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Abstract： Imaging sensors in medium and long-wave infrared spectrum are extremely expensive.  Therefore， for 
most consumers， remote high-resolution imaging and real-time display in these spectrums are still a challenge.  
This paper proposes an effective block compressed sensing method called Multi-block Combined Compressed 
Sensing （MBCS） adapting to Focal Plane Array Compressed Imaging system （FPA CI）， which combines parallel 
sampling and fast reconstruction.  The high-resolution images can be reconstructed from low-resolution measure⁃
ment results in real-time using a low-resolution infrared sensor.  The results showed that， compared with the tradi⁃
tional CS-based super-resolution method， this method could greatly improve the quality of the reconstructed high-

resolution image and achieve a higher reconstruction speed.  The optical prototype architecture and construction of 
the MBCS measurement matrix for the reconstruction model are also discussed.  This study evaluated the recon⁃
struction performance in terms of the block size and found that the optimal block size needed to consider both 
speed and reconstruction quality.  Furthermore， the MBCS reconstruction algorithm with GPU acceleration was 
implemented to improve the image reconstruction speed of the highly parallel image system.  In the experiment， 
the optical system and the strategy of rapid imaging and reconstruction were verified via simulation and optical ex⁃
periments， which showed that the imaging speed of 512×512 resolution could reach 5 Hz.
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摘要：中长波红外成像探测器成本高昂，成为该波段高分辨成像和实时显示的巨大挑战。本文提出一种高效

合并分块压缩感知方法（Multi-block Combined Compressed Sensing， MBCS），适用于基于焦平面阵列的压缩成

像系统，它结合了并行采样和快速重建优势，可通过低分辨红外探测器实现低分辨并行测量和高分辨图像快

速重建。与传统的基于压缩感知超分辨成像相比，该方法可提升高分辨图像重建的质量，同时实现高速重

建。本文对光学系统原型和MBCS重建模型测量矩阵构建过程进行了研究，讨论了合并块大小对重建性能的
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影响，发现存在最优块大小使重建速度与重建质量都最优。此外，本文还实现了基于GPU加速的MBCS重建

算法，用于进一步改进并行成像系统的图像重建速度。仿真和光学实验验证了该光学系统并行采样和快速

重建策略的有效性，512×512分辨率成像与显示速度可达到5 Hz。
关 键 词：压缩成像；分块压缩感知；中红外；焦平面阵列；图像处理单元
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Introduction
Medium and long infrared waves possess many dis⁃tinct and useful characteristics， such as penetrating tis⁃sue， fog and smog， radiation emitting from objects relat⁃ed to temperature and material， which enables imaging and identifying the targets through scattering media even in the dark.  These outstanding characteristics of infrared imaging make it widely used in environmental monitor⁃ing， biomedical diagnosis， military reconnaissance and so on.  However， the cost of megapixel sensors in the in⁃frared imaging is expensive， especially for high-perfor⁃mance cooled detectors， often extending tens of thou⁃sands of dollars.  As a result， despite the dramatic utiliza⁃tion potentially， the high spatial-temporal resolution and online monitoring cameras are beyond the reach of many engineers and researchers.Compressed sensing （CS） ［1-3］， as a distinctive sam⁃pling theorem， is an excellent information collection scheme with a rate less than that required for the tradi⁃tional Nyquist–Shannon sampling while ensuring accu⁃rate reconstruction.  The single pixel camera （SPC）［4］ is a typical application of CS in the field of compressive im⁃aging， which has several advantages such as expanding pixels and low cost.  At present， SPC is applied to the fields of spectral imaging， three-dimensional imaging， microscopy， etc.  However， CS has several limitations such as high time cost and low image quality since it in⁃volves a series of sequential measurements.  The focal plane array （FPA）［5］ sensors composed of parallel multi-SPCs enable parallel sampling and effectively improve the acquisition speed and imaging quality［6］.  This type of compressive imaging （CI） is a relatively new develop⁃ment， and it provides an effective way to use low-cost and low-resolution infrared sensors to achieve high-reso⁃lution infrared images.  Recently， research on parallel CI has focused on improving imaging quality［7-10］， modula⁃tion solutions［7， 11-14］， optical path correction， etc. ， and has been applied to near-infrared and mid-infrared imag⁃ing［5， 15， 16］.  Increasing the imaging speed to achieve real-time high-resolution monitoring for the infrared CI is an important goal of this research， and there is currently a lack of relevant research.Thus far， two limiting factors of imaging speed in parallel CI are mainly known： the optical modulation speed and image reconstruction efficiency.
（1） In the optical modulation phase， CI usually em⁃ploys a binary random matrix or an orthogonal matrix.  A digital micromirror device （DMD）， which enables high-speed spatial light modulation （SLM）， is widely used in optical modulation.  However， DMD only provides binary modulation.  When the DMD loads a gray pattern from a 

modulation matrix， such as random Gaussian or random partial Fourier， Discrete Fourier Transform （DCT） or Fast Fourier Transform （FFT）， each frame has to be ob⁃tained with time-sharing pulse width modulation that re⁃sults the increment of the modulation time exponentially and goes against high-speed imaging.  Although the DMD can provide a frame rate up to 20 kHz， the modulation frequency of an 8-bit gray pattern is about 250 Hz［17］.  Hence， the modulation time of gray pattern increases， which is unsuitable for high-speed imaging.A +1/−1 Hadamard matrix is one of the few choices for fast sampling and is easy to implement.  Therefore， using the +1/− 1 or Hadamard matrix for CS modulation can reduce the number of measurements and increase the imaging speed in the acquisition phase.
（2） In the recovery phase， the CS reconstruction al⁃gorithm involves intensive computation iterations and is suitable for parallel processing.  Meanwhile， asynchro⁃nous parallel processing is also suitable for sequential sampling and iterative reconstruction to reduce the pro⁃cessing time.Both the +1/−1 Hadamard modulation and CS paral⁃lel processing are considered to increase imaging speed.  In addition， in order to increase imaging speed， parallel MBCS imaging with GPU acceleration is proposed.  MBCS combines the multiple blocks of observations into a merged block for reconstruction， which benefits from preserving the edge information and continuity informa⁃tion among the blocks and reduces the blocking effect of traditional block CS.  Also， the number of blocks is re⁃duced by combining blocks， which eliminates some small block initializations that appear in the traditional block CS， thereby， reducing the reconstruction costs.The main tasks in this work are as follows： Firstly， for the modulation， the image performance of +1/−1 Had⁃amard matrix is applied for fast imaging.  Secondly， for the reconstruction process， the proposed MBCS can ef⁃fectively improve the image recovery speed and ensure re⁃covered image quality since the combined blocks retain edge information.  We found that +1/−1 matrix showed a good performance with under-sampling and the image re⁃construction performance was related to the block size.  Different under-sampling ratio reconstruction procedures show the same law that the peak signal-to-noise ratio 

（PSNR） increases first and then decreases as the block size increases， while the reconstruction time decreases first and then increases.  There exists an optimal block size for achieving good reconstruction quality and speed.  Furthermore， we designed a （multi-frame） GPU-based algorithm to increase the iteration speed.  We experimen⁃tally demonstrated that the parallel MBCS imaging with GPU acceleration could achieve fast sampling and recon⁃

struction， thereby promoting high-speed， real-time， large-array imaging.
1 Block compressed sensing imaging 
1. 1　Optical prototype architecture　In this section， we will describe parallel optical FPA， two-cascade imaging， and GPU-adaptive recon⁃struction architecture.  In the low-resolution image acqui⁃sition phase and high-resolution image estimation phase， the light reflected by an object is imaged by an objective lens and modulated on the DMD， and then reimaged on the detector FPAs by a projection image lens； finally， the high-resolution image is recovered from the acquired low-resolution image by real-time parallel programming on the GPU.

