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Siamese tracking methods have recently drawn extensive attention due to their balanced accuracy and efficiency. 

However, most Siamese-based trackers use shallow backbone network, in which extracting high-level semantic features 

is difficult. When the appearance of distractors and targets is particularly similar, these methods may lead to tracking drift 

or even failure. Considering this deficiency, we propose a Siamese network with enriched semantics, named ESDT. First, 

a semantic enrichment module (SEM) comprising dilated convolution layers is designed to improve the classification 

capability of the siamese tracker. In addition, the target template is updated adaptively to cope with the target texture 

information changes caused by illumination and blur and further promote the tracking performance. Finally, exhaustive 

experimental analysis on the public datasets shows that the proposed algorithm outperforms several state-of-the-art al-

gorithms and could track the target stably despite disturbances. 
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Object tracking has always been a major topic in computer 

vision research and is widely used in various fields[1], such 

as intelligent monitoring, medical diagnosis, and military 

strike[1]. High-performance visual tracking algorithms with 

good tracking accuracy and efficiency are required by 

many applications. However, these algorithms remain 

challenging due to practical factors, such as scale variation, 

fast motion, occlusions, deformation, and background 

clutter[2]. 

The key to designing a tracker with outstanding 

performance is to select effective features and 

corresponding classifiers. Trackers based on Siamese 

networks[3-5] have recently drawn considerable attention 

due to their high speed and accuracy.  

Features from deep layers have strong semantic 

information and are invariant to object appearance changes, 

such as rotation and deformation of the target. Thus, these 

features are suitable for classifying different objects in the 

frame. Meanwhile, these semantic features are an ideal 

complement to appearance features learned in a similarity 

matching task. However, most Siamese trackers use 

shallow backbone networks, such as Refs.[6—8], in which 

extracting high-level semantic features is difficult. Thus, 

trackers have low robustness in complex scenarios where 

the target rapidly moves or the illumination changes. The 

tracking may drift or even fail when the distractors in the 

image are particularly similar to the target. In addition, 

most existing Siamese trackers use the target in the initial 

frame as the template and calculate the similarity between 

the subsequent frame tracking. However, these trackers use 

a fixed template, which could not adapt to appearance 

changes in the target.  

Considering the lack of deep features, Sa-Siam[9] utilizes 

the following two sets of Siamese networks: semantic and 

appearance branches. The response maps of superficial 

appearance and deep semantic branches are added in a 

certain proportion to obtain the final response graph and 

achieve feature fusion. This approach achieves effective 

performance but with remarkable speed drops. 

FlowTrack[10] uses optical flow motion information in 

Siamese networks to improve feature representation and 

tracking accuracy, which is computationally expensive and 

a rather complex system. 

Siamese visual tracking with enriched semantics and 

dynamic template is explored in this paper to achieve 

real-time tracking with high accuracy and robustness. 

Inspired by the state-of-the-art single-shot object detec-

tion with enriched semantics[11], an improved semantic 

enrichment network is proposed to enhance the semantic 

information of targets during visual tracking. This net-

work boosts the capability to distinguish foreground and 

semantic backgrounds of ESDT. In addition, target tem-

plates are updated adaptively in terms of the average 

peak-to-correlation energy (APCE)[12] update strategy, 

and the template learning rate is calculated on the basis of 

the average difference between the images. The main 

contributions of this study are listed as follows. 

The semantic enrichment module (SEM) is introduced
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into the Siamese network to enrich the semantic informa-

tion of the target features during tracking. These semantic 

features could guarantee robust tracking despite the dra-

matic changes in the appearance of the target. The com-

parison of convolutional features visualization used in 

SiamFC and ESDT are shown in Fig.1. The target tem-

plate is updated adaptively, and the template learning rate 

is calculated on the basis of the average difference be-

tween the images to learn the apparent changes in the 

target in the movement process. These appearance fea-

tures are an ideal complement to the semantic features. 

