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Point target detection based on deep spatial-temporal convolution neural
network

LI Miao"", LIN Zai—Ping] , FAN Jian—Peng1 ,  SHENG VVei—Dong1 , LIJun', AN Wei', LI Xin-Lei’

(1. College of electronic science and technology, National University of Defense Technology, Changsha 410073,
China;
2. The Xian Chinese Space Tracking Control Center, Xian, Shanxi 710000, China)

Abstract: Point target detection in Infrared Search and Track (IRST) is a challenging task. due to less informa-
tion. Traditional methods based on hand-crafted features are hard to finish detection intelligently. A novel deep
spatial-temporal convolution neural network is proposed to suppress background and detect point targets. The pro-
posed method is realized based on fully convolution network. So input of arbitrary size can be put into the net-
work and correspondingly-sized output can be obtained. In order to meet the requirement of real time for practical
application, the factorized technique is adopted. 3D convolution is decomposed into 2D convolution and 1D con-
volution, and it leads to significantly less computation. Multi-weighted loss function is designed according to the
relation between prediction error and detection performance for point target. Number-balance weight and intensity-
balance weight are introduced to deal with the imbalanced sample distribution and imbalanced error distribution.
The experimental results show that the proposed method can effectively suppress background clutters, and detect

point targets with less runtime.
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Introduction incoming targets from infrared sequences. They have

been wildly applied to many important fields, including
unmanned aerial vehicle (UAV) defense, territory sur-
veillance, space situation awareness (SSA) , precise

Infrared Search and Track (IRST) systems were de-

veloped to automatically search, capture and track small
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guidance, and so on'™". Obviously, small target detec-

tion is the key process in IRST, and the detection perfor-
mance decides whether the IRST is erected success or
not. Unfortunately, point target detection is still a great
challenge for many negative effects. (1) Although the
targets having a total spatial extent of less than 80 pixels
(9x9) are defined as small target by SPIE, the targets in
IRST may occupy fewer pixels (e. g., 3%3 pixels) .
(2) Very few or even no obvious textural features can be
extracted by hand due to limited spatial resolution'”. (3)
The intensity of target signal is very weak because of dis-
tant observation. (4) The sensor noise and background
clutter may be salient. In fact, the scattered clouds ap-
pearing at the edge of the big clouds are very similar as
point targets. For the above reasons, the weak point tar-
gets are usually submerged by noises and clutters, and
they are hard to be detected simultaneously with low false
alarm ratio, high probability of detection and strong ro-
bustness.

Many methods have been presented in the past de-
cades, such as mean subtraction filter ', median subtrac-
tion filter ', TopHat filter "', Max-Mean/Max-Median fil-
ter "Y', spatial-temporal accumulative difference ",
matched filter "', and local contrast measure (LCM) "
However, these methods cannot detect point targets in
complex background. Because they were designed based
on hand-crafted features, the performances heavily de-
pend on the completeness and accuracy of the features.
Unmatched hand-crafted features will result in the perfor-
mance degradation, and consequently the missed detec-
tion ratio and false-detecting ratio will increase rapidly.

Generally, those assumptions often adopted to sup-
port hand-crafted filters include: (1) point target can be
modeled as 2D Gauss model '*. (2) The target has a
signature of discontinuity with its neighboring regions
and concentrates in a relatively small region. (3) The
background is consistent with its neighboring regions.
However, in practical application, single hand-crafted
filter cannot well deal with different scenes, especially
when there are heavy clutters in the background. In or-
der to overcome the defects of single hand-crafted filter,
the combination of multiple filters based on different fea-
tures is often used in practical system. But the combina-
tion and order of different filters are still an intractable
difficulty. Besides, large number parameters of multiple
filters must be tuned very carefully. Unfortunately, this
work is very hard for human, and the algorithm optimiza-
tion heavily depend on the experience of designer.