In this section， we describe the BCS imaging archi⁃tecture shown in Fig.  1， which includes parallel FPA， two-cascade imaging， and GPU-adaptive reconstruction system.  The optical system completes the imaging pro⁃cess via two-cascade imaging.  Firstly， the lamp illumi⁃nates the object， and the light reflected （or transmitted） by the object is imaged on an SLM.  The SLM is config⁃ured synchronously by a host computer to impart distinct high-resolution intensity modulation onto the object field for each projection.  Secondly， the reflected light from the SLM is reimaged onto the detector array through the image lens.  Finally， the high-resolution image is recov⁃ered from the acquired low-resolution images by real-time parallel programming on the GPU.In the experimental optical setup， the light source was a View Solutions halogen lamp.  We utilized a Texas Instruments digital micromirror device （TI DMD） as the SLM.  The DMD contained 1024 × 768 micromirrors， each mirror of size 13. 68 × 13. 68 µm.  Each mirror could be independently rotated to either +12° or −12° po⁃sition.  We used an objective lens with a focal length of 50 mm to focus the light onto the DMD.  We used a 1388 × 1038 sensor （ALLIED Vision Technologies Manta G-145） with a pixel size of 6. 45 × 6. 45 µm connected to an image lens with a focal length of 30 mm to validate the 

proposed method， which is the same to procedures in the medium and long infrared wave spectrum.  The sensor and image lens faced the DMD and could be rotated around the optical axis， so as to align the relative posi⁃tion of the sensor and DMD as accurately as possible.In this paper， the compression ratio scale of C × C denotes pixels number ratio of high-resolution scene to low-resolution image， while the sampling rate is the ratio of the modulation times to the number of the pixels.  In the optical system， compression ratio scale of C × C means that the projection refers to C × C pixels on the DMD mapping to one pixel on the detector.  In our actual experiment， the effective regions of the DMD and sensor were 512 × 512 pixels and 1024 × 1024 pixels， respec⁃tively.  Quantitatively， each micromirror on the DMD cor⁃responds to 2 × 2 pixels of the sensor.  Further consider⁃ing of the difficulty of mapping a mirror element of DMD to a detector pixel accurately and proportionally， we took into account the fact that DMD mirrors may reflect light to not only the target detector pixel， but also reflect light to the neighboring pixels.  To minimize image registration error and improve image recovery quality in practice， for all the experiments， we used 4 × 4 binning of the DMD mirrors to generate an effective mask element with 54. 72 × 54. 75 µm.  Correspondingly， for three compression ra⁃tio scenarios such as 2 × 2， 4 × 4 and 8 × 8 in the follow⁃ing experiment， respectively， 16 × 16， 32 × 32 and 64 × 64 detector pixels on the sensor were merged into an ele⁃mentary super pixel.
1. 2　Image system model for BCS measurement　In an SPC， the observation value vectors of all pixel intensities Y are linear combinations of image signals X with added noise E， with the coefficient assigned by mod⁃ulation function Φ.  The equation can be represented in matrix-vector means as follows：

Y = Φ (X ) + E .　（1）
The FPA functions parallel to the measuring image system， which employs a focal plane array detector in⁃stead of the single pixel detector of the SPC via image plane coding and provides a flexible optical architecture and multiplex simultaneous information acquisition meth⁃od using FPA pixels measurement of the inner product of modulation function multiplied with the image.  Conse⁃quently， the original image is compressed and recorded on the low-resolution sensor.  The compression ratio is equal to the mapping of the signal from mask elements to a single pixel element of sensor by C × C ∶ 1， which is customized depending on system-specific requirements and configuration.  Thus， the whole N × N scene image is divided into several blocks of size C × C， and parallel⁃ly imaged onto N C × N C pixels in a two-dimensional detector array instead of as a single pixel.  Each detector acts as a photodiode in the SPC， and the model is ex⁃pressed as

Y (i) = Φ(i)(X (i) ) + E (i) ，　（2）
where X (i) denotes the i-th block of the scene image in col⁃umn-wise way； Y (i) is the i-th observed vector column-wisely acquired on the sensor； Φ(i) is the projection oper⁃ator of i-th block sub-scene-image.

Fig.  1　 Block compressed sensing （BCS） architecture with a 
graphics processing unit （GPU） acceleration imaging system
图1　GPU加速分块压缩感知成像系统
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1. 1　Optical prototype architecture　In this section， we will describe parallel optical FPA， two-cascade imaging， and GPU-adaptive recon⁃struction architecture.  In the low-resolution image acqui⁃sition phase and high-resolution image estimation phase， the light reflected by an object is imaged by an objective lens and modulated on the DMD， and then reimaged on the detector FPAs by a projection image lens； finally， the high-resolution image is recovered from the acquired low-resolution image by real-time parallel programming on the GPU.
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proposed method， which is the same to procedures in the medium and long infrared wave spectrum.  The sensor and image lens faced the DMD and could be rotated around the optical axis， so as to align the relative posi⁃tion of the sensor and DMD as accurately as possible.In this paper， the compression ratio scale of C × C denotes pixels number ratio of high-resolution scene to low-resolution image， while the sampling rate is the ratio of the modulation times to the number of the pixels.  In the optical system， compression ratio scale of C × C means that the projection refers to C × C pixels on the DMD mapping to one pixel on the detector.  In our actual experiment， the effective regions of the DMD and sensor were 512 × 512 pixels and 1024 × 1024 pixels， respec⁃tively.  Quantitatively， each micromirror on the DMD cor⁃responds to 2 × 2 pixels of the sensor.  Further consider⁃ing of the difficulty of mapping a mirror element of DMD to a detector pixel accurately and proportionally， we took into account the fact that DMD mirrors may reflect light to not only the target detector pixel， but also reflect light to the neighboring pixels.  To minimize image registration error and improve image recovery quality in practice， for all the experiments， we used 4 × 4 binning of the DMD mirrors to generate an effective mask element with 54. 72 × 54. 75 µm.  Correspondingly， for three compression ra⁃tio scenarios such as 2 × 2， 4 × 4 and 8 × 8 in the follow⁃ing experiment， respectively， 16 × 16， 32 × 32 and 64 × 64 detector pixels on the sensor were merged into an ele⁃mentary super pixel.
1. 2　Image system model for BCS measurement　In an SPC， the observation value vectors of all pixel intensities Y are linear combinations of image signals X with added noise E， with the coefficient assigned by mod⁃ulation function Φ.  The equation can be represented in matrix-vector means as follows：

