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For the correlation filtering (CF) tracking algorithm is not robust enough and cannot adapt to scale changes, target oc-

clusion (OCC) and other complex interferences. We introduce a CF tracking algorithm based on superpixel and mul-

tifeature fusion (CFSMF). First, superpixel segmentation and clustering are performed for the target and its surrounding 

environment in the initial frame. Then, a target appearance is reconstructed through block segmentation-based over-

lapping analysis to remove redundant information. On this basis, the histogram of gradient (HOG) and HSI color fea-

tures of the target sub-block are extracted to interact with their respective position filters. Accordingly, the target posi-

tion is determined by the weighted fusion of the response values. In the scale prediction stage, we independently train a 

scale filter with a multiscale pyramid constructed at the estimated target location. The object scale is estimated in terms 

of the filter response, thereby enabling the tracking algorithm to adapt to the object scale change. Lastly, we introduce an 

OCC criterion for determining whether to update the model or not. Compared with the classical tracking algorithm 

kernelized correlation filters (KCF), the proposed algorithm boosts the tracking success rate by 20% and tracking ac-

curacy by 15.9%. Our algorithm in this paper could track the target stably even when the target is occluded and its scale 

changes. 1 
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Object tracking has always been a major topic in computer 
vision research and is widely used in various fields[1]. The 
existing tracking algorithms can be divided into 
discriminative[2-4] and generative trackers[5-7] according to 
the manner by which surface models are built.  

The correlation filtering (CF) tracking method[6-9] has 
gained extensive attention from numerous researchers due 
to its ability to convert the calculation from time to 
frequency domain for fast learning and detection. The 
initial CF algorithms only used grayscale features, such as 
MOSSE[10] and nuclear cycle structure tracker[11]. In 
Ref.[12], they proposed kernelized correlation filters 
(KCF), which used histogram of gradient (HOG) features 
instead of the original grayscale ones. This algorithm 
improves tracking accuracy and ensures the tracking speed 
in the meantime. However, the KCF algorithm has a single 
feature and cannot adapt to the object scale change. In 
Ref.[13] they used color name (CN) features in the CF 
framework and reduced the color features from 11D to 2D 
to ensure the tracking speed. In Ref.[14], an adaptive 
feature selection method was proposed by analyzing the 
tracking performance of different features. A suitable 
feature would be selected to predict the target position. In 

Ref.[15], a classifier combining a template with histogram 
features was proposed to train color and HOG features and 
merge the extracted ones.  

Most tracking algorithms use high-level surface 
structural information, low-level clues, or both to represent 
and match targets. Accordingly, the research and 
application of mid-level visual clues during tracking are 
ignored.  

The block-based tracking method[9-11] has recently 
received increasing attention due to its robustness for 
partial occlusion. Wang et al[16] proposed the superpixel 
tracking algorithm, which maximizes the superpixel 
characteristics and the background information around the 
target. Accordingly, the tracker has good robustness to deal 
with heavy occlusion and out-of-plane rotation. However, 
the performance under heterogeneous lighting conditions is 
unsatisfactory.   

The DSST[17] treats visual tracking as two independent 
problems and applies separate discriminating CFs for 
translation and scale estimations. This method first uses the 
HOG feature to train a translation CF for detecting the 
translation of the target center. Then, a scale CF is trained to 
search the optimal scale on the multiscale spatial pyramid. 
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LCT[18] predicts the scale through a complete search of the 
target’s external pyramid and estimates the translation by 
modeling the temporal context correlation. SRDCF[19] 
makes use of a negative Gaussian penalty weight on the 
filter parameters to overcome the boundary effect. Deep 
SRDCF[20] introduces CNN features into SRDCF[19] and 
achieves good results. C-COT[21] further converts feature 
maps of different resolutions into a continuous spatial 
domain to achieve better accuracy. The subsequent ECO[22] 
improves the C-COT[21] tracker in terms of performance 
and efficiency. 