In this paper, a deep spatial-temporal convolution
neural network based on deep learning theory is proposed
to detect point targets intelligently. To detect targets
from any image size, the fully convolution is adopted.
Thus, the proposed network and be trained by small-size
images, and tested by large-size images without any mod-
ification. In order to meet the requirement of real time,
the 3D convolution in the proposed method is factorized
into 2D spatial convolution and 1D temporal convolution,
fewer parameters are needed and the computing burden
is greatly decreased. Additional, the specified loss func-

tion is introduced to take the number imbalance and error
imbalance into account simultaneously. Simulation re-
sults demonstrate that the proposed approach can robust-
ly and effectively suppress background clutters and de-
tect weak point targets in infrared sequences.

The rest of the paper is organized as follows: Sec-
tion 1 reviews the related work about point target detec-
tion and deep learning based methods. Section 2 shows
the deep spatial-temporal convolution neural network.
The network architecture, factorized 3D convolution, ful-
ly convolution and novel loss function are introduced in
detail. The overall performance of the proposed method
and comparison results with other methods are presented
in Section 3. Finally, conclusions are drawn in Sec-
tion 4.

1 Related Work

Benefiting from the enhancement of computer, deep
learning techniques have been recently used in object de-
tection, visual recognition, and time series classi ficat-
ion. Especially, the deep convolutional neural network
(CNN) achieved impressive results at 2015 ImageNet
contest. After that, many deep learning based methods
are proposed in the field of target location and identifica-
tion, such as R-CNN "' Fast R-CNN"*" | Faster R-
CNN "7 Mask-RCNN """, and YOLO ""*" and. Tt has
been proved by many researchers that deep learning
based methods can automatically excavate more deep and
obscure features from the raw images directly from a mass
of training images, which are more beneficial to discrimi-
nate different objects than hand-crafted features.

Although many deep learning based methods are
studied in recent years, the targets involved in the above
methods are large targets, called as area targets, such as
human face, vehicle, and animal. The features of area
targets are distinctly different from point targets in IRST.
In fact, the area target may extend to hundreds of pixels
with abundant texture information, geometry informa-
tion, and color information, which can provide plenty of
details for processing. However, the point target is ex-
tremely not obvious in shape, size and color characteris-
tics, because they are generated from point source at
long distance, and only gray information is obtained by
infrared sensor. As a result, the existing detection meth-
ods based on deep learning for area targets are not suit-
able for point target detection in IRST.

Some methods inspired by deep neural networks to
detect point targets have been proposed recently. In
brief, these methods can be divided into three categories.

(1) Some methods simply convert the detection
problem into pattern recognition problem. Ming LIU
used traditional 2D CNN networks to judge whether there
are infrared small targets in infrared patches *''. The in-
put is fixed-sized in these methods. The network cannot
be self-adaptive for arbitrary size, because of the fully
connected layers. Essentially, these approaches can be
regarded as fixed patch-wised recognition methods.

(2) Many researchers try to combine traditional pre-
detection and deep learning based recognition. At May
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2018, DDP-CNN was proposed based on data-driven pro-
posal and deep learning-based classification by Ryu "',
including region proposal step and classification step.
The region proposal step is realized based hand-crafted
features (mean subtract filter) to find suspected target re-
gions, and the classification step is finished by deep
learning (consisting of two convolution layers, one max
pooling and two fully connected layers). So, the DDP-
CNN can be regarded as partial intelligent recognition
method. Besides, the pooling layers lead to low position-
ing accuracy.

(3) 2D CNN networks based on spatial features are
used to detect small targets by some researchers. Lin’s
method is designed to detect infrared targets in oversam-
pling images "'. The oversampling sensors are very dif-
ferent from that of usual sensors. As a result, the target
size in oversampling system may be increased several
times as much, and they are considered as extended tar-
get. Larger size leads to more texture features. Besides,
only spatial features are not enough for the point target
detection. Thus, Lin’ s method does not well deal with
point target detection.

This work will focus on detecting point targets with
high performance and less runtime by deep spatial-tempo-
ral convolution network.

