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Abstract

In this paper, we propose an automatic image based smoke detection using source separation. In

particular, we assume that the region of interest (smoke region) is a linear combination of smoke and back-

ground pixels, and we estimate the smoke component. More specifically, we extend the linear hyperspectral

unmixing techniques to the context of image based smoke detection in order to separate the smoke component

from the background. The proposed approach yields promising results especially with smoke images captured

outdoor.
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Introduction

Smoke alarm devices represent a safety-critical system
able to save lives and properties. Typical systems use sensors
which detect the decrease of the ionized molecule in the air‘'.
However, such devices should be very close to the smoke
source and positioned on the smoke trajectory to be effective
in timely manner. Moreover, they are unable to localize the
smoke source. One should notice that these limitations are
more acute if the alarm system intends to detect smoke in out-
door scenes.

Image based detection through video recording of outdoor
scenes emerged as a promising alternative to detect smoke. It
relies on automatic detection of the smoke in video frames cap-
tured using stationary cameras. Despite the variety of image
processing techniques proposed in the literature, recognizing
the smoke in outdoor scene image remains a challenging task
due to the complexity and high variance of the visual charac-
[2]

teristics of the smoke in such scene Another alternative to

overcome the smoke detection challenge consists in formula-

ting it as image source separation'®’.

These techniques start
by modeling the background. Then, based on the assumption
that the smoke region of interest is a linear combination of

smoke and background. the smoke component is also mod-
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eled. Next, the feature descriptors are extracted from this
smoke component. Finally, the pixels or regions are assigned
to “Smoke” or “non-smoke” classes.

In this paper, we extend the linear hyperspectral unmix-
ing techniques to the context of image based smoke detection
in order to separate the smoke component from the back-
ground. More specifically, we apply hyperspectral linear un-
mixing approaches on smoke images and investigate their abil-

ity to detect the smoke component.

1 Related works

Source separation is an emerging technique in the image
processing and the remote sensing field“. It aims to decom-
pose a single image into several images. This decomposition
gets more challenging in case of lack of knowledge about the
scene being viewed which yields an infinite number of poten-
tial solutions ( decompositions ). Independent Component
Analysis (ICA)!™ was proposed as a source separation app-
soach which assumes that image components are statistically
independent. ICAM™ has been used in many applications such
as the discrimination between light, reflection and shadow of
an object'® , the separation between artifacts in astrophysical
images'®, and the categorization of reflective and fluorescent

object appearancel” . Similarly, the authors in [8-107] adopted
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ICA approach™’ for cartoon image decomposition into piece-
wise smooth components. One should note that ICAM) cannot
be used for smoke separation because the image background in
the captured scenes can be either piece-wise smooth or textur-
allttl,

Recently, other unsupervised source separation ap-
proches have been proposed in the litterature. In particular,
the authors in [12] formulated the image separation problem
as a Bayesian estimation problem™® and used the Expectation
minimization EM"") to optimize it. Similarly, the researchers
in [15], proposed a source separation using the Maximum
Likelihood approach, while in [16-17 ] the non-symmetrical
half-plane (NSHP) Markov random fields and the Morpho-
logical Component Analysis (MCA) have been used respec-
tively. On the other hand, different studies proposed the
transparent layers separation''”*) to solve the source separa-
tion challenge. Yet, the smoke pattern in the image is still
considered as a texture which does not handle the transparen-
cy reflection characteristics.

The authors in [21] introduced a method to separate two
transparent layers containing non-rigid scene dynamics. This
method uses global-to-local space-time alignment approach to
detect and align the repetitive behavior. Then, the median op-
erator to space-time derivatives is applied to separate the two
transparent layers. Besides, the researchers in [3] proposed
an interactive image decomposition model which involves the
user supervision through the assignment of a small number of
regions to one of the image layers. Even so, the user involve-
ment is not practical for smoke detection. In [22], the au-
thors handled the separation of multiple image layers using
spatial shifts and mixing coefficients. However, this method
is restricted to uniform translations. Another research han-
dled the separation of reflection effect captured behind glass
using the particularity of the background layer and the reflec-
tion layer gradients'®). Nevertheless, in case of smoke, this
not suitable because several background scenes share similar
image gradients with the smoke pattern such that the case of
uniform walls and homogeneous smoke. In [11], the authors
proposed a method that separates the smoke components from
images using a model that mixes linearly the smoke compo-
nent and the background of the image as follows

fi=as,+ 0 —a)b +n @B)
where n, € RV is the model error, b, € RY represents the back-
ground without smoke, and s, € RY is the smoke component.
The variable o, €[0,1] represents the mixing weight at a time
t. More precisely, given a video frame and its corresponding
background, «, is estimated by minimizing the mixing er-