Several experiments are conducted on mainstream public 

datasets. The results show that the proposed tracker out-

performs several state-of-the-art algorithms and could 

track the target stably despite disturbances. 

 

 

 

 

             (a)                                 (b)                                   (c) 

Fig.1 Comparison of convolutional features visualiza-
tion used in SiamFC and ESDT (Different pixel colors 
indicate that the pixel belongs to different object 
categories): (a) Example images selected from Soccer, 
DragonBaby and MountainBike sequences; (b) Ex-
tracted features of the input image by convolutional 
layers in SiamFC; (c) Semantic enriched features used 
in the later stages for ESDT 
 

The proposed tracking method is comprehensively 

presented in this section. First, the different characteristics 

between the features from shallow and deep convolutional 

layers are analyzed for visual tracking. Then, the semantic 

enrichment model mainly comprising dilated convolution 

layers is presented. Subsequently, the template update 

strategy is introduced. 

SiamFC calculates similar matching images with the 

offline training and does not require online learning. Thus, 

this calculation can achieve excellent effects in real-time. 

The use of full convolutional networks achieves unre-

stricted input image size. Target features are extracted 

through the convolutional network with shared parameters. 

Finally, the output feature graphs are cross-correlated to 

calculate the response map as  

f(Z, X)=g(φ(Z), φ(X)) ,                                                  (1) 

where g(·) presents the cross-correlation function, and 

φ(·) represents the features extracted by the convolution 

network. Z and X are used to represent the input sample 

image and the search image, respectively. After calculat-

ing the cross-correlation score, the formula shown as 

Eq.(2) is used to calculate the loss function 

1
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SiamFC uses the AlexNet network[6], in which ex-

tracting high-level semantic features is difficult and target 

template updating is ignored. This deficiency leads to low 

robustness of trackers in complex scenarios when the 

target moves rapidly, the background of the target is 

similar to the foreground, or the illumination changes. 

Thus, SEM is proposed, and the update scheme is pre-

sented to achieve robust and accurate tracking. 

The structure of the SEM network is shown in Fig.2. 

The SEM mainly comprises four dilated convolution 

layers[13] with 3×3 kernel size. The dilated convolution 

layer introduced the dilation rate into the ordinary con-

volution layer as a new parameter. The dilation rate de-

fines the distance between the values during data proc-

essing of the convolution kernel. Considering maintaining 

the number of convolutional layers or the amount of 

network computation, the use of dilated convolution can 

enlarge the receptive field of the convolution kernel and 

reduce the complexity of the network model fundamen-

tally. By contrast, the dilated convolution layer can ag-

gregate the multiscale context information of the target 

flexibly.  

 

Fig.2 Structure of the SEM network which generates a 
semantically meaningful feature map Z to activate 
input X to be X′ which is then used in the network for 
tracking 

 

The first three dilated convolutional layers have a dila-

tion rate of 2, and the last dilated convolutional layer has a 

dilation rate of 4. Another 1×1 convolutional layer is then 

deployed to generate G(X) RC×H×W, where C represents 

the number of channels, H and W define the height and 

width of the feature map. G(X) is the intermediate result 

used to generate semantic meaningful feature map as  

Z=H(G(X)) RC×H×W  .                                                       (3) 

The semantic meaningful feature map Z is then used to 

activate the feature map X by element-wise multiplication 

as  

 X′=XʘZ ,                                                                                  (4) 

where X′ is the semantically activated low-level detection
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feature map, which conveys basic visual patterns and 

high-level semantic information. X′ replaces the original X 

in the template branch for object tracking. 

In the Siamese network, the target in the initial frame is 

used as the template, and the subsequent tracking is cal-

culated with the target template of the initial frame to 

estimate the regional feature similarity between the two 

frames. However, the target deforms and the illumination 

changes due to the rapid movement of the target. Thus, the 

tracking may fail when the template is not updated. The 

APCE referred by LCMF[12] is introduced in this paper as 

the tracking quality evaluation to stimulate the detector 

performance preferably in the tracking process. APCE is 

defined as  
2
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where Fmax, Fmin and Fw,h denote the maximum, minimum, 

and the (w, h) location response value on the response map, 

respectively. When the APCE score of the response map 

of frame t is higher than the set threshold, the target area zt 

is clipped and inputted to the feature extraction network, 

and the target features of the frame are obtained. Then, the 

area is weighted with the previous t−1 frame template by 

adaptive learning rate. 

