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Analysis of a digital phase retrieval method for wave-front
reconstruction
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A phase retrieval algorithm which only needs to measure the intensity distribution at two positions to
be effective is used to reconstruct the laser wave-front. Results are obtained from the phase retrieval
algorithm in the visible band and the effects of the measurement error on the phase retrieval process are
simulated. The algorithm is not sensitive to absolute amplitude measurement error, but is sensitive to the
relative distribution of light intensity.
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Wave-front aberrations that exist in high-power lasers
are significant considerations in practical applications
because of the dynamic thermal effect and error of ap-
pearance surfaces of optical elements. Therefore, it is
necessary to develop different kinds of wave-front mea-
surement techniques for the analysis, control, and repair
of the wave-front of high-power lasers and for the en-
hancement of the efficiency of high-power laser systems.
In detecting the wave-front distribution, the large varia-
tion of phase, high-precision requirements, and compact
configuration of systems require a combination of mea-
surement techniques.

Numerous methods have been proposed for the laser
wave-front measurement, such as the Shack-Hartmann
wave-front sensor and lateral shearing interferometer[1].
Despite the simplicity of the Shack-Hartmann sensor,
its component, the high-precision lens array, is expen-
sive and difficult to fabricate. Interferometers have
high requirements for coherence length and environmen-
tal stability and require a complex optical system and
image processing algorithms. Fienup et al. proposed
an algorithm based on Fresnel diffraction for wave-front
restoration[2,3]. By measuring intensity distributions at
two positions in the laser beam propagation and apply-
ing the digital algorithm, wave-front phase distributions
of the two positions can be calculated. This method is
simple, accurate, and free from outside influence. It has
been used in the image processing of information optics
and astronomy as well. Recently, scholars adopted a sim-
ilar approach[4,5,6] and applied it to the wave-front recon-
struction in high-power laser[7,8]. For the inevitable mea-
surement error due to experimental conditions in light in-
tensity measurement, the intensity distribution measured
by charge-coupled derice (CCD) creates a deviation rel-
ative to the true intensity distribution, which actually
affects the retrieved phase by the algorithm. Currently,
no one has yet considered the effects of measurement er-
ror on the phase retrieval process. Thus, in this letter,
we mainly analyze the influence of changes in the light
intensity distribution on the retrieved phase.

The phase retrieval algorithm used in this let-

ter is based on the Fresnel Diffraction formula and
the Gerchberg–Saxton and the fienup phase-retrieval
algorithms[9]. The algorithm has been demonstrated by
Matsuoka et al.[8].

In Fig. 1, the laser propagates along the z axis, and
the light intensity distributions measured at two planes,
z = Z1 and z = Z2, are I1(ξ, η) and I2(x, y), respectively.
The distance between the two planes is Z = Z2−Z1. The
corresponding amplitudes are obtained using

u1(ξ, η) =
√

I1(ξ, η), (1)

u2(x, y) =
√

I2(x, y). (2)

According to the Huygens-Fresnel principle, under the
condition of Fresnel approximation, the relationship be-
tween the wave functions at the two planes is[10]

U2(x, y) =
eikZ

iλZ
ei k

2Z (x2+y2)

∞∫∫

−∞

[
U1(ξ, η)ei k

2Z (ξ2+η2)
]

· e−i 2π
λZ (xξ+yη)dξdη. (3)

In the diffraction integral formula,

U1(ξ, η) = u1(ξ, η) exp[i2πϕ1(ξ, η)], (4)

U2(x, y) = u2(x, y) exp[i2πϕ2(x, y)], (5)

where ϕ1 and ϕ2 are phase distributions at planes z = Z1

and z = Z2, respectively.
Figure 2 shows the flowchart of the algorithm. To

Fig. 1. Experimental schematic diagram.
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Fig. 2. Flowchart of the algorithm.