[ This approach consists of three major steps: (1) The

ror
background modeling, (2) the separation of smoke compo-

nent, and (3) the classification task as smoke or not. Three

approaches have been proposed to define the smoke compo-
nents. The first one uses the fact that neighboring smoke pix-
els are expected to have similar intensity. Yet, this model
fails to discriminate between smoke and other objects showing

[ The second ap-

surface with similar smoothness property
proach uses the principal component analysis PCA™Y, 1In
fact, each image block with N pixels is perceived as a point is
an N-dimensional space, and pure smoke image regions are
likely to lie in a low-dimensional subspace because they are
The third approach improved the PCA

approach by using sparse representation to obtain all possible

similar in texture'.

smoke variations. In [25], the authors compared the sparse
approach to the approaches proposed in [ 1-2] which use
wavelet'?) and LBP"") visual descriptors, respectively. They
stated that image separation based approaches in [ 11] outper-
forms the visual descriptors based approaches proposed in [ 1-
2] whether heavy or light smoke is covering the whole or part
of the image. In fact, extracting the visual feature from the
smoke component only, rather than the whole image, im-

proves the smoke detection performance.

2 Proposed approach

Typical images usually show several objects which exhib-
it various color and texture characteristics. The extraction of
low-level features is intended to encode the visual specificities
of these objects and recognize them among others. These spe-
cial characteristics are typically visual signature. However, in
the case of smoke images, the pixels in the region of interest
can be a mixture of smoke and other background objects. In
order to separate the smoke from the background, we propose
to unmix the image pixels and determine the signature of each
pixel called endmember or pure pixel.

Let Y=[y; | be the matrix of features where y;; is the y"
entry of pixel 7, and let S= s, | be the endmenber matrix
where the vector sk is the signature of the element k. Let P=
[ p;» ] be the abundance matrix where p, is the proportion of
endmember £ in pixel i. The convex geometry unmixing mod-
el can then be expressed as

Y = PS (2)
The problem formulation in (2) requires the unsupervised
learning of both P and S. The solution to this problem is sub-

ject to:

Dipi=1 (3

and

o< p <1 €D
Although the nature of a hyperspectral pixel is different from
the pixel low-level feature, they are both represented using

highly dimensional vectors. We propose to expand the linear
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hyperspectral unmixing techniques to the context of image
based smoke detection and separate the smoke component
from the background. Namely, we use the Mixture Analysis
based on Spectral Summarization ( MASS)!**), the Iterated
Constrained Endmembers (ICE)™J, and Sparsity Promoting
Iterated Constrained Endmember (SPICE)"™,

2.1 The Spectral Analysis Based on Spectral Summarization

(MASS)

The spectral analysis based on the spectral summarization
MASS! is based on the fuzzy clustering of the spectra of the
hyperspectral image. After clustering the set of pixels Y =
[ y; ] using FCMPY, the U =

{uwi b yier, e viet..n » and the C cluster centers C={C,, -,

fuzzy memberships,

C.} are then used to unmix the hyperspectral scene. It has
been proven in [ 28] that the matrix of endmembers E=/[ e, ]

isdefined as

E = (WUU"Y 'K (3
where K=k Jyici,...c and k; is obtained by
3 LIe) (6)

= N
Do
k=1

2.2 The Iterated Constrained Endmembers (ICE)

The Iterated Constrained Endmembers (ICE) algo-

[29]

rithm"*” minimizes the error between the pixel and the esti-

mated pixel while minimizing the volume bounded by the end-
members. Consequently, the algorithm detects the endmem-
bers that offer a tight fit around the data'®!. ICE algo-

[28]

rithm"** minimizes the following objective function

, RSS | SSD
HONTTHPMM—1D

where RSS is the least squares minimization of the residual

J=0a- D

sum of squares, SSD is the sum of squared distances between

endmembers SDD, and y is the regularization parameter that

balances RSS and SSD. The minimization of the objective func-

tion J is done using the quadratic programming technique.

2.3 The Sparsity Promoting Iterated Constrained Endmember
(SPICE)

The Sparsity Promoting Iterated Constrained Endmember
(SPICE)™) unmixing algorithm is an extension to the ICE™
algorithm by adding sparsity-promoting term in order to! es-
timate the number of endmembers. The SPICE objective

function is then

J = (1—, BSS SSD S SPT (8

WONT MM T
where SPT is the sparsity promoting term. Similarly, as for
ICE™, P is optimized using the quadratic programming of

the objective function in (8).