2 Proposed method

2.1 Network architecture

For some reasons, exiting CNN networks cannot be
directly used to detect point targets. Firstly, the tradi-
tional CNN networks are used to detect large area tar-
gets, and accurate spatial coordinates are thrown away
due to pooling layers and fully connected layers. Howev-
er, the targets in IRST are point targets, which must be
located precisely by the pixel or sub-pixel. Secondly, for
point target detection, each pixel may present a small tar-
get, and infrared image should be processed pixel by pix-
el. Thus, batch detection method is wanted. Thirdly,
the input of traditional networks usually is fixed-size be-
cause of fully connected layers, which limits the flexibili-
ty in practical application. Thus, the special network
must be designed based on the characters of point target.

Fortunately, we have found some characters of point
target, and they can make it possible to overcome the
above shortcomings. For example, the main features of
point target can be obtained by statistical analysis based
on its small neighboring region. Thus, smaller receptive
filed (RF) of network is enough for point targets in com-
parison with area targets. As a result, one hand, fewer
stacked layers in network are needed, which can reduce
the complexity and computation. On the other hand,
pooling layers and fully connected layers, used to en-
large receptive filed by image compression and feature in-
tegration, can be given up.

For the above reasons, the proposed network is hier-
archically constructed by stacking different convolutional
layers. The network architecture is shown in Fig. 1.

The proposed point target detection network takes
video clip as input, and produces a residual image with
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Fig. 1 The proposed network architecture.
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the same size of the input. The residual image represents
the estimated point target intensity after background sup-
pression. The final target index can be obtained by
threshold segmentation easily.

In Fig. 1, “C-n” indicates the index of convolution
layer. The number of feature maps is denoted by the
number before @, and the size of kernel is represented
by the number after @. For example, the kernel with 1 X
3 X 3 represents the depth, height and width are 1 pixel,
3 pixels and 3 pixels, respectively.

This method consists of three parts. Firstly, the bot-
tom of this network (C-1 to C-4) is a stack of 3D convolu-
tional layers, which are focus on low-order spatiotempo-
ral features. To improve their efficiency, the factorized
3D convolution is adopted, as introduced in Section
2.2. In second part, the 3D spatiotemporal feature maps
generated from video clip are compressed into one 2D hy-
brid feature map. This operation is carried out by the
convolution over the whole video clip in time dimension.
In third part, the high-order hybrid features are intensive-
ly learned by more convolution kernels. Finally, feature
fusion across different channels is achieved by 1 X 1 con-
volution in channel dimension, which makes sure that
the output size is same as that of input. The 1 X 1 convo-
lution is equivalent to cross-channel parametric pooling
layer, and allows complex interactions of cross channel
information.

The process is modeled with a fully convolutional
network. Convolutional layer is architecture with shared
parameters, so all pixels can be processed by the same
operation. The feature maps, input and output of each
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convolutional layer, can be modeled as feature results
with size d X ¢ X h X w, where d, ¢, h and w are depth,
the number of channels, height, width, respectively.
For the first convolutional layer, the input is the infrared
video clip, and the size is h X w, the length of video clip
is d (d is set to 5 in this paper) , the number of channel
is 1 (because the output of infrared sensor is gray im-
age). The output feature map indicates a particular fea-
ture representation extracted based on all locations on the
input, which can be obtained via convolving the input
feature map with a trainable kernel and adding a train-
able bias parameter. In this work, the input feature map
is denoted as X. The weights and bias of convolution ker-
nel are represented by W and b. Thus, the output feature
map can be computed by

f(X;Wb)=W*X+b (1)

where *_ denotes the convolution operation with stride s (s
is 1 in this work). Feature representation ability can be
enhanced by point-wise nonlinearity operation following
with each convolutional layer, and ReLU is adopted in
this method. Unlike traditional methods, non-linear
down-sampling operation (e. g. , max pooling) is thrown
away, because pixel-wise prediction is very important for
point target detection.
2.2 Factorized 3D convolution

Point target can be detected by 2D convolutional
neural networks under smooth background. However,
these methods do not provide robust detection in complex
background, especially when the clutters are strong as
shown in Section 3. 2. The reason is that only spatial in-
formation is not enough to discriminate true or false tar-
gets. Thus, both spatial and temporal information must
be fully utilized.