In this study, we propose a CF algorithm based on a 
superpixel block and multi-feature to cope with the 
aforementioned complex scene, particularly to achieve 
real-time tracking with high accuracy and robustness. Fig.1 
shows the framework of the tracking algorithm proposed in 
this article.  

In this work, we use the simple linear iterative clus-
tering algorithm (SLIC)[23], which is dull and computa-
tionally fast, for superpixel segmentation.  

First, the initial target location and search area are de-
fined as {center, size} and {center, search_size}, respec-
tively, by using the first frame. The extremely large or 
small search area could adversely affect the completion of

subsequent tracking tasks. On this basis, we set the search 
area size to 1.5 times that of the target size. The initial 
superpixel clustering center is assumed to be k, and the 
distance between adjacent superpixel is /S N k . Then, 
similar to the SLIC superpixel segmentation process, the 
k-means algorithm is used for iterative optimization in the 
pixel neighborhood until the error converges.  

We calculate the gradient of each pixel in the clustering 
center neighborhood of S×S and move the center to the 
place with the minimum gradient. Afterward, we seg-
mentation the superpixel labels in the neighborhood of 
2S×2S and recalculate the distance from each pixel to the 
cluster center, as shown in Eq.(1):  
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where l, a and b are the color values of the pixel points, x 
and y are the ordinates of the pixels, Nc denotes the 
maximum distance of color space, and Ns is the maximum 
spatial distance within the class.  

 
Fig.1 Framework of the CFSMF 

 

Lastly, we solve the problem through iteration until the 
error converged. Then, we eliminate the small-sized su-
perpixel through combination with the operation of en-
hanced connectivity. These steps were undertaken to 
complete superpixel segmentation. Fig.2 shows the effect 
of superpixel segmentation. The green bounding box 
represents the search region, and the yellow one is the 
target region. 

We analyze the superpixel overlap degree after seg-
mentation to remove redundant information further. In 
each superpixel block, we denote the pixels located with 

 

Fig.2 Diagram of superpixel segmentation 
 

in the initial target range as the target pixels Ni
+; otherwise, 

they are denoted as background pixels Ni
-. Thus, the 

overlap degree Oi of each superpixel block in the search 
area is defined as  
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If the superpixel overlap value is less than 0.5, the su-
perpixel block is the central part of the background rather 
than the target. We exclude this type of superpixel blocks 
and only keep the central part of the superpixel blocks 
belonging to the target mode.  

Then we extract HSI color features and HOG features 
based on superpixel segmentation to represent the infor-
mation of the target. The two features complement each 
other and jointly achieve the feature expression of the 
tracking target. In this work, we use the weighted adaptive 
method to achieve multi-feature fusion and input the two 
features into the CF for training as Eq.(3) and Eq.(4): 

HSI HSI

HSI HSI

ˆˆ ˆ( )  x zf z k ,                                                 (3) 

HOG HOG

HOG HOG
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We can obtain position-related filters  HSI HSI
ˆx̂  and 

 HOG HOG
ˆx̂  . The corresponding maximum output of the 

positive-dependent filter is the predicted position of the 
target and is shown as Eq.(5) and Eq.(6): 
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    The distance and proximity of the training sample to the 
target location depend on the size of the response value of 
the associated filter. When the sample is close to the target, 
the filter response is high, the distance is great, and the 
response is small. In this case, the weighted coefficient of 
feature fusion is determined on the basis of the difference 
between the two features and the corresponding filter. We 
can express the position prediction weight factor δ as 
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where the range values of δ is [0,1]. Eq.(8) can obtain the 
final predicted position of the target: 

HSI HOG(1 )  p δp p   ,                                             (8) 

where pHSI and pHOG are the output values of the related 
filters for HSI and HOG features, respectively.  

