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In this paper, a method is proposed to obtain the analytical solutions of Bloch equations with phase term by using the 
elementary matrix transform. The effect of the initial phase on the components of Bloch vector is discussed. The result 
shows that by considering the initial phase of the input pulse, the amplitudes of the in-phase component and the 
in-quadrature component can be dynamically controlled, meanwhile the population inversion is almost immune to the 
initial phase. Additionally, the signal electric field expressions of the phase effect of two-pulse photon echo (2PE) is 
derived, which is also modulated by the initial phase. 
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Photon echo (PE) technology has important applications 
in quantum information storage and processing[1]. 2PE is 
generally applied to quantum communication protocols[2]. 
From gas to rare earth-doped ions crystal (REIC), PE 
technology can be used in different systems and has re-
markable performance in efficiency[3], which can be used 
as a new source of excitation for quantum protocols. In 
the traditional PE sequences, the rephase π-pulse can be 
controlled by the additional parameters such as the vari-
able electric[4], magnetic field[5], the AC-Stark shift or 
light-shift effect[6] and a fast chirp pulse[7]. These 
schemes have been applied in different fields and 
achieved good results, but so far there has been no report 
on the modulation of the initial phase of the PE. The 
main reason is that the analytical solution of Bloch equa-
tion with phase term is quite complex, and the phase 
term is generally ignored, including some numerical iter-
ations[8]. 

In the previous work, the signal phase is sometimes 
mentioned in Bloch equations, such as in Ref.[9], spatial 
phase was introduced in Bloch equations to investigate 
effect of the angled beams on PE, and linear frequency 
chirped as phase function was introduced in Bloch equa-
tion to program the spatial-spectral grating in Ref.[10]. 

In this paper, the main contents are as follows. Firstly, 
based on elementary matrix transform, a method to solve 
the analytical solutions of Bloch equations with phase 
term is presented, then we analyze the effect of the initial 
phase on each component of Bloch vector. The expres-

sion of 2PE with different initial phases is derived and 
the effects of the phases of each pulse on the 2PE is ana-
lyzed. 

We start with the Bloch equations with phase term, the 
Bloch equations in rotating frame can be written as[11] 
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where u(Δ, t), v(Δ, t), w(Δ, t) are the components of 
Bloch vector B(Δ, t). u(Δ, t) and v(Δ, t), respectively, 
which are called in-phase components and in-quadrature 
components of Bloch vector. These components are re-
lated to the diploe moment, while w(Δ, t) is population 
inversion. Δ is the detuning, and φ is the initial phase of 
the input pulse. Ω is known as Rabi frequency. 

Eq. (1) can be expressed in the form of partial differ-
ential equation ∂B(Δ, t)/∂t=AB(Δ, t), where A is the coef-
ficient matrix of B(t). In order to solve etA, we first write 
the expression of A as  
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Then the solution to a system of linear ordinary dif-
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ferential equations can always be written as: 
B(Δ ,  t)=etAB(Δ ,  0),                    (3) 

where B(Δ, 0)=(u(Δ, 0), v(Δ, 0), w(Δ, 0),) denotes the 
initial value of Bloch vector. 

The elementary matrix etA is the key point to solve 
Eq.(2). The expression of etA is written as 

etA=a1(t)I+a2(t)A+a3(t)A2.                 (4) 
The coefficient ai(t) (i=1, 2, 3) is determined by func-

tions   it
if tλ e  and         2

1 2 3i i iT t a t a t a t     , 
where λi (i=1, 2, 3) is eigenvalue of coefficient matrix A. 
From Eq.(3), two functions are satisfied as 

f(tλi)=T(tλi).                             (5) 
By putting every eigenvalue of A into this equation, 

then we can get it ai(t). 
By letting |λI−A|=0,we get three eigenvalues of the 

eigenvalue matrix. From Eq.(2) we can get a set of ei-
genvalues λ1=0, 2 2

2 =i λ Ω Δ  and 2 2
3 i   Ω . 

We define that 2 2     ,where Ω' represents the 
generalized Rabi frequency. Then the eigenvalues can be 
rewritten in the form of set as 
λi ={0, iΩ', −iΩ'}, i=1, 2, 3.                   (6) 
By substituting Eq.(6) of eigenvalues value into Eq.(5), 

we can get the coefficient ai about time t as  
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By substituting Eq.(7) into Eq.(3), the elementary so-
lution matrix etA is expressed as: 
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Finally, we substitute Eq.(8) into Eq.(3), the expansion 
form of the analytical solution of Bloch equation with 
phase term is expressed as 
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Eqs.(9)—(11) is the analytic solutions of Bloch equa-

tion with phase term. The effect of phase on each com-
ponent of Bloch vector at different detuning will be ana-
lyzed in the following. 

