some chromosomes whose p;, is relatively larger
will be selected more than once. This is intuitively right since
larger p, means larger fitness value, and those chromosomes
with smaller fitness value will gradually die off.

Next we apply the recombination operator, crossover, to
the individuals in the new population. Here, an important
parameter, probability of crossover, p, is introduced. It gives
us the expected number p, xp_. of chromosomes, which
undergo the crossover operation.

6) For each chromosome in the (new) population:
generate a random number r from the range [0,1].If r <
P.» select given chromosome for crossover.

7) Mate the selected chromosomes randomly: for each
pair of coupled chromosomes we generated a random integer
-,m —1](m is the number

of binary bits in each chromosome). The number ‘ pos’

number ‘pos’ from the range [1, -

indicates the position of the crossing point from where to
the end of the bit stream the binary bits of the chromosome
pair exchange.

8) Mutation. This operation is performed on a bit-by-
bit basis. The parameter p_, which is the probability of
mutation, is introduced here. Every bit (in all chromosomes in
the whole population) has an equal probability p,, of undergo
mutation, i. e., change from 0 to 1 or vice versa. We proceed
as follows ;for each bit in the current population generate a

random number r from the range[0, 1], if 7 <p,, mutate the bit.

6

XHE: ET SVM B R R EH T 55

Now, a new population is formed by the above three
operations ; reproduction, crossover, and mutation and is
ready for the next evaluation. This iterative process repeats

until some stop criteria are satisfied.
4 Experiments

4.1 Experiments setup

This section provides three examples to demonstrate
the performance of our approach. We tried to select
auto-matically the width o, of a RBF kernel,

" (% -2)"
(X, Z) = exp(=2 ———5) (28)
i=1 ag;
to get optimal solution for function regression.

The first experiment consists in finding the optimal
value of parameter o for approximating univariate function
sinc (x) , which has single independent variable. The
second experiment corresponds to optimize a single parameter
o =0, =0, for a function with two independent variables.
The third one is designed to optimize two parameters
(o, 0,) for the same function used in the second
experiment.

For time limits, we just designed some simple
situations to test our approach. We sampled some points for
the target function f; (X) evenly distributed over input
interval of interest with function values contaminated by
zero-mean Gaussian random noise to form training data
set. The test data set comprises other points uniformly
distributed over the same input interval with function
values also contaminated by the same zero-mean Gaussian
random noise, i. e. , ¥ = f, (X) + N(0,y*), where N is
zero-mean Gaussian noise with standard deviation y. We

define average error over validation set as

Ay = sqrt{z (f(X, Zj? a, o) - ij)z} (29)
and set up a criterioglto detect over-fitting from statistical
point of view:If A, >y, it is under-fitting;If A, =y, it is
perfect approximation;If A, <4, it is over-fitting. Because
this SYM not only approximates the true function f, (X)
but also takes noise into count.

We used the optimization toolbox of Matlab to perform
quadratic programming and other gradient descent
algorithm. It includes second order updates to improve the
convergence speed. Because gradient descent approach is
very easily trapped by local minimum, we repeated

optimization procedure from different initial points and

reserved the best one. For time limit, only gradient to

validation error is considered.

Before proceeding experiments, we do some setup for
GA algorithm. First we shall use binary codes for the
parameters ¢,. We use 10 bits to represent the parameter,
which is supposed to be in the range[o, , o, |, thus the
relation between the value of the parameter and the
corresponding binary string is o, = o, + decimal { binary
-0,)/(2° -1).

We shall define the fitness value, since the larger the

string) X (o
fitness value the better, and we want the approximation
error to be minimized, thus we define the reciprocal of the
error corresponding to each chromosome as the fitness
value of that chromosome. This corresponds to our intuition
that the smaller the approximation error, the better result
we get, that means larger fitness value we get. Further-
more, we select the generation number = 20, the p_, =
20, i. e., the population has 20 binary strings within which
we shall select the optimal one that maximize the fitness
value.
4.2 Experiments results and analysis

1) The first experiment.

The target function is sinc(x) withx e D=[-3, +3].
The train set contains 31 points which evenly distributed over
D and the test set has 169 points uniformly distributed over
the same interval. The noise added is N(0,0.05>). We set the
kernel parameter o~ € [0. 1, 5. 0]. The learning parameter C
and g belong to the set {1000, 10000, 100000} and the set
{0.01,0.05,0.1} respectively. We use “GD” denote gradient
descent method and “GA” for GA algorithm. The results are
shown in table 1.