Y = Φ (X ) + E .　（1）
The FPA functions parallel to the measuring image system， which employs a focal plane array detector in⁃stead of the single pixel detector of the SPC via image plane coding and provides a flexible optical architecture and multiplex simultaneous information acquisition meth⁃od using FPA pixels measurement of the inner product of modulation function multiplied with the image.  Conse⁃quently， the original image is compressed and recorded on the low-resolution sensor.  The compression ratio is equal to the mapping of the signal from mask elements to a single pixel element of sensor by C × C ∶ 1， which is customized depending on system-specific requirements and configuration.  Thus， the whole N × N scene image is divided into several blocks of size C × C， and parallel⁃ly imaged onto N C × N C pixels in a two-dimensional detector array instead of as a single pixel.  Each detector acts as a photodiode in the SPC， and the model is ex⁃pressed as

Y (i) = Φ(i)(X (i) ) + E (i) ，　（2）
where X (i) denotes the i-th block of the scene image in col⁃umn-wise way； Y (i) is the i-th observed vector column-wisely acquired on the sensor； Φ(i) is the projection oper⁃ator of i-th block sub-scene-image.

Fig.  1　 Block compressed sensing （BCS） architecture with a 
graphics processing unit （GPU） acceleration imaging system
图1　GPU加速分块压缩感知成像系统
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Let x ∈ RB × B be one of the blocks consisting of the scene image formed on the DMD， and let ϕ，ϕ* ∈ RB × B 
be complementary measurement binary patterns dis⁃played on the DMD.  For the experiment in this study， we used each row of the Hadamard matrix as the pat⁃
terns.  Then， y，y* ∈ RB

C × B
C were the complementary 

measurements obtained at the sensor， and Δy ∈ RB
C × B

C 
was the complementary differential measurement vector.  Each measurement obtained at the sensor can be repre⁃sented as follows：

y = ϕ ⊗ x + e1 ，　（3）
y* = ϕ* ⊗ x + e2 .　（4）

Eventually， one measurement of the complementary matrices is given as
Δy = ( y - y* ) = (ϕ - ϕ* ) ⊗ x + (e1 - e2 )，　（5）

where ⊗ denotes the element-wise product， and e1and e2 are the added noise.  In this way， the measurement ma⁃trix is changed from the 0-1 binary matrix to the +1/−1 bi⁃nary matrix with mean of zero to satisfy the RIP criterion， which is a necessary condition for accurate reconstruction of CS.
1. 3　 Performance of under-sampling reconstruc⁃
tion: Inversing versus CS　The use of an orthogonal gray matrix results in a long sampling time， and fails to obtain images fast.  Al⁃though a relatively high reconstruction speed can be achieved by inverse transformation， the full sampling is inevitable； otherwise， the quality of under-sampling will be very poor or the full sampling will increase the sam⁃pling time.  In the proposed optical architecture， DMD functions as the SLM to achieve 0/1 modulation on the gray image.  The advantage of the +1/− 1 Hadamard ma⁃trix is that it is easy to realize and provides notable imag⁃ing speed； hence， the Hadamard matrix was chosen as the modulating function Φ.  Owing to the orthogonal prop⁃erties of the Hadamard matrix， an inverse operation on the full sampling value could directly provide the recon⁃structed image.  However， full sampling requires more time for imaging， and inverse operation on under-sam⁃pling does not provide a good result.  The comparison be⁃
tween pseudoinverse operation by ϕT(ϕϕT ) -1 and CS re⁃
construction with random under-sampling was simulated for sizes of 32 × 32， 64 × 64， and 128 × 128 pixels.  The subsampling rate was 0. 3， and the measurement times were 307 for 32 × 32 pixels， 1229 for 64 × 64 pixels， and 4915 for 128 × 128 pixels.  The measurement times， PSNR and feature similarity indexes （FSIM）［18］ of the re⁃constructed images using the phase congruency （PC） and the gradient magnitude （GM）， defined in Eq.（6）， are indicated in Fig.  2.  The results show that CS achieves more excellent reconstruction performance than an inverse operation with +1/−1 modulation matrix using under-sampling.  Both metrics of the PSNR and FSIM of CS were obviously better than inverse operation for differ⁃ent resolutions.

FSIM = ∑Χ ∈ Ω
SL( )Χ ∙PCm ( Χ )

∑Χ ∈ Ω
PCm ( Χ ) .　（6）

where x represents position in the image， PCm(Χ ) =
max (PC1(Χ )，PC2(Χ ) ) is the maximal phase congruen⁃
cy （PC） value at the position x between the two images， 
SL(Χ ) is calculated from the combined similarity of PC 
and GM.Also， to evaluate the reconstruction accuracy of the proposed method， the PSNR between the original and re⁃constructed images was adopted as a performance indica⁃tor：

MSE =  x̂ - x 2

max ( x ) 2 ，　（7）
PSNR = 20 log10 max ( x )

MSE
，　（8）

where x and x̂ denote the original and reconstructed imag⁃
es， respectively， and  ∙ 2 denotes 2-norm.
1. 4　 MBCS measurement matrix and projection 
vectors　This section describes the construction method of the measurement matrix and projection vector for a con⁃figurable compression ratio scale of C × C.  We first intro⁃duce the measurement matrix and projection vector 
B × B multiblocks combination for CS （MBCS） recon⁃struction.  In addition， the inverse operation reconstruc⁃tion will not be applicable for constructing a new mea⁃surement matrix because multiblocks may not have Had⁃amard’s orthogonal property.  Fig.  3 depicts a case of construction of a measurement matrix for a compression ratio of 4 × 4 （4 × 4 pixels as one element block）， and multiblocks of 2 × 2 （8 × 8 pixels as one combined block） corresponding to four measurements for each com⁃bined element block.First， the image is divided into several element blocks B × B （consisting of integral multiple of C × C base blocks） of identical sizes， and each block is a paral⁃lel SPC reconstruction block.  Second， each parallel SPC coding block mask （C × C） on the SLM is generated from a different row of the Hadamard matrix （C2 × C2）， and complementary positive–negative measurements are implemented to improve the CS imaging quality.  More⁃over， the parallel SPC block mask is programmable， and block size can be configured depending on the system-specific requirements.  Third， a unit of projection vectors 
（( B × B

C × C
× (B × B) )） from the multi-SPC blocks occurs 

successively in block-wise and column-wise manner to ensure the GPU computer cores （GPU CCs） work at full capacity owing to a single instruction， multiple data 
（SIMD） parallelism scheme.  The maximum number of all units is C × C， while the number of measurements is an integral multiple of the unit of projection vectors.  Fi⁃nally， several units of projection vectors derived from the Hadamard matrix are merged to form the whole measure⁃ment matrix.The observed value vectors of all partitioned blocks are synchronized with each projection vector in the well-designed measurement matrix.  First， the parallel blocks in the observed results are successively arranged in a col⁃umn-wise manner.  Second， column vector of the ob⁃

served value for each block originates from the corre⁃
sponding linear combination of blocks in the measure⁃
ment sequence.  Therefore， each low-resolution image 
consists of the projection results of all element blocks， 
while the observed vector in each block consists of the ob⁃
served values of specific blocks distributed over the corre⁃
sponding position of every low-resolution image.  The 

measurement matrix is depicted schematically in Fig.  4.