Fig. 3. Intensity distribution measured by CCD. (a) z=Z1;
(b) z=Z2.

obtain the phase distributions at the two planes, the al-
gorithm follows the steps described in Fig. 2. When the
algorithm stops, the phase distributions ϕ1 and ϕ2 at
the two planes are retrieved as ϕ1 = φ1 and ϕ2 = φ2. As
a result, the reconstruction of the wave-front is realized.

Using the He-Ne laser (λ= 632.8 nm) in Zygo inter-
ferometer (φ=60 mm) as the light source, the obtained
distance between z = Z1 and z = Z2 is 0.25 m. We
observed the first direct optical alignment, and subse-
quently recorded the intensity distributions at the two
planes using a CCD camera. Figures 3(a) and (b) are
the intensity distributions at planes z = Z1 and z = Z2,
respectively.

Substituting the experimental data into the algorithm
and setting the iteration time at 1,000, we obtain the
phase distributions at the two planes z = Z1 and z = Z2,
as shown in Fig. 4. The wave-front reconstructed at
z = Z1 is 0.6509λ peak-valley (PV) and 0.0626λ root
mean square (RMS) resulted in 0.4806λ PV and 0.0672λ
RMS at z = Z2, after correction.

To determine the proximity between the measurement
result and calculated result, we defined parameter E as

Fig. 4. Phase distribution calculated by the algorithm. (a)
z=Z1; (b) z=Z2.

Fig. 5. Relationship of E and iteration times n.

E =

√∑
[I1(ξ, η)− Ii(ξ, η)]2
∑

I1(ξ, η)
, (6)

where I1 is the measured intensity distribution at z = Z1

and Ii is the calculated intensity (Ii = u2
i ). Figure 5

shows the relationship between E and iteration times n.
The value of E decreases with the increase of iteration
times, which indicates that the difference between the
measurement result and calculated result will be smaller
when the iteration times are increased.

In the actual measurements, the measured intensity
distribution deviation will exist because of the presence
of measurement error. This is not the case with the true
intensity distribution. The fluctuation of the light source
would affect the absolute amplitude measurement re-
sult. The interference from the background light and the
shaken environment would generate an uncertain random

Fig. 6. (Color online) 1D distribution of the retrieved phase
when the proportion of intensity distribution at the two mea-
suring faces changed.
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Fig. 7. Relationship of E and iteration times n when intensity
distribution at both two measuring faces changed in propor-
tion.

Fig. 8. 1D distribution of the retrieved phase when the inten-
sity distribution at measuring face z = Z1 changed in propor-
tion.

measurement error, and the airborne dust on the laser
beam would lead to local measurement error. Based on
these considerations, we simulated three situations: 1)
variation of full aperture light intensity; 2) intensity dis-
tribution at measuring face with random measurement
error; 3) intensity distribution at the measuring face with
local measurement error.

The two images measured by CCD in Matlab were pro-
cessed. Subsequently, we changed the two corresponding
matrix values into 60%, 80%, 120%, and 140%, incorpo-
rated these data into the algorithm, and recovered the
phase distribution. After analyzing the one-dimensional
(1D) information of the obtained experimental results
and the relationship between E and iteration times under
the different situations above, the curves are completely
similar and no difference among the experimental results
presented exists, as shown in Figs. 6 and 7. Meanwhile,
the retrieved phase remains unchanged.

Fig. 9. Relationship of E and iteration times n when intensity
distribution at measuring face z = Z1 changed in proportion.

Fig. 10. Phase distribution with random error. (a) z=Z1; (b)
z=Z2.

Fig. 11. Analysis of a particular dimension of the two recovery
phases. Simulation result (a) without and (b) with random
error.

We only changed one original matrix value (the matrix
corresponding to image measured in plane z = Z1 is
chosen) into 80% and 120%. In both cases, the retrieved
phase distributions are the same as those obtained when
the matrix value is not changed, as shown in Fig. 8.
At the same time, Fig. 9 indicates that under the two
situations, the values of E are both larger than its value
when the matrix is unchanged. However, the values con-
tinue to decrease with the increase of iteration times.
Based on these, we conclude that the results of the phase
retrieval are not affected by the absolute value of the
intensity. Instead, the results are affected by the relative
distribution of intensity.