®1 BAESBoHER
Table 1 Results by tuning parameter o

€

¢ 0.01 0.05 0.1
D 0.0514 0.0538 0. 0602
1000 (1.3938) (1.2439) (0.8518)
oA 0. 0604 0.0614 0. 0643
(1.1470) (0.5709) (1.9078)
D 0.0518 0.0528 0. 0602
10000 (1.7404) (1.5533) (0.8518)
oA 0. 0588 0. 0610 0.0613
(0.7509) (0.8064) (1.0756)
. 0. 0529 0.0514 0. 0602
100000 (1.5442) (1.8885) (0.8518)
oA 0.0554 0. 0563 0. 0598
(1.8045) (2.1579) (1.0453)

Note;In each eniry in this table, the value in bracket
is o and the other value is average error A;.
Besides, we also tune the parameters C and o simulta-

neously using GA algorithm. The results are shown in table 2.

56 Bt 5 & #

520%

R2 PRSP CMSH o WER
Table 2 Results by tuning parameters C and o

e 0.01 0.05 0.1
c 6047. 3 8307.4 7548.3
1. 6045 0.7936 0. 9053
Ayg 0. 0473 0. 0490 0. 0523

2) The second experiment.
The target function is
fr(X) =22 +x5 —5x,%, (30)
and XeD=[-2, +2] x[=2, +2]. The train set contains
81 points which evenly distributed over D and the test
set has 119 points uniformly distributed over the same
interval. The noise added is N(0, 0.05%). We set the kernel
parameter g € [0.1,5.0]. The leaming parameter C and &
belong to the set {1000, 10000, 100000} and the set {0.01,
0.05,0.1} respectively. The results are shown in table 3.
®3 F2RABER

Table 3 Results of the second experiment

€

C
0.01 0.05 0.1

oD 0.0532 0. 0529 0. 0594

1000 (1.8623) (2.9545) (2.9748)
oA 0.0941 0.1313 0.1739

(0.7392) (0.6903) (1.1530)
D 0. 0509 0. 0503 0.0591

10000 (2.3637) (2.9613) (3.6360)
cA 0. 0861 0. 1209 0. 1650

(0.7256) (1.1904) (0.3127)
oD 0.0545 0. 0507 0. 0646

100000 (2.3721) (3.6615) (2.3529)
cA 0. 0843 0. 1299 0.1570

(0.4093) (0.7764) (0.3927)

3) The third experiment.

The target function is (30)and XeD=[-2, +2] x
[-2, +2]. The train set contains 81 points which evenly
distributed over D and the test set has 119 points uniformly
distributed over the same interval. The noise added is N
(0,0.05%). We set the kernel parameters e [0.1,5.0] x
[0.1,5.0]. The learning parameter C and ¢ belong to the
set { 1000, 10000, 100000 | and the set {0. 01, 0.05,
0. 1} respectively. The results are shown in table 4.

F4 F3IXRAVBER
Table 4 Results of the third expriment

€

¢ 0.01 0.05 0.1
D 0.0529 0.0526 0. 0546
1000 (1.942,1.829) (2.992,2.915) (3.062,2.847)
cA 0. 0936 0.1295 0. 1606
(1.310,0.407) (0.957,0.508) (1.905,0.235)
oD 0. 0503 0. 0501 0.0519
10000 (2.512,2.274) (3.140,2.809) (4.568,4.097)
cA 0. 0837 0. 1206 0.1619
(1.996,0.890) (2.003,1.057) (0.591,0.106)
D 0. 0540 0.0504 0.0574
100000 (2.466,2.288) (3.091,2.845) (3.924,3.675)
oA 0.0824 0.1278 0. 1503

(1.297,1.068) (0.868,0.168) (1.035,1.133)

Remarks are as follows.

1) The values of A,; come from three experiments are
almost all bigger than 0. 05. So the SVMs gotten from
training are almost all under-fitting, except that two values
from table 2.

2) The values of A,; come from table 4 are smaller
than those in table 3. Since the data pairs may have different
natures. The results gotten from the situation in which there
reserves a kemel parameter for every attribute will be better
than those from the situation, which there is only one kernel
parameter for all attributes.

3) The learning parameter C is a measure of trade-off
between training error and generalization in table 2. If C is
too big, the penalty on training error will be very large, then
SVM tend to be overfit and validation error Ay will be big. If
C is too small, the penalty on training error will be very
small, then generalization of SVM will be poor and Ay will be
also big. It is very clear from results listed in table 3 and 4.
So there exits an optimal value for C such that training
error and genera-lization are all best.

4) The parameter g is a limit and error will be counted
into training error during training only when the error is
bigger than this limit. If this value is too big, i. e., the error
between SVM and true function is bigger, then A, is big. If
this value is too small, then SVM tend to be overfit and
validation error Ay is also big. It is verified with results in
table 3 and 4.

5) In table 1, when C is bigger and & is smaller, i.e.,
the penalty on training error is very large, then SVM tend to
be overfit and validation error A; is big. If & is too big, i.e.,
the error between S, and true function is bigger, then A,; is
big. That means that the results consist with the results in
table 3 and 4.