Because the target scale changes between two frames 
are often smaller than the target position changes during 
tracking, we predict the target position and then train a 
scale filter to estimate the target scale change based on the 
predicted target position. The specific steps are as follows. 
    In frame t with M×N target size, a scale pyramid image 
block xS is created around the predicted target location by 

     xS=αnM×αnN,                                                             (9) 

where α is the scale factor set to 1.02, and S is the size of 
the scale filter. The dimensions of the scale pyramid 
blocks with different sizes become uniform and are con-
sistent with those of the scale filter by utilizing bilinear 
interpolation. We choose the HOG feature as the feature 

representation of xS to guarantee the object feature shape. 
Similar to Eq.(2), we can obtain the coefficient matrix of 
scale filter s̂  through  
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After constructing the scale filter in frame t, we can pre-
dict the target scale in frame t+1. We extract the image 
blocks of scale pyramids with the target location predicted 
by frame t as the center. The HOG features are extracted 
to form the sample set zS to be tested. The formula is 
shown as  

    
s s

s s s
ˆ ˆ ˆ( )  x zf z k α  ,                                                    (11) 

where fS(zS) is the regression function of the scale filter. 
The scale value corresponding to the maximum value of 
fS(zS) is the scale transformation of the frame. The scale 
filter parameters are updated via linear interpolation.  
    The learning rate should be dynamically adjusted in 
accordance with the target changes. We set a small 
learning rate at this time to ensure tracking stability. When 
the target dramatically changes, an extensive learning rate 
should be set to update the model rapidly. In this work, we 
measure the target change of two adjacent frames by 
calculating the average difference of two adjacent frames.  
In the M×N image, the pixel size is denoted by Iij. The 
average difference between the images of frames t and t−1 
can be obtained by  
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When d<3, we set a low learning rate η=0.025. When 
3≤d<8, we set a moderate learning rate η=0.05. When d≥8, 
we set a high learning rate η=0.1. This adaptive 
piece-wise learning rate method makes the improved 
algorithm robust in tracking complex scenarios.  
    We introduce an OCC detection mechanism to deter-
mine whether the model is updated or not by judging the 
degree of oscillation of the output response value. This 
task is performed to improve the anti-occlusion ability of 
the algorithm and prevent the tracking drift when the 
model interferes with the discrimination ability of the 
model by learning substantial background information. 
The OCC detection mechanism is as  
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where Fmax represents the corresponding maximum value 
of the CF output,  Fmin represents the corresponding 
minimum value of the CF output, and Fm,n represents the 
value of any position in the correlation output confidence 
graph. If the value of ω suddenly decreases, the tracking 
target has OCC, and the model is not updated at this 
time.  

The public dataset OTB-2015[24] exhibits 100 se-
quences with 11 attribute labels, including illumination 
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variation (IV), OCC, DEF, SV, and background clutter 
(BC). In our experiment, we use OTB-2015 for perfor-
mance evaluation. The computer hardware used in the 
experiment is configured with Intel Core i7-6700HQ CPU 
(2.6 GHz) and 16 GB of memory. The software platform 
is MATLAB 2017a. Subsequently, we select nine repre-
sentative and outstanding CF-based algorithms for com-
parison. These algorithms are listed as follows: KCF[12], 

DSST[17], LCT[18], SRDCF[25], DeepSRDCF[26], SAMF[19], 
HDT[20], Staple[27] and CF2[28]. The original parameter 
settings of the algorithms are retained to ensure fairness.  
  We use the precision and success plots to evaluate the 

above-mentioned tracking algorithms. Fig.3 illustrates the 
comparison results of OPE, SRE, and TRE over all the 
100 sequences of OTB-100. Fig.3 shows that the pro-
posed method in this study performs efficiently.  

 

 
Fig.3 Precision and success plots of OPE, SRE and TRE for 10 trackers on the OTB-2015 benchmark 

 
It could be seen that the CFSMF outperforms all the 

trackers in OPE, SRE and TRE. The OPE results show the 
one-pass evaluation. It can be seen that our approach 
ranks first in precision and success rates. In the OPE 
success plot, the AUC of our approach is 0.832, which is 
higher than that of the KCF approach by 20.09%. In the 
OPE precision plot, our tracker gains a precision score of 
0.899, which exceeds the KCF by 15.9%.  