1. 5　 Evaluation of reconstruction performance re⁃
lated to the block size　

We simulated the under-sampling imaging process 

 
Fig.  4　 Blocki is the observed value vector of the i-th com‐
pressed block used to recover the i-th original image block， Mj in‐
dicates the j-th measurement corresponding to j-th coding pattern， 
Blocki and Mj exactly indicate the observed value of i-th compres‐

sive block and j-th measurement， here， n = N × N
C × C

 and m ≤ C ×
C
图4　合并块压缩感知重建测量值构建方法

 
Fig.  2　Inverse （a， c， e） and CS （b， d， f） reconstruction results with subsampling rate = 0. 3， the image sizes are （a），（b） 32 × 32 pix‐
els， （c），（d） 64 × 64 pixels， and （e），（f） 128 × 128 pixels
图 2　亚采样条件下求逆运算重建（a， c， e）与压缩感知重建（b， d， f）结果对比（亚采样率为 0. 3），其中（a）（b）图像大小为 32×32像
素， （c）（d）为64×64像素， （e）（f）为128×128像素

 
Fig.  3　Unit of projection vectors derived from a compressive el‐
ement block.  A part of the coding pattern on the SLM is divided 
into four identical parallelly measuring blocks.  One measurement 
entry， which corresponds to a measurement operation and an ob‐
served value， is reshaped into a vector according to the vertical 
orientation
图3　合并块压缩感知重建测量矩阵构建方法
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served value for each block originates from the corre⁃
sponding linear combination of blocks in the measure⁃
ment sequence.  Therefore， each low-resolution image 
consists of the projection results of all element blocks， 
while the observed vector in each block consists of the ob⁃
served values of specific blocks distributed over the corre⁃
sponding position of every low-resolution image.  The 

measurement matrix is depicted schematically in Fig.  4.

1. 5　 Evaluation of reconstruction performance re⁃
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Fig.  4　 Blocki is the observed value vector of the i-th com‐
pressed block used to recover the i-th original image block， Mj in‐
dicates the j-th measurement corresponding to j-th coding pattern， 
Blocki and Mj exactly indicate the observed value of i-th compres‐

sive block and j-th measurement， here， n = N × N
C × C

 and m ≤ C ×
C
图4　合并块压缩感知重建测量值构建方法

 
Fig.  2　Inverse （a， c， e） and CS （b， d， f） reconstruction results with subsampling rate = 0. 3， the image sizes are （a），（b） 32 × 32 pix‐
els， （c），（d） 64 × 64 pixels， and （e），（f） 128 × 128 pixels
图 2　亚采样条件下求逆运算重建（a， c， e）与压缩感知重建（b， d， f）结果对比（亚采样率为 0. 3），其中（a）（b）图像大小为 32×32像
素， （c）（d）为64×64像素， （e）（f）为128×128像素

 
Fig.  3　Unit of projection vectors derived from a compressive el‐
ement block.  A part of the coding pattern on the SLM is divided 
into four identical parallelly measuring blocks.  One measurement 
entry， which corresponds to a measurement operation and an ob‐
served value， is reshaped into a vector according to the vertical 
orientation
图3　合并块压缩感知重建测量矩阵构建方法
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with the image size of 128 × 128 pixels.  The compres⁃sion rate was 8 × 8， and the under-sampling rates were 0. 8125， 0. 6875 and 0. 5.  The construction of the mea⁃surement matrix and the observed values for different block sizes refer to the method described in section 1. 4.Fig.  5 shows the PSNR and recovering time with dif⁃ferent block sizes and different under-sampling rates of 0. 8125， 0. 6875 and 0. 5.  We found that there was an optimal recover-used block size to achieve the best recon⁃struction quality for all the under-sampling rates； mean⁃while， a high-resolution image was reconstructed with the highest speed.  The different under-sampling ratio re⁃construction procedure shows the same regularity that the PSNR increases first and then decreases with the block size.  In contrast， the reconstruction time decreases first and then increases with the block size.  As the block size increases， the reconstruction gradually becomes faster and then slows down， while the reconstruction quality gradually improves； however， beyond a certain block size， the quality does not improve anymore.The MBCS reconstruction results are expected to be better than those of single-block reconstruction， which is the case of a block size of 1.  This is because multi-blocks reconstruction is expected to preserve more edge information and continuity information between the blocks comparing with a single block； furthermore， MBCS improves the overall sparsity of the measurement matrix.  In addition， when the overall reconstruction is di⁃vided into many small parts to be rebuilt separately， more time is spent on variables and algorithm initializa⁃tion.  Initially， as the block size of the reconstruction in⁃creases， the speed increases.  Later， as the size increas⁃es further， the computational cost of each block recon⁃struction increases rapidly， and the overall reconstruc⁃tion time starts increasing.  These regularities motivate the design of block-compressive sensing reconstruction.

1. 6　MBCS reconstruction strategy with GPU accel⁃
eration　The GPU is a computing device capable of execut⁃

ing many identical programs simultaneously and process⁃ing different data with a large number of threads in paral⁃lel［19］.  Hence， it is appropriate for computing intensive calculation relay on the characteristic framework and schema known as the SIMD or data parallelism.  NVIDIA introduced a parallel developing platform to facilitate pro⁃gramming on the GPU.  This platform is called the Com⁃pute Unified Device Architecture （CUDA）［20］.  It makes the system more flexible and transplantable.  Additional⁃ly， the CUDA programming model uses an SIMD strategy to efficiently use the GPU computational hardware and memory bandwidth.  The GPU and CPU collaborate in the form of the kernel function and the host in the CUDA program， respectively.The CS reconstruction procedure can be improved using the high-performance computing characteristics of the GPU and parallel image acquisition on FPA.  Accord⁃ing to related research results， the traditional CS recon⁃struction algorithm （for instance， Total Variation， TV） spends time mainly on matrix operations in each iteration of TV optimization， such as linear and multiplication op⁃erations.  This seriously affects the performance.  Hence， the GPU can be used to reduce time cost and improve re⁃covery speed drastically.  In addition， it is important to minimize the data transmission overhead cost between the host and device.  To efficiently exploit and utilize the performance of the GPU for matrix manipulation， several strategies were proposed： （a） Implementing sparse ma⁃trix multiplication and sparse matrix-vector multiplica⁃tion based on cuSparse library to accelerate procedure； 
（b） Storing and loading the matrix in a sparse format used for sparse matrix multiplication operation， which can effectively improve GPU performance； （c） When re⁃building blocks sequentially， avoiding reloading the mea⁃surement matrix into the GPU global memory from an ex⁃ternal storage， and using a consistent measurement ma⁃trix derived from the same patterns for each block； （d） Alternating the measurement matrix size derived from the FPA coding scale and the optimal partitioning block size described in the previous sections depending on the prob⁃lem size and equipment characteristics （such as scene size and computer performance）； and （e） Merging sever⁃al frames together into one frame to reconstruct.Fig.  6 shows the blocked compressive sensing re⁃construction procedure with GPU acceleration.  Suppose the DMD has a resolution of N × N micromirrors， and 
the sensor has N