If the initial state of the system starts at ground state, 
this state corresponds to the initial value of the Bloch 
vector expressed as B(Δ, 0)=(0, 0, −1), by substituting 
such initial value conditions into Eqs.(9)—(11). In Fig.1, 
each component of Bloch vector are plotted versus the 
different input pulse’s phases for various line shape, in 
which the phases φ are equal to 0, π/6 and π/2, the time 
of input pulse t=T=200 ns, Rabi frequency Ω=π/2T, de-
tuning Δ=0. 

 

 
Fig.1 Profiles of (a) in-phase u, (b) in-quadrature v and 
(c) population inversion w with different phase values 
when Δ=0 

 
From Fig.1(a) and (b), the amplitudes of the in-phase 

component u(Δ=0, t) and the in-quadrature component 
v(Δ=0, t) are respectively sinφ and cosφ when the detun-
ing is 0. If phase φ=0, then u(Δ=0, t)≡0,this situation 
widely discussed in the previous paper[12]. Meanwhile, as 
shown in Fig.1(c), the population inversion is not affected 
by the phase, which is in line with the existing theory. 

When Δ≠0, the simulation conditions are the same as 
Fig.1. We simulate the components of Bloch vector, as 
shown in Fig.2. 

 

 
Fig.2 Profiles of (a) in-phase u, (b) in-quadrature v and 
(c) population inversion w with different phase values 
when Δ≠0 

 
From Fig.2(a) and (b), the phase can also affect the 

amplitude of in-phase component u(Δ, t) and the 
in-quadrature component v(Δ, t) when Δ≠0, but their am-
plitudes are not satisfied with sinφ and cosφ. As shown in 
Fig.2(c), the population inversion w(Δ, t) is not affected 
as well. 

Photon echoes occur in the inhomogeneous broaden-
ing of the rephase phenomenon[13], when the motion of 
Bloch vector is reversed after the initial dephasing of the 
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atomic dipole   t .If the transition dipole moment 
℘12 is same for all atoms ,then the total mean dipole 
moment  t  produced by all N atoms is[13] 
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. .,c c                                     (12) 
where N is considered as a group of inhomogeneously 
broadened two-level atoms distributed over a region of 
space that is small compared with the wavelength. By an 
inhomogeneously broadened system we mean one in 
which different atoms have different detuning Δ with 
some distribution g(Δ) centered on Δ=0 is expressed as 
Gaussian distribution[14] 
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where T2 is inhomogeneous life. In a solid, the inhomo-
geneous broadening is generally the result of variations 
in the field of crystal lattice, which affects different at-
oms differently. In this paper, we consider that the inho-
mogeneous lifetime T2=1 μs. 

The signal electric field Es(t) of medium is directly 
proportional to the total dipole moment  t  of the 
medium[16]. The photon echo is generated when the am-
plitude of the dipole moment Es(t) reaches its maximum. 
The signal electric field equation derived from Max-
well-Bloch equation is[15]: 

       012

0

i , , e ( )
4

i t
s

KL NE t u t v t g d   


 




  

   

. .,c c                                     (14) 
where k is wave number, L is the length of medium, ε0 is 
dielectric constant of vacuum. By combining equations 
Eqs.(12) and Eq.(14), signal electric field satisfy the re-

lationship that    
i
2

s e



 E t t , it is shown that the 

phase delay of the electric field is π/2 over the phase 
delay of the dipole moment. 

To simplify the discussion, we assume that the shapes 
of the pulses are rectangular. The duration of the two 
pulses is equal, and the amplitude of the second pulse is 
twice that of the first pulse. Two pulses are π pulse and 
π/2 pulse, respectively and satisfy the equations 

1
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t

t
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
  . The initial phases of the 

two pulses are φ1 and φ2. The sequence and phase of 
pulses are shown in Fig.3. 
 

 
Fig.3 Schematic diagram of 2PE 

Under the condition of ultra-short wave condition, we 
assume that Ω>>Δ, so we can get the following approx-
imation Ω'≈Ω and the terms of order Δ/Ω can be ne-
glected. In this paper, we assume that the width of all 
input pulses is t=50 ns. 