φt
*=(1−η)·φ*

t−1+η·φ(zt),                                                (6) 

where φ*
t−1 represents the features extracted by the con-

volution network of frame t−1,φ(zt) is the features of the 

target area zt and φt
* define the new feature which com-

puted by Eq.(6). The learning rate should be dynamically 

adjusted in accordance with the target changes. A small 

learning rate is set at this time to ensure tracking stability. 

When the target appearance dramatically changes, an 

extensive learning rate should be set to update the model 

rapidly. The target change of two adjacent frames is 

measured by calculating the average difference of two 

adjacent frames. 

In the M×N image, the pixel size is denoted by Pi,j. The 

average difference between the images of frames t and t−1 

can be obtained by  

, 1

,
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��
� � .                                                   (7) 

When d<3, a low learning rate η=0.025 is set; when 3≤d<8, 

a moderate learning rate η=0.05 is set; when d≥8, a high 

learning rate η=0.1 is set. This adaptive piece-wise learn-

ing rate method ensures the robustness of the improved 

algorithm in tracking complex scenarios. The pipeline of 

the proposed ESDT tracker is shown in Fig.3. 

This framework comprises a general CNN feature 

backbone network, an SEM, and a template update mod-

ule. The pre-trained VGG-19 network is used as φ to 

extract target features. The semantic information of ex-

tracted features is then enriched by SEM. The target 

template is updated adaptively after the target position is 

predicted to track the target robustly despite the dramatic 

changes in the appearance of the target. 

First, a square area in the template is cropped in terms 

of the target center location p and the target scale (w, h). 

The length of square side sz=(w+2p)×(h+2p), where 

p=(w+h)/4 is the context margin. Then, this margin is 

multiplied by the scale factor s, and the template image is 

placed as 127×127×3. s satisfies (w+2p)×s(h+2p)=127. 

 

 

Fig.3 Network architecture of the proposed ESDT 
tracker 
 

The search region of the current frame is obtained. The 

region of interest is determined in terms of the center 

position pt-1 of the last frame. The length of the side of 

region of interest (ROI) is sx=(sz+2×pd)×s. The ROI image 

blocks are used as candidate samples to be placed as 

255×255×3. 

ILSVC-2015[14] is used to train the ESDT network and 

conduct testing on other benchmarks to avoid training and 

testing on the same dataset. ILSVC-2015 has many targets 

occupying the entire frame that is uncommon in 

real-world tracking tasks. Thus, 2800 ILSVC-2015 video 

sequences are selected, and 4 000 training clips are ran-

domly generated, with each clip containing 10 successive 

frames.   

The three-scale SiamFC is used as the pre-trained net-

work to save training time, and the parameters in the 

pre-trained network are utilized as the initial values of the 

training parameters. The training method uses the sto-

chastic gradient descent (SGD) method. The batch size of 

the training is set to 8, the number of times the data set is 

trained through the network is set to 50, and the number of 

samples for each training is set to 53 200. The total 

number of training steps is then set to 332 500 steps by 

st=e×n/bs, where st represents the total number of training 

steps, e is the total number of training, n is the sample 

number of each training, and bs is the batch size. The 

output training loss for every 10 steps of training is set 

after the total number of training steps is determined. The 

loss function is defined as l=Σlog(1+e-y×f), and this func-

tion is used for each batch of training samples, where l 
represents the loss of each batch of training samples, y 

represents the sample value, and f is the result of the
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output score map. After debugging, the weight decay of 

the training network is set to 0.000 5, the momentum is set 

to 0.9, and the learning rate is set to 0.000 1. Meanwhile, 

SGD is used to update the parameters of each training 

sample. 