C × N
C  pixels such that each pixel maps 

to C × C size of micromirrors on DMD.  Then， the image will be recovered from m (m ≤ C × C ) times measure⁃ments with B × B block size.  The procedure is as follows：
（1） Prepare a blocked projection matrix on the GPU referring to the method described in section 1. 4.  Gener⁃ate a full blocking projection matrix with dimensions (C ×

C ) × ( B × B
C × C

× (B × B) ) and undersampling blocking 
projection matrix of size m × ( B × B

C × C
× (B × B) )， and 

then convert it into CUDA sparse matrix format.
（2） Prepare the block observed values on GPU by 
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Fig.  5　 Peak signal-to-noise ratio （PSNR） and reconstruction 
time with different block sizes and different under-sampling rates
图 5　不同亚采样率条件下 PSNR、重建时间与重建块大小的
关系

the method described in section 1. 4.  To achieve a higher reconstruction efficiency， corresponding low-resolution observed values should be loaded into the host， and mul⁃tiframes should be merged into one frame N × N.  The next step consists of differentiating the observed values from the positive–negative complement measured imag⁃
es， and dividing each frame into N × N

B × B
 blocks and re⁃

shaping each frame into B × B
C × C

× 1 in column-wise.
（3） Reconstruct each block with the acceleration GPU functions and stitch all reconstructed high-resolu⁃tion blocks into a high-resolution overall frame.  In this step， the matrix structure definitions in the Compressed Sparse Column format on CUDA device and host and GPU kernel functions related to linear operation and ma⁃trix-vector multiplication are used.

2 Experiment and results 
2. 1　Experiment configuration　The experiment optical setup described in section 1. 2 is the optical prototype architecture.  The reconstruc⁃tion system is equipped with Intel Core i7-9700K 3. 60 GHz ×8， GeForce RTX 2080Ti （4352 computational cores； clock frequencies are 1350–1635 MHz； 11 GB GDDR； 352 bit bandwidth； access rate is 14 GB/s； and throughout rate is 616 GB/s）.  The operating system is Ubuntu 18. 04. 2 LTS 64 bit.  The object scenes of the ex⁃periment are as follows： （a） A digital chart ［21-22］ called the virtual resolution board present on the DMD； （b） A black-and-white film with Chinese characters printed with “Chinese Academy Science” in Chinese as the trans⁃mitting object； （c） The eye of a toy as a reflective ob⁃

ject.  Each object scene had 128 × 128 pixels.  The reso⁃lutions of the sampled images were 64 × 64， 32 × 32， and 16 × 16 pixels.
2. 2　 Low-resolution acquisition result and high-
resolution reconstruction quality　According to the experimental reconstruction re⁃sults， high-resolution imaging can be achieved with low-cost and low-resolution sensors.  Furthermore， sampling data transmission only needs very low bandwidth， and this helps to improve the frame rate of high-resolution im⁃aging.Fig.  7 and Table 1 show the image acquisition ex⁃amples using the optical system mentioned above and the reconstruction results by MBCS and traditional block CS.  The measurement times are as follows： for 64 × 64 low-resolution sampling， the time is 12 288； for 32 × 32 sam⁃pling， it is 11 264； and for 16 × 16 low-resolution sam⁃pling， it is 10 240.  The left side of the figure shows the captured low-resolution images with different compres⁃sion ratios ［12］ of 2 × 2， 4 × 4， and 8 × 8， with sizes of 64 × 64， 32 × 32， and 16 × 16 pixels， respectively.  The middle side of the figure shows the corresponding 128 × 128 pixels high-resolution images with proposed MBCS.  The right side of the figure shows the results with the tra⁃ditional Block CS.  The low-resolution images’ detail in the figure is severely blurred.  With a 4 × 4 or 8 × 8 com⁃pression ratio， the low-resolution images of the digital chart （a-2 and a-3） are indistinguishable， and the low-resolution images of characters on the film （b-2 and b-3） are unrecognizable， and the texture of the grayscale imag⁃es （c-2 and c-3） is noticeably worsened.  In comparison， in the bright stripes containing 1 pixel， 2 pixels， 4 pix⁃els， and 8 pixels in the digital chart， and the characters on the film were recovered accurately and could be distin⁃guished； also， the texture of eye in the recovered image 

“TOY” was vivid.  For the high-resolution images recov⁃ered by traditional Block CS and the proposed MBCS， the qualities of the former results are lower than the lat⁃ter.  For example， in the case of 2×2 compression ratio depicted in a-7） b-7） and c-7）， the traditional Block CS failed to reconstruct in some small blocks； and in a-8） b-8） c-8） a-9） b-9） and c-9）， the block boundary effect was more obvious in the former.  Quantitatively， the PSNR and the FSIM of the experiment results showed that MBCS results were better than the traditional block CS.
2. 3　MBCS reconstruction with GPU acceleration　We compared the reconstruction time implemented on the GPU with the reconstruction algorithm implemen⁃tation on the CPU.  We performed a simulation to recover 32 × 32， 64 × 64， and 128 × 128 pixel head phan⁃toms［23］ in Matlab with random measurements and the same subsample ratio of 0. 3 on the GPU.  The results of the reconstruction time and acceleration ratio are listed in Table 2.  The results show that the reconstruction algo⁃rithm with GPU acceleration has strong advantages in terms of computation speed， and the reconstruction time tends to decrease as the image becomes larger.  As the image size increases， the time for both reconstruction al⁃
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the method described in section 1. 4.  To achieve a higher reconstruction efficiency， corresponding low-resolution observed values should be loaded into the host， and mul⁃tiframes should be merged into one frame N × N.  The next step consists of differentiating the observed values from the positive–negative complement measured imag⁃
es， and dividing each frame into N × N

B × B
 blocks and re⁃

shaping each frame into B × B
C × C

× 1 in column-wise.
（3） Reconstruct each block with the acceleration GPU functions and stitch all reconstructed high-resolu⁃tion blocks into a high-resolution overall frame.  In this step， the matrix structure definitions in the Compressed Sparse Column format on CUDA device and host and GPU kernel functions related to linear operation and ma⁃trix-vector multiplication are used.