2D convolution is performed only spatially, and tem-
poral information of the input is lost. 3D convolution is
done spatiotemporally, and both spatial information and
temporal information of the input are preserved. Thus,
3D convolution is well-suited for spatiotemporal feature
learning, and it is adopted in the proposed method.

Traditional 3D convolution can be regarded as that
2D spatial convolution and 1D depth projections are per-
formed simultaneously. Thus, the cost of computational
complexity is exceptionally high, even higher than the
peak of common computers. Although many studies have
proven that deep 3D convolutional neural networks can
obtain spatiotemporal features even better than human
level accuracy, it is beyond the applicable level. To
solve the problem of real time and limit memory space in
applicable application, the factorized 3D is adopted,
which unravels spatial and temporal convolutions
apart”™ . It means that 2D spatial convolution layer
and 1D temporal convolution layer are sequentially car-
ried out as shown in Fig. 2. In this figure, (k, i,j) repre-
sents the pixel at k frame with the coordination(i,j). Ac-
ceptable accuracy with significantly less computation can
be achieved by stacking them together.

As shown in Fig. 2, the factorized 3D convolution is
equivalent to 3D convolution. The factorization can be
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Fig. 2 The sketches of 3D covolution and factorized 3D convo-
lution: (a) 3D covolution; (b) factorized 3D convolution.
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modeled by
Convs;, = Conv,, ® Conv,, ,(2)

where ®represents the Keonecker product. Conwv,, is the
3D convolution. Conv,, and Conv,, denote the 2D convo-
lution (spatial convolution) and 1D convolution (tempo-
ral convolution) , respectively.

The computation comparison of 3D convolution and
factorized 3D convolution is listed as Table 1. The num-
ber of parameters of traditional 3D convolution with 1024
3D kernels is about 28. 67K, and the requirement of
computation is about 0. 06GFlops. It can be approximat-
ed by 32 2D kernels and 32 1D kernels. As a result, on-
ly 9.38K parameters and 0. 03GFlops are required by
factorized 3D convolution. So, the factorization can re-
duce the computation burden by 50%.

Table 1 Computation comparison of different convolu-

tions.
*1 AEEBRHHESILE
Item Flops (G) Parameters (K)
3D Conv. 0. 06 28.67
Factorized 3D Conv. 0.03 9.38

2.3 Fully convolution

Pooling layer and fully connected layer take impor-
tant role in traditional deep-learning methods for area tar-
get detection.

Typical pooling operations include average pooling
and max pooling. They can be considered as non-linear
down-sampling. For example, the size of feature map is
reduced to a quarter of original after 2 X 2 pooling layer.
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Obviously, the compressed feature maps are coarse and
reduced-resolution, and lots of detailed information has
been lost ", Even so, such coarse features (including
color, shape, texture, and so on) are enough to locate
and recognize area targets. For point target, single pixel
may represent one important target, so any information
lost can cause unexpected consequence. Thus, the
whole feature maps should be fully and intensively ana-
lyzed, and pooling layer should not appear in this net-
work.

Furthermore, the fully connected layer brings multi-
ple local features from different regions together, but it
limits the input size. It means that the size (height and
width) of train image must be same as the size of test im-
age.

To overcome those shortages, the proposed network
only consists of many convolution layers, called fully con-
volution method. The 2D convolution layers with 1 X H X
W kernel are used to extract spatial features, while the
1D convolution layers with D X 1 X 1 kernel are adopted
for feature extraction in time domain. Different convolu-
tion layers are connected in series, and it makes the fea-
tures from both spatial convolution and temporal convolu-
tion to be deeply integrated. By choosing slip step=1,
the intensity generated from point target is estimated pix-
el by pixel. So, pixel-wise processing is carried out by
the proposed fully convolution network.

Additionally, it has been demonstrated that small
receptive fields of 3 X 3 convolution kernels can better
learn complex features with deeper architectures ™. Con-
sequently, the spatial receptive field is set to 3 X 3 in the
proposed network, while the temporal depth of the 3D
convolution kernels are adjusted as needed.

