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In order to get a satisfactory image fusion effect, getting a focus map is very necessary and usually difficult to finish. 
In this paper, we address this problem with a half weighted gradient approach, aiming to obtain a direct mapping be-
tween focus map and source images. Based on the advantages of multi-scale weighted gradient, while abandoning the 
shortcomings of weighted gradient, a new multi-focus image fusion method called half weighted gradient and 
self-similarity (HWGSS) is proposed. Experimental results validate that the proposed algorithm can obtain 
state-of-the-art fusion performance in terms of both qualitative and quantitative evaluations. 
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In recent years, various image fusion algorithms have 
been proposed. The image fusion algorithm based on the 
transform domain usually converts the source image to 
another feature domain, where the source image can be 
effectively fused. The most popular transform domain 
fusion algorithms are based on multi-scale transform 
(MST). Some representative examples include the La-
placian pyramid (LP)[1], the morphological pyramid 
(MP)[2], the discrete wavelet transform (DWT)[3], the 
dual-tree complex wavelet transform (DTCWT)[4] and 
the non-subsampled contourlet transform (NSCT)[5]. 
These methods share a common three-step framework, 
namely, decomposition, fusion and reconstruction.  

Block-based fusion strategy decomposes the source 
images into blocks and each pair of blocks is fused with 
a designed activity level measurement like sum- modi-
fied-Laplacian (SML)[6]. Obviously, the size of the block 
has a great impact on the quality of the fusion results. 
From the earliest block-based approach[7], now many 
improved algorithms have emerged, such as adaptive 
block-based methods[8] using a differential evolution 
algorithm to obtain a fixed optimal block size. For the 
recently introduced method based on the quad-tree[9], the 
images can be adaptively divided into blocks of different 
sizes, according to the image content. Another type of 
spatial domain methods[10] is based on image segmenta-
tion by sharing the similar idea of block-based methods, 
but the fusion quality of these methods relies heavily on 
the segmentation accuracy. 

To overcome the above-mentioned drawbacks, several 

state-of-the-art pixel-based image fusion algorithms have 
been proposed, such as guided filtering[11] and dense 
SIFT[12]. Guided filtering and dense SIFT firstly generate 
the fusion map by detecting the focused pixels from each 
source image, then, based on the modified decision map, 
the final fused image is obtained by selecting the pixels 
in the focus areas. A multi-focus image fusion method 
based on multi-scale weighted gradient is competitive 
with the most current state-of-the-art approaches intro-
duced in Ref.[13]. Although these new algorithms can 
improve the visual quality of fused images, they may 
lose some of the original image information due to inac-
curate fusion decision maps.  

In this paper, we address this problem with a half 
weighted gradient and self-similarity (HWGSS) ap-
proach, aiming to obtain a direct mapping between focus 
map and source images. Experimental results validate 
that the proposed algorithm can obtain state-of-the-art 
fusion performance in terms of both qualitative and 
quantitative evaluations. 

The most critical issue in gradient-based fusion is to 
capture the geometry of the fused image by combining 
the gradient from a different image. Let I(x, y): Ω→[1, 
M]N be a multi-valued image with N gray-level compo-
nents I(x, y), n=1,...N, where ΩÎR2 denotes the image 
domain. The coordinate (x, y) represents the gray value 
of a pixel at the source image. In order to describe the 
gradient field information of multi-valued images I, the 
difference in Euclidean space ΩÎRN is expressed as fol-
lows:  
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The characteristic value λ of the structural tensor G 
represents the rate of change of the multi-valued image at 
a certain point. Simultaneously, G is usually called the 
structure tensor. It is worth noting that G is a nonnega-
tive matrix whose eigenvalues are real and nonnegative, 
and they reflect the change in the image at a given point. 
The maximum rate of change is given by the largest ei-
genvalue λ+, and the smallest eigenvalue λ- represents the 
minimum rate of change. The eigenvectors θ+ and θ- give 
the corresponding direction of the change.  