If the atoms starts in the ground state at time t=t1 with 
its initial value of Bloch vector B(Δ, 0)=(0, 0, −1), after 
the first pulse, from Eqs.(9)—(11), we can get that the 
components of Bloch vector are 

 1 1, sin( )u t t   ,                       (15) 
 1 1, cos( )v t t    ,                     (16) 
 1, 0w t t   .                           (17) 

When t>t1', the external field is zero, so that Ω=0, the 
Bloch vector will rotate freely without an external field, 
and its rotation frequency is Δ, that is: 
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Assuming the initial time t1=0, we now substitute from 
Eqs. (18)—(20) into Eq.(14) and obtain the expression at 
t2>t>t1' 
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The Fourier transform of the spectral distribution g(Δ) 
is certain autocorrelation function, that we denote by G(t), 
its expression is 
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This shows that the macroscopic dipole moment of the 
collective atomic system oscillates at the center frequen-
cy ω0, and its initial phase receives the phase modulation 
of the first pulse. When t>t1', G(t−t1') become very small 
and the photon echo doesn’t occur. 

We simulate the process of free induction decay, the 
duration of first pulse t=t1'−t1=50 ns ,as shown in the 
Fig.4, the different initial phases φ1 of the first pulse are 
equal to 0, π/4 and π/2. 
 

 
Fig.4 Free induction decay with different phases 

 
As can be seen from Fig.4, as the phase increases, the 

waveform of the signal electric field shifts to the left 
compared with the waveform at φ1=0, which is consistent 
with Eq.(21). 
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Eqs.(15)—(17) as the initial value of Eqs.(18)—(20), 
we get the results: 

   2 1 2 1, sin( )u t t t t       ,              (23) 
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 2, 0w t t   .                         (25) 
At the time t2, the system receives the second pulse, 

which phase is φ2. By substituting Eqs.(23)—(25) into 
Eqs.(9)—(11), we get the value of each component of 
Bloch vector at the end of the pulse at t2': 
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By substituting Eqs.(26) and (27) into Eqs.(15)—(17), 

we can get the time-domain expression of t>t2' moment 
and signal electric field as 
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So, we get the expression of electric field. When 
t=2(t2−t1'), the function G(t−2(t2−t1')) get the maximum 
value And decay quickly after t>2(t2−t1').The initial 
phase of 2PE is modulated by the first pulse and the 
second pulse, which is expressed as −φ1+2φ2. 

We simulated the 2PE. The simulation of the ampli-
tude in time domain is shown in Fig.5. Under the simula-
tion conditions, we set the first decay duration 
t=2(t2−t1')=10 μs and we can obtain the time that when 
the amplitude of the 2PE gets its maximum is 
techo=2(t2−t1')=20 μs. We give the simulation diagram of 
Es(t) from the time t=t1=0.  

 

 
Fig.5 Simulation of 2PE: (a) The signal electric field 
waveform of 2PE, where the maximum amplitude of 
2PE signal is generated at t≈20 μs; (b) Time sequence 

and area of input pulses of 2PE, where the first pulse 
is input at t1=0, the second pulse is input at 
t2=10.05 μs, and the pulse width of both pulses is 
50 ns 

 
By changing the phases of the input pulses, we can 

simulate different waveforms of the signal electric field. 
The influence of different initial phases on 2PE is shown 
in the Fig.6. 

 

 
Fig.6 Profiles of 2PE with (a) φ1=0, π/4, π/2 and φ2=0 
and (b) φ1=0 and φ2=0, π/8, π/4, where the amount of 
phase change of the first pulse is twice of that of the 
second one, i.e. φ1=2φ2 

 

As shown in Fig.6(a), we assume that the initial phase 
of the second pulse is φ2=0, and the initial phase of the 
first pulse is φ1=0, π/4, π/2. As for Fig.6(c), on the con-
trary, we assume that the initial phase of the first pulse is 
φ1=0, and the initial phase of the second pulse is φ2=0, 
π/8, π/4. For Fig.6(b), as phase φ1 increases, the wave-
form shifts to the right. For Fig.6(c), as phase φ2 increas-
es, the waveform shifts to the left, and they have the 
same pulse interval, which is consistent with Eq.(29). 

In this paper, a method is proposed to obtain the ana-
lytical solutions of Bloch equations with phase term by 
using the elementary matrix etA transform. The effect of 
the initial phase on the components of Bloch vector is 
discussed. The result shows that by considering the ini-
tial phase of the input pulse, the amplitudes of in-phase 
component and in-quadrature component can be dynam-
ically controlled. When the detuning is 0, their ampli-
tudes are of sinφ and cosφ oscillations, while the popula-
tion inversion is almost immune to the initial phase. Ad-
ditionally, the signal electric field expressions including 
the phase effect of 2PE is derived, which is modulated by 
the initial phases. For 2PE, its initial phases are equal to 
−φ1+2φ2 .The work shows that the initial phases of 2PE 
can be fully controlled by the phases of input pulses. 
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