2.4 Multi-weighted loss function
The multi-weighted L1 norm loss function is pro-

posed in this work, and can be expressed as
N M

RS e

i=1j=1

!

Yy = Yy

’(3)

where N is the number of training samples, M is the num-
ber of pixels in training sample, y is the ground truth
for the jth pixel in ith training sample. y is the output of

the proposed network. w'(“\‘urazlfql

Iy is the number-balance

weighting parameter, and w(’;’.‘]fi“l is the intensity-balance

weighting parameter. The different weighting parameters
are jointly used to trade off the false alarms and missing
alarms. The loss function is minimized during the train-
ing, and it indicates that the predicted target intensity
gradually reaches the truth.

The sample imbalance encountered in training of
point target detection may bring extreme error. The im-
balance between target samples and background samples
can overwhelm training and lead to degenerate model, es-
pecially when background samples are far more than tar-
get samples. In fact, the background samples generally
belong to majority class, while the target samples are in
the minority. In practical application, the background
images can be easy and often obtained, however the true

targets are relatively rare. If the sample imbalance can-
not be solved, the training is inefficient. For example,
the extreme sample imbalance may lead to true target can
be completely ignored. In order to alleviate the bias in
performance caused by imbalanced sample distribution,
the number-balance weight w(‘l“j';““l is assigned to each
sample to weaken the relative impact of background sam-
ples, while strengthen the impact of target samples.

w(‘\;”g’;“’ can be calculated by
N.
NumBal i
) * |\ Background (4)
N NBruﬂAgrmuul ifirh Sample iS background (5)
i N ifi" sample is true target

where N"** and N™ are the number of background
samples and the number of target samples, respectively.
The training sample includes the background samples
and the target samples, i.e. N = N 4 [ /ekerond,

For point target, the detection result can be ob-
tained by threshold segmentation based on the output af-
ter background suppression. Although the error sum may
be same for different predicted results, the detection re-
sults are obviously different as shown in Fig. 3. In this
figure, each rectangle represents one pixel, and indicat-
ed by (i,v), where i is the index of pixel and v is the pre-
dicted value. The ground truth is shown in Fig. 3 (a),
and all pixels belong to background. Two possible error
distributions are shown in Fig. 3 (b) and (c¢). Though
the error sums of both (b) and (¢) are 0.9, the result of
(¢) may bring more false alarms, because the 5th pixel
can extremely likely over the threshold during segmenta-
tion. Thus, different weighting parameters should be
adaptively given to different error distributions, called in-
tensity-balance weight.

In this work, the intensity-balance weight is repre-

IntBal

sented by Wiy s and can be calculated by

1, if

!

Yy = Y

<d,

wh};r}Bul - , (6)
@ |y - 0]

2
dth

!

Yy ~ Y| > du

if

The calculation of w(';”_’j“’ can be shown as Fig. 4.

As described in Fig. 4, when the original error is
greater than d,, the weighting parameter of the pixel is
assigned with larger value such that the network is
trained with less false alarms. d,, is set based on the pri-
or segmentation threshold.

3 Simulation results

3.1 Experiment scheme and evaluation metrics

In this section, three experiments are performed to
evaluate the performance of the proposed method. A
large amount of infrared samples are generated based on
point target model and real background images shown as
Fig. 5, and the sequences are 5 frames long.

In this paper, the weak target is regarded as point
target, because of long-range observation. The point tar-
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Fig. 3 The example of different error distributions: (a) the ground truth; (b) 1th predicted result with uniform error; (c) 2th predicted

result with concentrated error.
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Fig. 4 The function of intensity weighting parameter.
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gets are generated by 2D Gaussian function as follow-

ing (3, 141‘
2 2

T(x,y) = ]P exp _% (x 8;@) N (y 52}/(')

x y

> ()

where T(x, y) is target projection on image planar, x and
y represent the spatial coordinates, (xc, yc) represents the

target center position, I, denotes the peak intensity, &7
and & are the variance in row and column direction.