2 Experiment and results 
2. 1　Experiment configuration　The experiment optical setup described in section 1. 2 is the optical prototype architecture.  The reconstruc⁃tion system is equipped with Intel Core i7-9700K 3. 60 GHz ×8， GeForce RTX 2080Ti （4352 computational cores； clock frequencies are 1350–1635 MHz； 11 GB GDDR； 352 bit bandwidth； access rate is 14 GB/s； and throughout rate is 616 GB/s）.  The operating system is Ubuntu 18. 04. 2 LTS 64 bit.  The object scenes of the ex⁃periment are as follows： （a） A digital chart ［21-22］ called the virtual resolution board present on the DMD； （b） A black-and-white film with Chinese characters printed with “Chinese Academy Science” in Chinese as the trans⁃mitting object； （c） The eye of a toy as a reflective ob⁃

ject.  Each object scene had 128 × 128 pixels.  The reso⁃lutions of the sampled images were 64 × 64， 32 × 32， and 16 × 16 pixels.
2. 2　 Low-resolution acquisition result and high-
resolution reconstruction quality　According to the experimental reconstruction re⁃sults， high-resolution imaging can be achieved with low-cost and low-resolution sensors.  Furthermore， sampling data transmission only needs very low bandwidth， and this helps to improve the frame rate of high-resolution im⁃aging.Fig.  7 and Table 1 show the image acquisition ex⁃amples using the optical system mentioned above and the reconstruction results by MBCS and traditional block CS.  The measurement times are as follows： for 64 × 64 low-resolution sampling， the time is 12 288； for 32 × 32 sam⁃pling， it is 11 264； and for 16 × 16 low-resolution sam⁃pling， it is 10 240.  The left side of the figure shows the captured low-resolution images with different compres⁃sion ratios ［12］ of 2 × 2， 4 × 4， and 8 × 8， with sizes of 64 × 64， 32 × 32， and 16 × 16 pixels， respectively.  The middle side of the figure shows the corresponding 128 × 128 pixels high-resolution images with proposed MBCS.  The right side of the figure shows the results with the tra⁃ditional Block CS.  The low-resolution images’ detail in the figure is severely blurred.  With a 4 × 4 or 8 × 8 com⁃pression ratio， the low-resolution images of the digital chart （a-2 and a-3） are indistinguishable， and the low-resolution images of characters on the film （b-2 and b-3） are unrecognizable， and the texture of the grayscale imag⁃es （c-2 and c-3） is noticeably worsened.  In comparison， in the bright stripes containing 1 pixel， 2 pixels， 4 pix⁃els， and 8 pixels in the digital chart， and the characters on the film were recovered accurately and could be distin⁃guished； also， the texture of eye in the recovered image 

“TOY” was vivid.  For the high-resolution images recov⁃ered by traditional Block CS and the proposed MBCS， the qualities of the former results are lower than the lat⁃ter.  For example， in the case of 2×2 compression ratio depicted in a-7） b-7） and c-7）， the traditional Block CS failed to reconstruct in some small blocks； and in a-8） b-8） c-8） a-9） b-9） and c-9）， the block boundary effect was more obvious in the former.  Quantitatively， the PSNR and the FSIM of the experiment results showed that MBCS results were better than the traditional block CS.
2. 3　MBCS reconstruction with GPU acceleration　We compared the reconstruction time implemented on the GPU with the reconstruction algorithm implemen⁃tation on the CPU.  We performed a simulation to recover 32 × 32， 64 × 64， and 128 × 128 pixel head phan⁃toms［23］ in Matlab with random measurements and the same subsample ratio of 0. 3 on the GPU.  The results of the reconstruction time and acceleration ratio are listed in Table 2.  The results show that the reconstruction algo⁃rithm with GPU acceleration has strong advantages in terms of computation speed， and the reconstruction time tends to decrease as the image becomes larger.  As the image size increases， the time for both reconstruction al⁃
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Fig.  6　 Block-compressive reconstruction procedure with GPU 
acceleration
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gorithm increases， the speedup ratio of GPU algorithm 
and CPU algorithm increases more.  This shows that the 
GPU algorithm can improve the reconstruction speed very 
well， and the effect is more significant when processing 
large-scale images.  Although both the CPU reconstruc⁃
tion algorithm and the GPU acceleration increase the 
computational complexity as the image becomes larger， 
GPUs have the advantages of more parallel computational 
cores than the CPUs to process more pixels simultaneous⁃
ly.  Therefore， in this simulation experiment， the execu⁃
tion time of the CS reconstruction algorithm with GPU ac⁃

celeration changes smoothly as the image size increases.

Then， the MBCS reconstruction algorithm with GPU acceleration was applied to the experimentally acquired images from the optical architecture described herein.  The results show the outstanding performance of the MBCS algorithm on GPU.  A larger block has more effi⁃cient reconstruction performance， thereby verifying the effectiveness of the GPU acceleration strategy described in section 1. 5.In the experiment， first， we attempted to recon⁃struct the high-resolution image with a size of 128 × 128 pixels from the acquired low-resolution images with a size of 64 × 64 pixels at a compression ratio of 2 × 2.  Then， multiple 64 × 64 pixels low-resolution images were manu⁃ally stitched into 128 × 128 pixels and 256 × 256 pixels by using 4 and 16 low-resolution images to reconstruct high-resolution images of sizes 256 × 256 and 512 × 512 pixels， respectively.  Thus， multiple captured low-resolu⁃tion frames can be stitched into a new large one.  That is equivalent to reconstructing multiple images rapidly and 
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b-7) b-8) b-9) 
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Fig.  7　 Comparison of experimental results from different low-resolution images with different compression ratios ［12］， a-1）– a-9） 
shows the digital chart， b-1）–b-9） is the film， c-1–c-9） is the toy， a，b，c-1）， a，b，c-4） and a，b，c-7） are the low-resolution sampling 
images with 64 × 64 pixels， high-resolution MBCS reconstruction results with 128 × 128 pixels and the traditional block CS results， re‐
spectively， further， a，b，c-2）， a，b，c-5） and a，b，c-8） are the low-resolution sampling images with 32 × 32 pixels， high-resolution 
MBCS reconstruction results with 128 × 128 pixels and the traditional block CS results， respectively， also， a，b，c-3）， a，b，c-6） and a，b，
c-9） are the low-resolution sampling images with 16 × 16 pixels， high-resolution MBCS reconstruction results with 128 × 128 pixels and 
the traditional block CS results， respectively
图 7　不同压缩率下的低分辨压缩感知高分辨重建实验结果对比，a-1~a-9）为分辨率板数字物体，b-1~b-9）为胶片透射物体，c-1~c-
9）为玩具反射物体，a，b，c-1），a，b，c-4）和 a，b，c-7）分别为 64×64低分辨采样结果，MBCS 128×128高分辨重建结果和传统分块压缩
感知 128×128高分辨重建结果，a，b，c-2），a，b，c-5）和 a，b，c-8）分别为 32×32低分辨采样结果，MBCS 128×128高分辨重建结果和传
统分块压缩感知 128×128高分辨重建结果，a，b，c-3），a，b，c-6）和 a，b，c-9）分别为 16×16低分辨采样结果，MBCS 128×128高分辨重
建结果和传统分块压缩感知128×128高分辨重建结果