For a gray-level image I(x, y), we can easily calculate 
that 2 , 0Il l+ -= Ñ = , and the eigenvector θ lies in the 
same direction with sI. Thus, the gradient of each 
component of a multi-valued image can be merged by 
using the largest eigenvalue λ+ and the corresponding 
eigenvector θ+ that are derived from the structure tensor 
G. More specifically, the magnitude of the merged gra-

dient I
Ù

Ñ  is calculated by I l
Ù

+Ñ = and the direction 

of I
Ù

Ñ  is specified by θ+. However, it should be noticed 
that the sign of the eigenvector is not uniquely specified 
in the matrix G. Indeed, the squared norm of dI in Eq.(2) 
achieves the same value in opposite directions. An effec-
tive solution to this problem is to find a reference gradi-
ent and make the direction of the merged gradient con-
sistent with the direction of the reference gradient. As a 
result, the sign of the eigenvector θ+ can be specified by 
sign(θ+·sIr), where sIr denotes the reference gradient. 
A simple choice of sIr would be the averaged gradient 
of all inputs[13].  

We assume that IF is the fused image. So far, all tradi-
tional gradient-based fusion methods reconstruct IF by 

making its gradient as close as possible to I
Ù

Ñ [13]. This 
will result in the following energy functions being mini-
mized.  
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subject to 0≤IF(x, y)≤M. Its first variation is derived as 
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ˆ2 divE I I Id = Ñ - D

. 
Thus, the fused image IF can be simply reconstructed 

by applying the gradient descent method with δE(IF)[12] 

or by solving the Poisson equation F div( )I I
Ù

D = Ñ , 
where ∆ is a Laplace operator.  

It is generally known that local image structure is 
closely related to the local gradient covariance. Consid-
ering a single-valued image I(x, y), the gradient covari-
ance matrix over an local window Wi is defined as fol-
lows: 
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where Ix(X) and Iy(X) denote the gradients along x and y 
directions at a given position X=(x, y). In order to obtain 
the representation of local image structure, we decom-
pose C through eigenvalue decomposition as follows: 
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The local image structure is then related to the eigen-
values of this matrix. If both s1 and s2 (square roots of the 
eigenvalues) are small, there is no significant change in 
the local region, so this local region is flat. Otherwise, 
the local region contains certain structural information. 
In particular, if one of s1 and s2 values is large and the 
other is small, the significant change only occurs in one 
direction, so a ridge or edge shaped structure is indicated; 
if both s1 and s2 are large, the structure of this local re-
gion is sharp in two orthogonal directions, and thus it 
indicates a corner. 

This approach is able to give a steady description of 
image structure which is robust to both blur and random 
noise. In our saliency measurement of local image struc-
ture, all the types of structures including ridge, edge and 
corner are concerned. Therefore, we define the image 
structure saliency Q as: 

2 2
1 2 1 2( ) ( )Q s s s sa= + + -  ,                (6) 

where α>−1. In the flat region the value of Q is very 
small. The more salient the local structure is, the larger 
the Q value becomes. As α is increased to 1, the shape of 
the contour becomes a quarter of a circle. Since 2

1s  and 
2
2s  are the two eigenvalues of matrix C, we can obtain 
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So, the sum of the eigenvalues reflects the sum of 
squares of the gradient magnitudes
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derived from the corner structure in W1, and 2
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non-zero eigenvalue for the edge structure in W2, the 
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squares of Q values for W1 and W2 are calculated by 
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By comparing the magnitudes of gradients for all pix-
els in W1 and W2, we can approximately obtain 
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Then we can obtain 
2 2

1 2 1 22(1 )Q Q s sa- = -  .                   (9) 
Thus, the corner structure achieves higher Q values 

when α<1, while the edge structure achieves relatively 
higher Q values when α>1. In order to take more account 
of the corner structures, we choose α=0.5 in this paper. 

For each input image In at a given point (x, y), we as-
sign a weight wn that represents the saliency of local im-
age structure by calculating the value of saliency Qn in a 
neighborhood of point (x, y). Then, the weighted struc-
ture tensor is computed as:  
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where wn is normalized by 
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Based on the structure saliency measure and the cor-
responding weighted structure tensor, we can obtain a 
weighted gradient-based fusion method. Similar to the 
fusion method with the structure tensor, in the proposed 
fusion method, the gradients of all input images are 
merged first with the weighted structure tensor Gw, and 
then the merged gradient is used to reconstruct the fused 
image through variation approach. 