Furthermore, the observation of optical image em-
bedded with dim point target can be obtained as follow-
ing [3,141.

F(x,y) = T(x,y) + B(x,y) + C(x,y) , (8)

where F(x,y) represents the output image, B(x,y) de-
notes cloud background, C(x, y) is noise.

For the background samples, the ground truth is a
fully zero-value image. If there are target pixels and
background pixels at the same time in the training sam-
ple, the ground truth only contains the gray values of tar-
get pixels, and the others are set to zeros. The prepro-
cessing before entering the network is necessary for all

Fig. 5

The example of samples: (a) the target samples; (b)
the background samples.
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training and testing samples. In this work, the prepro-
cessing is carried out by de-averaging and normalization.
It should be noted that the same average is used for all
samples, because the sequences are obtained by same
sensor. As a result, the absolute intensity of point targets
can be better preserves to support distinction. Besides,
d,, = 0.2 in these experiments.

In the first experiment, the point targets are detect-
ed by the proposed method, Lin’ s method ™ , Max-
Mean filter """, TopHat filter"”’ and Spatial-Temporal
Accumulative Difference method (STDA) ‘', respec-
tively. The proposed method and Lin’s method belong to
deep learning based solution, and the others are tradi-
tional methods based on hand-crafted filters. Besides,
the STDA is a classical method based on the spatial-tem-
poral fusion. The experiment is performed to validate the
detection performance of the proposed method compared
with existing methods. It illustrates the proposed method
can significantly improve point target detection perfor-
mance in heavy clutters.

In the second experiment, the availability of the pro-
posed method with different input size is proved. It dem-
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onstrates the advantage inheriting from fully convolution.

In the third experiment, the detection performance
of the proposed method is evaluated under different con-
ditions including original signal-to-clutter ratio (SCR)
and jitter of sensor.

In order to measure the performance, the following
evaluation metrics are introduced.

To measure the ability of removing background, the
background suppression factor (BSF) is introduced ™.
It can be computed by

O-in
BSF = , )

out
where o, represents the standard deviation of original im-
age, and o, denotes the one of output image, respective-

ly.
The quality of image can also be indicated by SCR.
It is defined as

scr=" (10)

g,

b

where u, is the target intensity without background, and
o, represents the standard deviation of local background
region ',

The comprehensive detection result is evaluated by
Receiver Operating Characteristic (ROC). The ROC
curve can describe the detection result by a function with
the probability of detection (p,) and the probability of
false alarms (p,) 222300 s defined by

d

Pi= (11)

where N, denotes the number of detection reports from
true point targets, and NN, denotes the number of true tar-
gets. p,is defined by

Pp=— (12)

where N, represents the number of detection reports from
false alarms, and N, is the number of pixels of all testing
images.

The simulation environment in this work is shown in

the Table 2.

Table 2 The simulation environment.

x2 HERESH

Item Parameter
CPU Intel i7, 2. 8GHzx12
GPU Nvidia—1080Ti
RAM 64GB
System Ubuntu 18. 04
Disk 2TB
Software Pytorch 1. 1
Language Python 3. 6

3.2 Comparison with other methods
In this simulation, 10000 training samples are ob-
tained based on 10 real background sequences. Mean-

while, 10000 testing samples are obtained from another
10 real background sequences. The point taregets in sam-
ples are randomly added based on point target model.
Mean SCR of original image is about 6. The jitter of sen-
sor is simulated as random Gaussian distribution with o =
0.2. The size of infrared image is 25 X 25 pixels,