In addition to the precision and success rates, the 
tracking speed is also an important evaluation index. The 
tracker’s speed reflects whether the tracker can be used in 

real-time tracking. Tab.1 shows the comparison result in 
terms of average frame per second (fps). We run all the 
algorithms in the table under our experimental environ-
ment to ensure fairness. The table demonstrates that 
CFSMF achieves a speed of 54 fps, which ranks second 
among all 10 algorithms and the upper and lower speed 
bounds of CFSMF are 74 fps and 31 fps, respectively. The 
tracker requires a running speed of ≥25 fps to achieve 
real-time tracking. The table manifests that CFSMF is 
suitable for real-time tracking. 

 

Tab.1 Speed comparison of tracking algorithms on the OTB-2015 dataset 

Tracker HDT LCT DSST SAMF Staple SRDCF Deep SRDCF KCF CF2 CFSMF 

Ave. (fps) 10 25 41 17 65 3 1 195 11 54 

 

    Fig.4 shows attribute analytical plots of BC, IV, OCC, 
and SV. The results of these annotated sequences can help 
evaluate the advantages and weaknesses of the tracking 
methods. The performance of our tracking approach under 
different challenging situations is experimentally tested. 

Fig.4 shows the OPE precision and success plots. CFSMF 
shows optimal performance on all four attributes and 
achieves higher rates compared with the baseline KCF 
tracker on each attribute. Fig.4 presents that our approach 
optimally performs in precision and success plots. This 
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finding suggests that the CFSMF can effectively cope with 
IV, OCC and SV situations. In the BC attribute precision 

plots, CFSMF achieves the third-best performance, which 
is close to the best performance CF2. 

 

 

 

Fig.4 Attribute analysis with precision and success plots 

 

The accuracy and robustness of the algorithm can be 
intuitively demonstrated through qualitative analysis. In                         
Fig.5, we select four representative and good performance 
approaches, namely, KCF, SRDCF, Staple, and Struck, to 
test our method. The “Freeman4” sequence tracks the 
head of a person who freely walks in a cluttered classroom. 
The target is small and goes through various complex 
scales and similar occlusion. The graph shows that KCF, 
Staple, and CFSMF can steadily track. However, CFSMF 
is optimal in terms of tracking accuracy. The SRDCF and 
Struck have lost the object. In the “CarScale” sequence, 
the KCF and Struck accuracies are insufficiently high 
because they cannot adapt to scale changes even though 
all algorithms have successfully tracked the target. In the 
“Couple” sequences, the scales and appearances of the 
object change during the tracking process. Although sev-
eral trackers can accurately locate the targets throughout 
the entire sequence, the bounding box sizes of KCF and 
Struck cannot change as much as the ground truth in this 
sequence. By contrast, our approach can sufficiently 
change the size of its bounding box size during tracking. 
In the “Car2” sequences, all trackers, including CFSMF, 
can accurately track the targets throughout the entire 
sequence.  

In view of the problems of tracking failure due to 
complex situations, such as target occlusion and scale 
change, a new method for modeling target appearance is 
proposed. Object appearance is reconstructed by using 
superpixel segmentation and clustering, which improve 
computational efficiency and have strong adaptability. 

-CFSMF-Staple-KCF-SRDCF-Struck 

Fig.5 Tracking results of the dataset OTB-2015 (From 

top to bottom: Freeman4, CarScale, Couple, Car2) 

 

The HOG and HSI color features are then extracted in  
accordance with their complementary features and fused 
to characterize the target. These approaches make the 
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algorithm robust when coping with light changes and 
target deformation. Target position prediction is com-
pleted under the framework of the previous CF, and the 
tracking accuracy of the position filter is improved. An 
independent scale-dependent filter is used to achieve the 
adaptation of the target scale change. The final combina-
tion of the response values of the position and scale filters 
completes the target tracking. 
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