The proposed tracker experiment is implemented on 

a PC with Intel Core i7-9750 CPU (3.6 GHz), NVIDIA 

RTX2060 GPU, and 16 GB of memory. Several experi-

ments are conducted to evaluate the SiamES tracker 

against numerous outstanding trackers on OTB2015[15] 

and VOT2017[16] benchmarks. Algorithm 1 shows the 

proposed tracking algorithm. 

Public dataset OTB2015[15] exhibits 100 sequences 

with 11 attribute labels, including illumination variation, 

occlusion, deformation, scale variation, and background 

clutter. OTB2015 is used in the experiment for perform-

ance evaluation. The effect of algorithms is verified and 

examined through quantitative and qualitative analyses. 

Subsequently, seven representative and outstanding algo-

rithms are selected for comparison. These algorithms are 

listed as follows: SiamRPN[17], SiamFC[5], 

DaSiamRPN[18], Sa_Siam[9], CFNet[19], ECO-HC[20], and 

BACF[21]. The original parameter settings of the algo-

rithms are retained to ensure fairness.  

The precision and success plots are used to evaluate the 

tracking algorithms comprehensively. Fig.4 illustrates the 

comparative results of the one-plot evaluation (OPE) over 

all the 100 sequences of OTB2015. The figure shows that 

the proposed method performs efficiently. 

 

 

 
Fig.4 (a) Precision and (b) success plots of OPE for 
eight outstanding trackers on the OTB-2015 benchmark 

ESDT outperforms all the seven trackers in the 

precision and success plots of OPE. In the OPE success 

plot, the area under the curve (AUC) of the proposed 

approach is 0.661, which is higher than that of the baseline 

tracker SiamFC by 6.1%. In the OPE precision plot, the 

proposed tracker gains a precision score of 0.869, which 

exceeds those of SiamFC[5] and Sa_Siam[9] by 9.8% and 

0.5%, respectively.  

In addition to the precision and success rates, tracking 

speed is an important evaluation index. The speed of the 

tracker reflects tracker use in real-time tracking. Tab.1 

shows the comparative results in terms of average frame 

per second (fps). ESDT achieves a speed of 78 fps, which 

is slower than the baseline tracker SiamFC[5] with 86 fps. 

However, ESDT can still satisfy real-time tracking. 

 

Tab.1 Average speed comparison of tracking algo-
rithms 

Tracker ECO-HC Sa_Siam SiamFC SiamRPN ESDT 

Fps 60 50 86 160 78 

 

The accuracy and robustness of the algorithm can be 

intuitively demonstrated through qualitative analysis. 

Fig.5 shows the five selected sub-datasets, which address 

different challenging aspects of tracking, and four repre-

sentative and good performance approaches, namely 

ECO-HC[20], Sa_Siam[9], CFnet[19], and SiamFC[5], to test 

the proposed method. 

 

 

 

 

 
—: ESDT, —: SiamFC, —: CFNet, —: Sa_Siam, —: ECO-HC  

Fig.5 Tracking results of the OTB-2015 dataset (From 
top to bottom: FaceOcc, Tiger, Liquor, Sylvester) 

 

The “FaceOcc” sequence tracks the head of a person. 

The target is small and goes through various complex 

scales and occlusion. The graph shows that Sa_Siam[9], 

SiamFC[5], CFNet[19], and ESDT can perform stead track-

ing. However, ECO-HC[20] cannot adaptively change the 

box size when the man lowers his face. However, ESDT is 

optimal in terms of tracking accuracy. In the “Liquor” 

sequences, the scales and appearances of the object 
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change during the tracking process. Only ESDT and 

Sa_Siam can accurately locate the targets throughout the 

entire sequence. CFNet[19], SiamFC[5], and ECO-HC[20] 

lost the target. Illumination seriously changes in the se-

quence “Sylvester.” Some trackers lost the object when 

the illumination near the target considerably changed. 