Table 1　Comparison of the quality between traditional 
Block CS and MBCS

表1　传统分块压缩感知和MBCS重建结果对比

Image Type

Digital Chart

Film

Toy

Compression 
Ratio
2x2
4x4
8x8
2x2
4x4
8x8
2x2
4x4
8x8

Traditional Block 
CS

PSNR
12. 99
12. 67
16. 45
20. 23
24. 85
18. 09
16. 77
30. 44
34. 55

FSIM
0. 54
0. 76
0. 79
0. 92
0. 93
0. 89
0. 61
0. 94
0. 95

MBCS
PSNR
15. 63
14. 74
16. 7

33. 89
29. 4

23. 26
40. 31
37. 48
35. 01

FSIM
0. 85
0. 84
0. 81
0. 99
0. 96
0. 91
0. 99
0. 97
0. 97

Table 2　Comparison of the reconstruction time between 
Matlab–CPU and GPU

表2　CPU和GPU重建算法仿真结果对比
Image Size

32×32
64×64

128×128

CPU-Matlab
0. 39s
7. 86s

38. 12s

GPU
0. 05 s
0. 03 s

0. 140 7 s

Speedup
7. 79
216
270

simultaneously to further increase the frame frequency of reconstruction.Table 3 lists the performance of the MBCS algorithm with GPU acceleration.  The results show that this perfor⁃mance is much better than that of the CPU reconstruction algorithm for a block size greater than 16 × 16.First， the experiment results shown in Fig.  8， Fig.  9， and Fig.  10 are consistent with the simulation experi⁃mental results as the size of the measurement block in⁃creases.  For the CPU reconstruction process， as the block size initially increases， the reconstruction time de⁃creases.  Later， when the size is further increased， the computational cost of block reconstruction increases rap⁃idly， and the overall reconstruction time increases， too.  This phenomenon is consistent with the simulated results obtained using CPU MBCS algorithm as shown in Fig.  5.  However， for the GPU acceleration process， the overall reconstruction time decreases depending on the number of GPU computational cores and other hardware quality.  Because GPU acceleration process involves data transfer between CPU host and GPU device and the experimental results consider the actual overall reconstruction time， the small block size would cause relatively more extra da⁃ta transfer expenditure and the reconstruction time of CPU algorithm may be smaller than GPU algorithm in this situation.  These trends are also shown in Fig.  8， Fig.  9， and Fig.  10.  The MBCS algorithm with GPU ac⁃celeration completes high-resolution image reconstruc⁃tion faster when the block size is greater than 16 × 16.  Even the average acceleration ratio can reach hundreds of times when the block size is greater than 64 × 64 as shown in the column of “GPU（s）” in Table 2.Second， the average time for single-block recon⁃struction with different image sizes using the MBCS algo⁃rithm with GPU acceleration is very close in the experi⁃ment according to the data in “AVG/blk （s/blk）” column in Table 2.  This result suggests that reconstruction with a bigger block should be more reasonable under the given hardware configuration.  A comparison of the reconstruc⁃tion speeds among 128 × 128， 256 × 256， and 512 × 512 pixels shows that multi-image stitching is feasible.  From the data in the last row of Table 2， the MBCS algo⁃rithm with GPU acceleration used a block size of 256 × 256 to reconstruct one 512 × 512 high-resolution image in about 0. 2 s， which is equivalent to reconstructing 4 256 × 256 high-resolution images or 16 128 × 128 high-resolution images in 0. 2 s.  For the 128 × 128 scene， the recovery speed of stitching multiple frames can reach 0. 013 seconds per frame； in other words， the high-reso⁃lution frame rates can achieve real-time or near-real-time performance.  However， construction of the measurement matrix is too difficult when the image size is too large.  Hence， the MBCS reconstruction algorithm with GPU ac⁃celeration can use frame-stitching to improve the recon⁃struction frame rate and large block reconstruction to ob⁃tain high-quality reconstruction images.
3 Conclusion 

We proposed an optical parallel image prototype sys⁃

tem based on the FPA CI system combined with the 
MBCS algorithm， which can be used low-cost and low-
resolution infrared sensors to perform real-time imaging 
and display of short and medium infrared spectrum.  And 
through theoretical analysis and the visible optical imag⁃
ing experiments， the effectiveness and practicability of 
the proposed MBCS method were verified.  We also dis⁃
cussed the MBCS measurement matrix of the reconstruc⁃tion model and under-sampling feature of CS for fast im⁃
aging in the highly parallel CI system.  The reconstruc⁃tion performances related to the block size， merging 

Table 3　Comparsion of MBCS reconstruction times be⁃
tween the CPU algorithm and GPU accelera⁃
tion for 128 × 128, 256 × 256, and 512 × 512 
scenes. The first column lists the size of high-
resolution images, HR stands for high resolu⁃
tion. The second column is the block size used 
to reconstruction, the third column shows the 
number of blocks in block reconstruction, the 
fourth column lists the time to recover one HR 
image in Matlab, the fifth column lists the 
time to recover one HR image by the MBCS 
algorithm with GPU acceleration, the sixth col⁃
umn lists the average time to recover each 
block of HR image, and it is equal to corre⁃
sponding value in column “GPU (s)” divided 
by the corresponding value in column “Blks 
Cnt”