Fig. 6 and Fig. 7 show the results of different meth-
ods for background images. In these figures, (a) is the
original images, and (b) shows the result of the proposed
method. Subsequently, (c)-(f) are the results of Lin’s
method, Max-Mean, TopHat and STDA, respectively.
The background in Fig. 6 (a) is smooth, thus these meth-
ods can obtain good results. There are many clutter sig-
nals in Fig. 7 (a), and they cannot be suppressed by tra-
ditional spatial methods (see Fig. 7 (¢)-(e), where the
clutter signals after processing are even over 2). As
shown in Fig. 7 (f), benefiting from the fusion of spatial
information and temporal information, the STDA
achieves better result than traditional spatial methods.
However, the max value of the output of the proposed
method is less than 0. 05, and the clutter signals can be
rejected more easily.
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Fig. 6 The original image and results of different methods for
1™ Background. : (a) the original input; (b) the result of our
method; (c) the result of Lin’ s method; (d) the result of Max-
Mean; (e) the result of TopHat; (f) the result of STDA.
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Fig. 8 and Fig. 9 show the results for target sam-
ples, in which the targets are marked by white circles.
The target in Fig. 8 is stronger than background in the
original image, and the target can be detected by the
above methods. However, the target in Fig. 9 is far weak-
er than many clutters in the original image (the target is
about 1, and some clutters are about 3). The weak point
target cannot be found in the results of Max-Mean and
TopHat. Those traditional spatial methods fail to catch
the point target. The Lin’ s method and STDA can well
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Fig. 7 The original image and results of different methods for 2" Background. : (a) the original input; (b)the result of our method;
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extract target intensity, but many clutters are still kept.
So, the performance of Lin’ method and STDA greatly
degrade under complex background. However, not only
the weak target can be detected, but also the clutters can
be well suppressed by the proposed method as shown in
Fig. 9 (b). The result of our method has fewer clutters
compared to the other methods, which is important to
keep lower false-alarm rates under the same probability
of detection.

The original image and standard deviation in the
time domain of Target 2 are shown in Fig. 10. In fact,
Target 2 is very weak and hard to be detected just based
on spatial feature or temporal feature. The proposed
method can extract spatial-temporal feature to suppress
background, and the fusion of spatial-temporal feature is
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automatically achieved.

In order to intuitively show the background suppres-
sion performance, the comparisons of SCR and BSF for
two point targets are listed in Table 3 and Table 4. The
SCR is computed based on the output images of different
methods. It is proved that the proposed method can en-
hance the ability of background suppression, which is
very import for detection by threshold segmentation.
More specifically, the mean SCRs of Max-Mean,
TopHat, Lin’ s method, STDA and our method are
12. 1859, 11.5509, 14.3741, 18.2125 and 19. 7507,
respectively. The BSFs of those methods are 1.2498,
1. 0821, 2. 6755, 3.4656 and 4. 2671, respectively. It
is clear that the proposed method can obtain the best
background suppression.
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Fig. 8 The original image and results of different methods for Target 1: (a) the original input; (b)the result of our method; (c) the re-
sult of Lin’s method; (d) the result of Max-Mean; (e) the result of TopHat; (f) the result of STDA.
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The ROC curves of different methods are depicted
in Fig. 11. The methods based on spatial-temporal fusion
(including the proposed method and STDA method ) dem-
onstrate better performance than the spatial methods (in-
cluding Max-Mean, Tophat and Lin’s method). The pro-
posed method shows the best detection performance with
low false alarm probability and high detection probabili-
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Fig. 10 The display of Target 2: (a) the original gray image; *,*:2;:/"’ x /z/

(b) the standard deviation in the time domain.
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Table 3 Background suppression comparison by SCR in

o
3

Probability of detection
o
D

output.
Max— - Lin'
Proposed Lin’s - TopHat STDA 04 ¢ Lin's method !
Mean --+-- Max-Mean / /
Target | 20.4061  16.8253 20.9308 20.0394  19..8378 03| —=— TopHat i
Target2  19.0953 11.9228  3.4410  3.0623  16.5872 02 Bl ST,AD . 3
Mean  19.7507 14.3741 12.1859 11.5509  18.2125 0 02 04 06 08 1 12
False alarm ratio 3
x 10
%a:‘)le % E?;;ﬁ%gggg;;;ggzgmn comparison by BSF. Fig. 11 The ROC curves of different methods.
= " 11 AT 5 ROC 2k
Proposed Lin’s - TopHat STAD
Mean
Target 1 1.3527 1.0293  1.2477  1.1210  1.3375 For IRST application, the high real time is re-
Target2  7.1815  4.3218  1.2520  1.0431  5.5936 quired. The comparison of average runtime is listed in
Mean 42671 2.6755 12498 L0821 3.4656 Table '5.’ More time is needed by the proposed method
than Lin s method, because infrared sequences are put
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into the network to extract the spatial-temporal features
in this work. However, the proposed method is still fast-
er than Max-Mean, TopHat and STDA, and can meet the

requirement of real time.