6) The differences of kernel parameters between
SVMs trained with different learning parameters are very
big. This means that SVM is very sensitive to learning
parameters, especially for &. Because with change of &, the
number of support vectors and which point is support
vector are altered correspondingly. The parameters of
kernel also change dramatically. So SVMs will be not very
robust.

7) The results gotten using GA algorithm is worse
than that using gradient descent approach. The reason is
that there has no enough time to run GA algorithm and

there has no enough physical memory to generate more

6

XHE: ET SVM B R R EH T 57

population for each generation as well. The GA algorithm
just guarantees that the result will be global optimization

as long as generation goes to infinite.
S5 Conclusion and Future Work

We have presented approach using gradient descent or
GA algorithm for automatically tuning the kernel parameters
of SVM to improve performance of the SVM. We tried to
explain the results on artificial data set from theoretical
point of view. It has shown that the results consist with
theoretical analysis. This approach can also be used as
feature selection. If ¢, is very large relative to other
g then this feature can be omitted without harming the
generalization.

In fact, all data set used in training process should be
training data, because all data are used in training a SVM-
quadratic programming for o, and gradient descent or GA
algorithm for o,. But the very interesting thing is that
over-fitting effect remains low.

In term of future research, we try to use this approach
on real world data set, and try to understand the phenomena

as well.
References

[1] VAPNIK V. Estimation of dependences based on empirical
Data[M]. New York ; Springer Verlag, 1982.

[2]

[3]

(4]

[5]

(6]

(7]

(8]

[9]

[10]

BARTLETT P L. For valid generalization, the size of the
weights is more Important than the size of the network
[M]//MOZER M C, JORDAN M T, Petsche T. Advances
in Neural Information Processing Systems. Cambridge,
MA : The MIT Press, 1997 :134-140.

GEMAN S, BINENESTOCK E, DOURSAT R. Neural networks
and the bias/variance dilemma[J]. Neural Computation,
1992,4(1) .1-58.

VAPNIK V. Statistical learning theory [M]. New York;
John Wiley and Sons, Inc, 1998.

BURGES C J C. A tutorial on support vector machine for
pattern recognition [J]. Data mining and knowledge
discovery, 1998, 2(2) :134-140.

SMOLA A J, SCHOLKOPF B. A tutorial on support vector
regression [D]. NeuroCOLT2 technical report NC2-TR-
1998-030. London ; Royal Holloway College, 1998.
CRISTTIANINI N, SHAWE-TAYLOR]. An introduction to
support vector machines and other kernel-based learning
methods [M]. Cambridge; Cambridge University Press,
2000.

KECMAN V. Learning and soft computing: Support vector
machines, neural networks, and fuzzy logic models [M].
Cambridge, MA ; The MIT Press, 2001.
CHAPELLE O, VAPNIK V, BOUSQUET O, et al. Choosing
multiple parameters for support vector machine [J].
Machine Learning, 2002, 46(1/2/3) ;131-159.

GEN M, CHENG R. Genetic algorithms and engineering
design[M]. New York:John Wiley & Sons, 1997.

(L4549)
[12] EWRE,EEZ, B4R, % FAMEMEIEEN
HARRAILT . OG54 ,2008,15(10) :5-9.

[13] PANNETIER B, BENAMEUR K, NIMIER V, et al. Ground
moving target tracking with road constraint [C]//Pro-
ceeding of Signal Processing, Sensor Fusion, and Target
Recognition XIII. Orlando ; SPIE Press, 2004 .138-149.
[14] SALMOND D, CLARK M, VINTER R, et al. Ground tar-
get modeling, tracking and prediction with road networks
[C]//Proc. of 10th International Conference on Informa-
tion Fusion. Quebec, Canada: Institution of Electronics
and Electronic Engineering Computer Society Press,
2007.1-8.

[15] ADAM M F, JOHN L C, TARUNRAJ S, et al. Ground tar-

get tracking using terrain information [C]//Proceeding of

(16]

(17]

[18]

10th International Conference on Information Fusion.
Quebec, Canada; Institution of Electronics and Electronic
Engineering Computer Society Press, 2007 :1-8.
DEWANDARU A, SAID A M, MATORI A N. A novel
map-matching algorithm to improve vehicle tracking system
accuracy [C]//Proceeding of International Conference
on Intelligent and Advanced Systems TEEE Press, 2007
177-181.

LIU F,ZHU S L, QI C H, et al. A novel adaptive map-
matching algorithm in vehicular navigation system[C]//
Proceeding of 7th International Conference on Fuzzy Sys-
tems and Knowledge Discovery. Yantai, China. IEEE
Press, 2010 :796-800.

TRV KB —. R B (L R4 PR A R DU B vk
[J]. P& A ,2010,32(3) :53-56.