表 3　CPU和GPU MBCS算法重建速度对比，分别为 128×128,
256×256,512×512成像场景，第一列为目标高分辨重建结果的
分辨率大小，第二列为合并重建块大小，第三列为合并块后重
建块数目，第四列为CPU重建时间，第五列为GPU重建时间，
第六列为单个重建块GPU重建平均时间
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simultaneously to further increase the frame frequency of reconstruction.Table 3 lists the performance of the MBCS algorithm with GPU acceleration.  The results show that this perfor⁃mance is much better than that of the CPU reconstruction algorithm for a block size greater than 16 × 16.First， the experiment results shown in Fig.  8， Fig.  9， and Fig.  10 are consistent with the simulation experi⁃mental results as the size of the measurement block in⁃creases.  For the CPU reconstruction process， as the block size initially increases， the reconstruction time de⁃creases.  Later， when the size is further increased， the computational cost of block reconstruction increases rap⁃idly， and the overall reconstruction time increases， too.  This phenomenon is consistent with the simulated results obtained using CPU MBCS algorithm as shown in Fig.  5.  However， for the GPU acceleration process， the overall reconstruction time decreases depending on the number of GPU computational cores and other hardware quality.  Because GPU acceleration process involves data transfer between CPU host and GPU device and the experimental results consider the actual overall reconstruction time， the small block size would cause relatively more extra da⁃ta transfer expenditure and the reconstruction time of CPU algorithm may be smaller than GPU algorithm in this situation.  These trends are also shown in Fig.  8， Fig.  9， and Fig.  10.  The MBCS algorithm with GPU ac⁃celeration completes high-resolution image reconstruc⁃tion faster when the block size is greater than 16 × 16.  Even the average acceleration ratio can reach hundreds of times when the block size is greater than 64 × 64 as shown in the column of “GPU（s）” in Table 2.Second， the average time for single-block recon⁃struction with different image sizes using the MBCS algo⁃rithm with GPU acceleration is very close in the experi⁃ment according to the data in “AVG/blk （s/blk）” column in Table 2.  This result suggests that reconstruction with a bigger block should be more reasonable under the given hardware configuration.  A comparison of the reconstruc⁃tion speeds among 128 × 128， 256 × 256， and 512 × 512 pixels shows that multi-image stitching is feasible.  From the data in the last row of Table 2， the MBCS algo⁃rithm with GPU acceleration used a block size of 256 × 256 to reconstruct one 512 × 512 high-resolution image in about 0. 2 s， which is equivalent to reconstructing 4 256 × 256 high-resolution images or 16 128 × 128 high-resolution images in 0. 2 s.  For the 128 × 128 scene， the recovery speed of stitching multiple frames can reach 0. 013 seconds per frame； in other words， the high-reso⁃lution frame rates can achieve real-time or near-real-time performance.  However， construction of the measurement matrix is too difficult when the image size is too large.  Hence， the MBCS reconstruction algorithm with GPU ac⁃celeration can use frame-stitching to improve the recon⁃struction frame rate and large block reconstruction to ob⁃tain high-quality reconstruction images.
3 Conclusion 

We proposed an optical parallel image prototype sys⁃

tem based on the FPA CI system combined with the 
MBCS algorithm， which can be used low-cost and low-
resolution infrared sensors to perform real-time imaging 
and display of short and medium infrared spectrum.  And 
through theoretical analysis and the visible optical imag⁃
ing experiments， the effectiveness and practicability of 
the proposed MBCS method were verified.  We also dis⁃
cussed the MBCS measurement matrix of the reconstruc⁃tion model and under-sampling feature of CS for fast im⁃
aging in the highly parallel CI system.  The reconstruc⁃tion performances related to the block size， merging 

Table 3　Comparsion of MBCS reconstruction times be⁃
tween the CPU algorithm and GPU accelera⁃
tion for 128 × 128, 256 × 256, and 512 × 512 
scenes. The first column lists the size of high-
resolution images, HR stands for high resolu⁃
tion. The second column is the block size used 
to reconstruction, the third column shows the 
number of blocks in block reconstruction, the 
fourth column lists the time to recover one HR 
image in Matlab, the fifth column lists the 
time to recover one HR image by the MBCS 
algorithm with GPU acceleration, the sixth col⁃
umn lists the average time to recover each 
block of HR image, and it is equal to corre⁃
sponding value in column “GPU (s)” divided 
by the corresponding value in column “Blks 
Cnt”

表 3　CPU和GPU MBCS算法重建速度对比，分别为 128×128,
256×256,512×512成像场景，第一列为目标高分辨重建结果的
分辨率大小，第二列为合并重建块大小，第三列为合并块后重
建块数目，第四列为CPU重建时间，第五列为GPU重建时间，
第六列为单个重建块GPU重建平均时间

HR img 
Size

128×128

256×256

512×512

Blk Size
2×2
4×4
8×8

16×16
32×32
64×64

2×2
4×4
8×8

16×16
32×32
64×64

128×128
2×2
4×4
8×8

16×16
32×32
64×64

128×128
256×256

Blks Cnt
4096
1024
256
64
16
4

16384
4096
1024
256
64
16
4

65536
16384
4096
1024
256
64
16
4

CPU （s）
5. 54
1. 38
0. 73
2. 59
1. 92

21. 02
553
113

48. 17
13. 66
8. 76

38. 25
119. 92
998. 98
282. 13
102. 49
55. 42
45. 13

106. 64
125. 16
71. 35

GPU （s）
261. 421
47. 4067
9. 91136
2. 4248
0. 6156
0. 1555
642. 82
158. 72

39. 4221
9. 5957
2. 3923
0. 6047
0. 1617

2604. 89
636. 393
158. 697
38. 346
9. 6851
2. 4376
0. 6357
0. 2239

AVG/blk 
（s/blk）
0. 0638
0. 0462
0. 0387
0. 0378
0. 0384
0. 0388
0. 0392
0. 0387
0. 0384
0. 0374
0. 0373
0. 0377
0. 0404
0. 0397
0. 0388
0. 0387
0. 0374
0. 0378
0. 0380
0. 0397
0. 0559
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multi-images into a single image and MBCS reconstruc⁃
tion strategy with GPU acceleration were analyzed.  In 
the experiment， we used the Hadamard matrix entries as 
the modulation pattern for parallel image acquisition and 
successfully achieved high-resolution scene imaging us⁃
ing a low-resolution sensor.  It proved that the MBCS can 
effectively improve the reconstructed image quality great⁃
er than the traditional method， meanwhile there is an op⁃
timal block size to achieve fast reconstructing and high 

imaging quality.  Depending on the GPU-based prototype and architecture， both the low-resolution image acquisi⁃tion and high-resolution image reconstruction were achieved simultaneously in real-time.In the optical experiment， the maximum compres⁃sion ratio 8×8 was carried out.  The imaging resolution can be increased by 64 times， but it is not the upper lim⁃it.  The system can well solve the inadequate resolution problem of the detector in infrared imaging， or even THz and other fields.  The frame performance of 5Hz can satis⁃fy the requirements of a great many fast imaging scenes.  In future work， we will explore more optimization strate⁃gies， such as the use of multiple GPU devices， and try more efficient modulation matrix and reconstruction algo⁃rithms to reduce data transfer expenditure between the CPU host and the GPU device.  We are also studying three-dimensional imaging and an embedded arm signal processors with a high-performance architecture.
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Fig.  8　 Reconstruction time for the 128 × 128 scene by the 
MBCS algorithm using CPU and with GPU acceleration for dif‐
ferent block sizes
图 8　128×128高分辨重建场景下CPU和GPU重建算法对比，
横坐标为合并块大小，纵坐标为时间
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Fig.  9　 Reconstruction time for the 256 × 256 scene by the 
MBCS algorithm using CPU and with GPU acceleration for dif‐
ferent block sizes
图 9　256×256高分辨重建场景下CPU和GPU重建算法对比，
横坐标为合并块大小，纵坐标为时间
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Fig.  10　 Reconstruction time for the 512 × 512 scene by the 
MBCS algorithm using CPU and with GPU acceleration for dif‐
ferent block sizes
图 10　512×512 高分辨重建场景下 CPU 和 GPU 重建算法对
比，横坐标为合并块大小，纵坐标为时间
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