As the multi-focus image includes both clear and un-
clear regions, the clear area fusion decision map in the 
fusion process is 1, while the unclear area fusion deci-
sion map is 0. Up to now, the state-of-the-art multi-focus 
image fusion is based on decision map.  

The adaptive region is generated using the shared sim-
ilarity of source images. The input images are first di-
vided into multiple overlapped square patches, and 

similar patches are searched[14]. 
Here, a shared self-similarity of source images is de-

fined as follows to generate an adaptive region of pixels 
for fusion. Given a reference patch PrÎRm×m and a region 
R(r)ÎRn×n centered at pixel r, the similarity of any can-
didate patch PqÎRm×m to the Pr is defined as 

r Fq qn P P= -  ,                           (11) 

where ·  denotes the Frobenius norm. By sorting the 
nq by the descending order for all the patches in this re-
gion, the most k similar patches to Pr are found and the 
collection of this patches is expressed as 

1 2
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kR q q qL r P P P= L . Similar patches shared by both 
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L  and BR

L  are 
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S
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where ( )S
RL r  is one of the adaptive regions for fusion, 

and ( )AR r  and ( )BR r denote the same region of source 
images. The locations and the number of similar patches 
of each adaptive region vary with the shared similarity of 
source images. 

The schematic diagram of our algorithm is shown in 
Fig.1. In this study, we mainly consider the situation that 
there are only two pre-registered source images. To deal 
with more than two multi-focus images, one can fuse 
them one by one in series. It can be seen from Fig.1 that 
our method consists of four steps: focus detection, initial 
segmentation, consistency verification and fusion. In the 
first step, the two source images are fed to an HWGSS 
model to output a score map, which contains the focus 
information of source images. Particularly, each coeffi-
cient in the score map indicates the focus property of a 
pair of corresponding patches from two source images. 
Then, a focus map with the same size of source images is 
obtained from the score map by averaging the overlap-
ping patches. In the second step, the focus map is seg-
mented into a binary map with a threshold of 0.5. In the 
third step, we refine the binary segmented map with a 
popular consistency verification strategy, namely, small 
region removal, to generate the final decision map. In the 
last step, the fused image is obtained with the final deci-
sion map using the pixel-wise weighted-average strategy. 

 

 
Fig.1 Schematic diagram of the proposed multi-focus image fusion algorithm 
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The outline of the proposed method is illustrated in 
Fig.2. First, adaptive regions are generated using image 
similarity information. Next, we combine with the half 
weighted gradient to measure the clarity in adaptive re-
gions. Finally, a pixel is fused based on decision map 
from source images. 

 

 

Fig.2 The framework of fusion method  
 

Step1: calculate the gradient weight of the image to be 
fused according to Eqs. (1) —(10). 

Step2: according to Eqs.(11) and (12), calculate the 
adaptive region of the image to be fused. 

Step3: at the edge of the gradient weight, the adaptive 
region is used to optimize it, and the initial decision map 
S is obtained. 

Step4: the decision map T is obtained by segmenting 
initial decision map S. 

Step5: use mathematical morphology to optimize T to 
get the final decision map D. 

Step6: use Eq.(14) to reconstruct the fused image. 
In order to get a more accurate decision map, initial 

decision map S needs to be further processed in this arti-
cle. Correspondingly, using a fixed threshold β=0.5 to 
segment S into binary segmented map T. The map T is 
given as follows:  

1, ( , ) 0.5
( , )

0, otherwise
S x y

T x y
>ì

= í
î

  .                (13)                               

From Fig.1, it can be seen that the binary map T may 
contain some misclassified pixels, and these error cate-
gories can be easily removed through the small area clear 
strategy. The fused feature map sometimes contains 
some very small holes. When this happens, we should 
also use morphological processing. 

