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The Lorentz model and modified Debye model (MDM) parameters for Si0.6Ge0.4 are presented. A nonlinear optimiza-

tion algorithm is developed. The obtained parameters are used to determine the complex relative permittivity of 

Si0.6Ge0.4, and compared with the experimental data for validation. Finally the obtained parameters are used to analyze 

the properties of symmetric surface plasmon polariton (SPP) mode propagation in a dielectric-metal-dielectric (DMD) 

material constructed with silver (Ag) and Si0.6Ge0.4 for further verifying the extracted parameters. 
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Plasmonics has attracted a lot of research interest due to 

its ability to overcome the diffraction limit[1-3]. The in-

credible property of surface plasmon polariton (SPP) in-

dicates its potential applications in biosensing[4], Bragg 

reflectors[5], sub-wavelength imaging[6,7], metamaterials[8] 

and enhanced light absorption in solar cells[9,10].  

Plasmonic devices available at present face substantial 

challenge because of the losses encountered in the con-

stituent materials. These losses restrict the practical appli-

cations of the materials significantly. A lot of relative 

researches are going on in order to find out new plas-

monic materials that can support enhanced propagation of 

the SPP and provide better confinement for the SPP mode. 

P. R. West et al[11] reported a detailed analysis on differ-

ent plasmonic materials with motivation for choice of 

materials and important  aspects of fabrication. W. Guo et 

al[12] presented an analysis of symmetric SPP mode 

propagation in Ag/Al2O3/Ag waveguide. Herein, we re-

port the extraction of optimized parameters of a new di-

electric material Si0.6Ge0.4 for Lorentz model and modi-

fied Debye model (MDM), and provide a detailed analy-

sis of SPP mode propagation through Si0.6Ge0.4/Ag/Si0.6Ge0.4 

waveguide. We have developed a two-dimensional simu-

lation model based on finite-difference time-domain 

(FDTD) algorithm[13]. The parameters for both the models 

have been used separately to simulate the SPP mode 

propagation through the waveguide. We have also deter-

mined the same SPP mode propagation properties using 

analytical equations. The obtained results using both the 

methods have been compared and an excellent agreement 

can be found.  

The frequency dependent permittivity function of the 

single-pole Lorentz model is given by  
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where εr 
is the complex relative permittivity,  ε∞ 

is the 

infinite frequency relative permittivity, εs is the zero fre-

quency relative permittivity, j is the imaginary unit, δ is 

the damping coefficient, and ω0 is the frequency of the 

pole pair. It can be observed from Eq.(1) that single-pole 

Lorentz model can be described by four parameters of ε∞, 

εs, δ and ω0. These four parameters are independent and 

need to be optimized if we want to model any material 

using Lorentz model. 

The frequency dependent permittivity function of 

MDM is given by 
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where τ is the relaxation time. We can see from Eq.(2) 

that the MDM for dielectric material can be described by 

three parameters of ε∞, εs and τ. These three parameters 

need to be optimized in order to model any dielectric 

material using MDM. 

The used optimization algorithm is as follows. First 

we obtain the experimental values from the book of E. D. 

Palik[14] and use them to determine the complex relative 

permittivity for each material. Then the program varies 

the parameters which need to be optimized, and different 

combinations are tried to determine the complex relative 

permittivity. The square of the complex relative permit-

tivity obtained using the optimized parameters is sub-

tracted from the square of the complex relative permittiv-

ity obtained using experimental values. The squared dif-

ferential term is then compared with a predetermined 
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tolerance value which is close to zero, and the iteration 

goes on until the preset value. The flow chart is shown in 

Fig.1. 
 

 

Fig.1 Flow chart of the algorithm used for parameter 

extraction 
 

The variation of the modeling parameters is random. 

However, boundary limits are set so that the extracted 

parameters can meet the requirement of the FDTD 

method. Varying the modeling parameters in a random 

function is the most challenging part of the algorithm. If a 

linear method is used to vary the parameters, the compu-

tation time will be much higher. Since the variation is 

random, it takes less time to find a combination of values 

which produces the least squared difference. The bound-

ary conditions which need to be maintained for the MDM 

parameters and to be integrated in the FDTD algorithm 

are ε∞>1 and εs<ε∞.  

This algorithm is applicable for the single-pole model 

only. The obtained results will be inaccurate if it is used 

for parameter extraction of multiple-pole models. 

A two-dimensional simulation model has been devel-

oped based on FDTD[13] algorithm in order to simulate 

the Si0.6Ge0.4/Ag/Si0.6Ge0.4 waveguide. The original FDTD 

algorithm formulated by Yee doesn’t account for the fre-

quency dependent permittivity of the materials. Therefore, 

we have used the auxiliary differential equation (ADE)-

general FDTD algorithm in order to incorporate the fre-

quency dependent dispersion property of the materials. 