We used Matlab to read the CCD images and added a
random error to one of the intensity distributions (max-
imum intensity 115). The error matrix ranges from −7
to 7, which was produced by a random number genera-
tor. By changing the intensity distribution, a new phase
of distribution was obtained. The simulation result is
shown in Fig. 10. Figures 10(a) and (b) show the phase
distributions at z = Z1 and z = Z2, respectively. The
wave-front reconstruction of the central part at z = Z1

Fig. 12. Difference between the two retrieved phases.
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Fig. 13. 1D distribution of the retrieved phase with local mea-
surement error at one measuring face z = Z1. 1D distribution
of the retrieved phase with error matrix consisting of elements
that are all (a) 7 and (b) 20.

Fig. 14. Difference of the retrieved phases when a local mea-
surement error exists with the retrieved phase; measured data
remain unchanged. Error matrix consisting of elements that
are all (a) 7 and (b) 20.

is 0.6135λ PV and 0.0635λ RMS. Values obtained after
correction are 0.4650λ PV and 0.0687λ RMS at z = Z2.

Post-analysis of a particular dimension of the retrieved
phase and the comparison with the dimension obtained
prior to the addition of random errors are shown in Fig.
11. A high degree of similarity between the dimensions
can be observed. Figure 11(a) is the simulation result of
a particular dimension distribution of the recovery phase
without random error. Figure 11(b) is the simulation
result with random error. The difference between the
two retrieved phases is shown in Fig. 12. Based on
the analysis of the difference between the two retrieved
phases, the resulting average difference is 0.0688λ and
the RMS is 0.1024λ. Therefore, this algorithm has high
tolerance.

To simulate the influence of the local measurement
error on the retrieved phase, a 6×6 matrix containing
elements that are all 7 was added to the point (x=y=128
pixel) of the matrix corresponding to the image measured
at plane z = Z1. Using the phase retrieval method shown
above, a new phase distribution was obtained. The par-
ticular dimension is shown in Fig. 13(a). Similarly, we
obtained the phase distribution with local measurement
error of a 6×6 matrix containing elements that are all
20. Consequently, the phase information of the same
dimension was extracted, which is shown in Fig. 13(b).
Meanwhile, Fig. 14 shows the difference between the

retrieved phase without measurement error and the one
with local measurement error. Figures 14(a) and (b) cor-
respond to the error matrix containing elements that are
all 7 and 20, respectively. Against the dimension, with
an error matrix consisting of elements that are all 7, the
average difference is 0.0070λ and the RMS is 0.0123λ.
In the error matrix with elements that are all 20, the
average difference is 0.0167λ and the RMS is 0.0565λ.
Therefore, we conclude that local measurement error can
affect the overall phase retrieval results. However, the
influence is weak against the high tolerance of the algo-
rithm.

In conclusion, we describe a phase retrieval algo-
rithm based on the Fresnel diffraction formula and the
Gerchberg–Saxton and the fienup phase-retrieval algo-
rithms. The feasibility of this numerical algorithm is
demonstrated. Considering that the intensity of the
image captured by CCD is different from its real inten-
sity in the actual measurement, we simulate that the
full aperture intensity distribution changes in proportion
and the intensity distribution with random measurement
error. If amplitude variation of full aperture light inten-
sity changes proportionally, then the result of the phase
retrieval does not change because it is affected not by the
absolute value of the intensity, but by the relative distri-
bution of the intensity. If the intensity distribution with
random error occurs, the result of the phase retrieval
is very similar to the result in the absence of error. If
the local measurement error in intensity distribution is
produced, the retrieved phase is affected not only in
the local location, but in the whole distribution as well.
However, the effect is weak. Based on the analysis of the
above-mentioned types of light intensity change, it can
be inferred that this algorithm has high tolerance.
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