Combined with the final fusion decision map D, the 
fused image F is obtained according to the pixel 
weighted average rule as follows: 

( , ) ( , ) ( , )F x y D x y A x y= +  
        (1 ( , )) ( , )D x y B x y-  .              (14) 
To verify the validity of the proposed HWGSS-based 

fusion algorithm, eight pairs of multi-focus images (in-
cluding colour images and greyscale images) are used in 
our experiments. The proposed fusion method is com-
pared with four state-of-the-art multi-focus image fusion 
methods, which are the MWGF[13], SSDI[14], DCNN[15], 
and DSIFT[12].  

Since the fused images are difficult to categorize be-
tween good and bad ones, to further prove the validity of 
the proposed model for multi-focus image fusion, we 
mainly compare the decision maps that are produced by a 
variety of methods. The comparison results of eight pairs 
of input source images are shown in Fig.3. The final de-
cision maps displayed in the fifth column of Fig.3 ob-
tained from the proposed method are very precise in the 
boundary, which results in higher visual quality fusion 
results shown in the last column of Fig.3. The accuracy 
of the decision map determines the quality of the fusion 
image, so it can be seen from the visual aspect of Fig.4 
that the fusion effect of the proposed method is better 
than that of other methods. 

 
  MWGF     SSDI     DCNN    DSIFT    Proposed  Fused image 

 

 

 

 

 

 
   (a)      (b)       (c)        (d)       (e)        (f) 

Fig.3 Five different ways to get the decision map ma-
trix D and the fusion image: (a) Lab; (b) Temple; (c) 
Seascape; (d) Book; (e) Desk; (f) Leopard 
 

 
Source A      Source B      MWGF       SSSDI 

 
 DCNN           DSIFT           Proposed 

Fig.4 The fusion results of five different algorithms 
 

  To prove the validity and practicability of the pro-
posed algorithm, the two indexes of mutual information 
MI and QAB/F are used as the objective evaluation meas-
ure of information fusion performance[16]. The objective 
performances on the fused images using the five fusion 
methods are listed in Tab.1, from which we observe that 
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the HWGSS-based method outperforms all of the other 
fusion methods, which further proves the validity of 
HWGSS for image fusion. At the same time, the time 
complexity of this paper is the least. It is very suitable 
for engineering applications. 
 
Tab.1 The comparison of MI, QAB/F values and time of 
five different algorithms  

  MWGF SSDI DCNN DSIFT Proposed 

Lab 
MI 8.061 8 8.141 2  8.600 8 8.520 1 8.867 1 

QAB/F 0.714 7 0.752 8  0.757 3 0.758 5 0.765 6 
Time 5.827 8 19.701 4 287.199 2 23.649 1 3.411 0 

Temple 
MI 5.965 5 7.089 6  6.889 5 7.351 4 7.433 7 

QAB/F 0.750 1 0.763 4  0.759 0 0.764 3 0.753 1 
Time 13.642 5 15.173 9 248.668 0 8.440 2 3.326 8 

Seascape 
MI 7.140 4 7.482 4  7.628 5 7.948 7 8.037 6 

QAB/F 0.705 9 0.711 0  0.711 3 0.712 6 0.712 5 
Time 11.467 1 11.117 6 179.488 4 5.909 2 2.709 7 

Book 
MI 8.236 8 8.400 8  8.779 6 8.662 3 8.312 5 

QAB/F 0.724 0 0.726 0  0.727 7 0.713 4 0.738 3 
Time 22.501 8 25.075 4 403.118 1 8.631 2 2.792 9 

Desk 
MI 7.911 5 7.539 9  8.043 8 8.216 5 8.895 8 

QAB/F 0.729 8 0.729 3  0.734 2 0.736 4 0.793 6 
Time 6.095 4 17.944 9 320.292 1 12.217 4 2.783 9 

Leopard MI 9.947 4 10.888 7 10.879 2 10.922 6 10.945 9 
QAB/F 0.817 5 0.817 1  0.797 3 0.806 9 0.824 4 
Time 3.661 1 11.213 9 172.759 7 3.235 7 2.013 5 

   
In this article, a new multi-focus image fusion method 

called HWGSS is proposed. We can experimentally ver-
ify that the focus/decision map obtained from the 

HWGSS is reliable, which can lead to high-quality fu-
sion results.  
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