However, the other methods, including ESDT, can still 

accurately track the object. The “Tiger” sequences dem-

onstrate that CFNet[19] and ECO-HC[20] lost the object. 

Although the object is frequently out of view during the 

entire process, ESDT can accurately locate nearly all the 

objects. 

The VOT2017[16] dataset contains 60 short sequences 

annotated with six different attributes. In VOT bench-

marks, the accuracy (A), robustness (R), and expected 

average overlap (EAO) are used to evaluate the tracker 

performance. The trackers are ranked according to the 

EAO scores.  

ESDT is compared with the top 9 trackers in the 

VOT2017[16]: C-COT[22], CSRDCF[23], SiamDCF[24], 

MCCT[25], ECO[25], CFCF[26], CFWCR[27], SiamFC[5], and 

SiamRPN[17]. Tab.2 shows that the proposed tracker 

achieves the highest robustness score while maintaining 

competitive A and EAO values. The EAO of ESDT is only 

0.8% lower than that of CFWCR, which is first in rank. 

Although ESDT has a lower EAO score than CFWCR, 

ESDT is more robust than CFWCR due to the use of SEM. 

In addition, the accuracy score of EDST is lower than that 

of MCCT, which uses multi-cue correlation filters. How-

ever, the average overlap score of the proposed method is 

high. These results demonstrate that ESDT can achieve a 

balanced tracking performance in terms of reliability, 

accuracy, and robustness. SiamFC is our baseline tracker, 

the A, R and EAO criterion scores increased when SEM 

and template update strategy adopted.  

 

Tab.2 Tracker performance comparison on VOT2017 
(The bold number represents the best result, and the 
underlined one represents the second-best result.) 

Trackers A R EAO 
C-COT 

CSRDCF 

0.494 

0.491 

0.318 

0.356 

0.267 

0.256 

SiamDCF 

MCCT 

ECO 

CFCF 

CFWCR 

SiamRPN 

SiamFC 

0.500 

0.525 
0.483 

0.509 

0.484 

0.490 

0.500 

0.473 

0.323 

0.276 

0.281 

0.267 

0.460 

0.591 

0.249 

0.270 

0.280 

0.286 

0.303 
0.244 

0.188 

ESDT 0.513 0.264 0.295 

 

To verify the contributions of each component in our 

algorithm, the variations of our approach are implemented 

and evaluated. SiamSEM means using ESDT without 

template update module and SiamDT means ESDT without 

semantic enrichment module. SiamSEM, SiamDT and the 

baseline tracker SiamFC are evaluated on the benchmark of 

OTB-2015 and VOT-2017 as shown in Fig.6 and Tab.3. 

Compared with SiamFC, SiamSEM use semantic en-

riched features for tracking, while the precision growth 

5.6% measured by the AUC score as shown in Fig.6. The 

overall ESDT achieves a gain of 9.8% in AUC score 

compared with SiamFC. According to Tab.3, SiamSEM 

and SiamDT are compared with the baseline tracker 

SiamFC, improving respectively 2.7%, 7.1% in terms of 

EAO, which proves the effectiveness of the SEM and 

template update scheme in tracking. 

 

 
Fig.6 Ablation experiments on the OTB-2015 
benchmark 

 
Tab.3 Ablation experiments on VOT2017 

Trackers A R EAO 

SiamFC 0.500 0.591 0.188 

SiamDT 0.506 0.415 0.215 

SiamSEM 0.511 0.364 0.259 

ESDT 0.513 0.264 0.295 

 

A robust Siamese network with enriched semantics and 

dynamic templates is proposed in this study by introduc-

ing SEM. The SEM enriches the semantic information of 

features without using the deep networks and improves 

the classification capability of ESDT effectively. Fur-

thermore, the target template is updated adaptively to cope 

with the change in target texture information caused by 

illumination and blur. Finally, experiments on mainstream 

public datasets are conducted to prove the effectiveness of 

the algorithm. 
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