Table 5 Average runtime comparison.
x5 FHHEMBELLE

Proposed

Lin’s Max-Mean TopHat STDA

Average
5.84x107 3. 38x107 3. 30107 1. 33x107% 4. 51x107°
runtime(s)/sample

3.3 Evaluation with different input size

In the above experiment, the input size is set to 25 X
25pixels for convenience. But, it is not fixed. Benefiting
from fully convolution, each pixel can be processed us-
ing the same parameters at the same time. As a result,
though the proposed network is trained with the input
size25 X 25, input of arbitrary size can be put into the
network and correspondingly-sized output can be ob-
tained at once. On the contrary, the patch-wise method
is fixed.

The image of Fig. 9 (a) is extended to 35 X 35 pix-
els and 45 x 45 pixels as shown in Fig. 12 (a) and
Fig. 12 (c¢) , respectively. The position of target is
changed to (25, 23) and (34, 28) from (16, 18).
Meanwhile, the results are shown in Fig. 12 (b) and
Fig. 12 (d), respectively. Comparison shows that results
in three cases are in agreement with each other. So, un-
der sufficient resources, the proposed network is applica-
ble to images with different sizes. The important advan-
tages of the proposed method are shift-invariant and posi-
tion invariant.

3.4 Comparison under different conditions

In order to illustrate the detection performance of
the proposed method under different conditions, the in-
frared sequences with different jitters and original SCRs
are tested.

In Fig. 13, the targets are added based on mean
original SCR 6, the ROC curves under different jitters
are shown. The standard deviations of inter-frame jitters
are set to 0.1, 0.2, and 0.5, respectively. Along with
the increase of jitter, the probability of detection decreas-
es gradually. The probability of detection changes from
98% to 77% , when the false alarm ratio is 10™. Thus, it
is very important for the proposed method that keeping
sensor motionless.

The detection performances of the proposed method
for point targets with different original SCRs are ana-
lyzed, and jitter is fixed to 0.2. Fig. 14 shows ROC
curves under different SCRs, which are set to 4, 6 and
8, respectively. Though some targets may be missed,
the proposed method can achieve fairly high probability
of detection. For example, the probability of detection
can reach about 90% at the false alarm ratio is 107,
when the mean original SCR is 6. It should be noted that
the SCRs of some targets in this test sets are lower than

mean SCR.
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Fig. 12 The result of different input size: (a) the input image
with 35%35 pixels; (b)the result of image with35%35 pixels; (c)
the input image with 45%x45 pixels; (b) the result of image
with45x45 pixels.
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K13 AP T ROC HhZk

4 Conclusions

In IRST, point detection is still a great challenge for
some reasons. Traditional methods can’t robustly and in-
telligently detect point targets in complex background. In
this work, a deep spatial-temporal convolution neural
network is proposed to address this problem. The net-
work is built based on fully convolution without pooling
layer and fully connected layer, factorized 3D convolu-
tion and multi-weighted loss function are adopted to en-
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hance the performance. The proposed method is com-
pared to other four methods, including traditional meth-
ods (e. g., Max-Mean filter TopHat filter and Spatial-
Temporal Accumulative Difference method) and deep
learning based method (e. g., Lin’ s method). The de-
tection performance is evaluated by different metrics,
such as signal-to-clutter ratio, background suppression
factor. Meanwhile, ROC curves are drew to confirm the
robustness of the proposed approach. Additionally, the
comparison under different conditions is carried out for
the proposed method, and the affections of original SCR
and sensor’ s jitter are demonstrated in detail. Conse-
quently, the deep spatial-temporal convolution neural
network can effectively detect point targets using less run-
time.
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