This algorithm can handle the case when there are materi-

als with different dispersion properties. The perfectly 

matched layer[15] is also used in order to avoid the reflec-

tion of incident wave from the boundaries. The Si0.6Ge0.4 

/Ag/ Si0.6Ge0.4 waveguide is used for simulation. The 

widths of the Ag layer and Si0.6Ge0.4  layer are taken as 60 

nm and 500 nm, respectively. The schematic diagram of 

the dielectric-metal-dielectric (DMD) waveguide for nu-

merical analysis is given in Fig.2. 

 

Fig.2 Schematic diagaram of the DMD waveguide used 

for the numerical analysis 
 

The step size is taken as Δx=2 nm, Δy=2 nm, and the 

time step is set as 
2 2

1 1
0.95t c

x y
Δ = +

Δ Δ
, where c is 

the speed of light in vacuum and taken as c=3×108 m/s. 

We find that it is sufficient to satisfy Courant stability 

condition[16].  

The optimized modeling parameters for both Lorentz 

model and MDM using our developed algorithm are pre-

sented in Tab.1. It can be observed from Tab.1 that a root 

mean square (RMS) deviation for Lorentz model is 0.15, 

and that for MDM is 0.3710, which both indicate the 

robustness and accuracy of our optimization algorithm.  
 

Tab.1 Optimized parameters of Si0.6Ge0.4 for single-

pole Lorentz model and MDM 

Parameter 
Single-pole Lor-

entz model 
MDM 

ε∞ (1.21)2 14.2996 

εs (3.59) 2 1.519 

δ (rad/s) 7.1×1010 N/A 

ω0 (rad/s) 5.3×1015 N/A 

τ (s) N/A 2.261 

Wavelength range (nm) 900–1300 900–1300 

RMS deviation 0.15 0.3710 

 

The complex relative permittivity for Si0.6Ge0.4 has 

been determined by using both the extracted parameters 

and the experimental values[14]. Then the real and imagi-

nary parts separated from the complex relative permittiv-

ity are presented in Fig.3. It is clearly seen from Fig.3 

that the real and imaginary parts of the complex relative 

permittivity obtained using extracted parameters agree 

very well with those obtained from the experimental val-

ues for both models[14].   

The SPP wavelength is given by 

'
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where λ0 is the free space wavelength, εd 
is the real part of 

the complex relative permittivity of dielectric and '

m
ε  is 

the real part of the complex relative permittivity of metal. 
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We calculate the SPP wavelength using both equation and 

simulation. The obtained results are then compared, and a 

very good agreement is found between the analytical and 

numerical results, which can be observed in Fig.4.  

 

 

(a) Lorentz model 

 

(b) MDM 

Fig.3 Real and imaginary parts of the complex rela-

tive permittivity for Si0.6Ge0.4 obtained using extracted 

parameters and experimental values for single-pole 

Lorentz model and MDM 

 

 

Fig.4 SPP wavelength calculated analytically and numeri-

cally 

 

The next property is the field penetration depth into Ag 

and Si0.6Ge0.4 layers. The penetration depths into dielectric 

and metal are given by  
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where k0=2π/λ0 is the wave-vector for light in free space. 

The field penetration depths into Ag and Si0.6Ge0.4 lay-

ers are determined by using the equations for different 

input signal wavelengths and the simulation for both 

single-pole Lorentz model and MDM. An excellent 

agreement is found between the results obtained using 

the two techniques which are presented in Fig.5. There-

fore, it is evident that our extracted parameters for 

Si0.6Ge0.4 for the two models are valid.  
 

 

(a) 

 

(b) 

Fig.5  Field penetration depths into (a) Ag layer and (b) 

Si0.6Ge0.4 layer calculated analytically and numerically 
 

The electric field strengths at different distances from 

the top surface of Ag/Si0.6Ge0.4 are given in Fig.6 for 

single-pole Lorentz model and in Fig.7 for MDM.  
 

 

(a) 
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(b) 

Fig.6 Electric field strength as a function of distance 

for single-pole Lorentz model in (a) Ag layer and (b) 

Si0.6Ge0.4 layer  
 

 
(a) 

 
(b) 

Fig.7 Electric field strength as a function of distance 

for MDM in  (a) Ag layer and (b) Si0.6Ge0.4 layer 
 

It can be observed from Figs.6 and 7 that the electric 

field strength decreases when we go further from the top 

surface of Ag/ Si0.6Ge0.4 into both Ag and Si0.6Ge0.4 lay- 

ers. It happens due to the skin effect of the symmetric 

SPP mode in both Ag and Si0.6Ge0.4 layers. The reso-

nance mode is also observed in Figs.6 and 7. 

We report the optimized parameters of Si0.6Ge0.4 for 

single-pole Lorentz model and MDM. The optimized 

parameters are validated by being compared with the ex-

perimental results. We present an analysis on SPP mode 

propagation through the Si0.6Ge0.4/Ag/Si0.6Ge0.4 waveguide. 

In each case, the numerical result agrees well with the 

analytical result, which further validates the extracted 

parameters. We expect that this study will provide better 

understanding about light-matter interaction at the nano-

meter-scale and supply new ways of manipulating light in 

the integrated photonic devices, leading to applications in 

optical communications.  
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