3 Experiments

3.1 Datasets Description

In this work, we use the benchmark videos for smoke de-
tection in [ 32-35]. First, we extract the frames of these vide-
0s. The obtained images are smoke free, or contain smoke
with different visual characteristics. From these frames we
select a subset of smoke images to build two data sets, the in-
door image data set and the outdoor image data set. The in-
door image data set consists of 60 000 pixels which have been
collected from 6 different indoor images with different back-
grounds. Figure 1 shows the considered images. As it can be
seen, smoke pixels vary from solid to transparent with differ-

ent texture and thickness.

(a) (b) (©)
() © ()

Fig. 1

Sample smoke images captured indoor

The outdoor image data set is another pixel wise data
consisting of 110 000 pixels. 26 699 pixels are smoke pixels
that vary from solid to transparent and with different texture
and thickness. These pixels are taken from 11 different out-
door images with different backgrounds. Shows the consid-
ered images. Each pixel from the two data sets is labeled as
smoke or smoke free pixel.

3.2 Performance Evaluation

In order to assess the performance of the proposed ap-
proach, we use the Relative Unmixing Measure"*®, This per-
formance metric measures the unmixing performance by com-
paring two abundance matrices. Let P‘” be the abundance
matrix obtained using the unmixing approach, and P’ be the
ground truth abundance matrix obtained using the labels of
pixels in hyperspectral scene. This metric compares P and
P® and records the relativity of each pair of pixel to the same
endmember. The coincidence matrices @ and @* are com-

puted as follows

M
D = ZP],Pn 9
i=1

where M is the number of endmembers, j and i are the inde-
xes of the points j and i. Then, the two coincidence matrices

are used to derive the following scores

N -1
N (@7 ,0%) = D> @ d (10)

j=2 k=1
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N -1
Npp (@7 .0%) = DI — @) A — o) (13)
j=2 k=1

Huber index (Qpuper) can be calculated using the scores above

as follows

(O]

=N55+N[)sy ND_ =NDS+NDD’ N_DZNSD +N[)D. A large

value of QHubert means that the two abundances P’ and

P are highly similar.

(k)

Fig. 2 Sample smoke images captured outdoor

3.3 Experimental Results

We assess the performance of the proposed approach
which consists in separating smoke pixels and smoke free pix-
els using hyperspectral unmixing approaches on visual fea-
tures as described in section 3. We first extract four visual

features which are blue wavelength™, Color Moments™*,

(261 L1 with re-

Wavelets transform and Local Binary Pattern
spect to each pixel. For the color moment descriptor, we use
the mean and standard deviation of a 5X 5 neighborhood of the
considered pixel. The wavelet is extracted on a 10 X 10 win-
dow using Daubechies low-pass filter on 5 levels. The LBP is
computed using a 10x10 window, and the blue wavelength
component of the pixel is used as visual descriptor. After con-
catenating the four considered descriptors, we obtain a 172-
dimensional feature vector for each pixel. This obtained fea-

ture is then fed to the considered convex unmixing approaches

which are MASS?!, ICE™/ and SPICE""), We assess the
performance of these techniques to unmix smoke and smoke

free pixels using the relative unmixing measure™®,

As ex-
plained in section 3.3, SPICE determines automatically the
number of endmembers. We run it first than use the same
number of endmembers for the ICE and MASS. One should
mention here that the number of endmember should be the
same for each image since it is related to the number of ele-
ments present in the image. One way to set this number is to
run the experiment several times with respect to each ap-
proach and consider the best result. However, since SPICE
determine this number in an unsupervised manner, and we
need a fair comparison between the three considered approa-
ches, we consider the value learned by SPICE.
3.3.1 Outdoor Images

We run MASSI?, ICE', and SPICE"" on the 11 out-
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door images and report the obtained QHubert score™® for all SPICE. As shown in Table 1, the MASS unmixing approach
images and unmixing approaches in Table 1. Notice that for overtakes the other methods for all images.

all images, we use the number of endmembers learned by

Table 1 Results obtained using outdoor images

Image Method QHubert # EM Image Method QHubert £ EM

MASS 0. 6230 5 MASS 0. 6291 15

1 ICE 0. 5001 5 7 ICE 0. 3545 15
SPICE 0. 3745 5 SPICE 0. 3679 15
MASS 0. 8357 4 MASS 0. 6901 15

2 ICE 0.763 4 8 ICE 0. 3430 15
SPICE 0.7429 4 SPICE 0. 1357 15
MASS 0.7179 4 MASS 0. 6064 15

3 ICE 0.53 4 9 ICE 0.5165 15
SPICE 0. 6697 4 SPICE 0.5571 15
MASS 0. 8064 4 MASS 0. 6070 25

4 ICE 0.6185 4 10 ICE 0. 4008 25
SPICE 0. 6834 4 SPICE 0.2414 25
MASS 0.6391 4 MASS 0.5899 20

5 ICE 0. 4325 4 11 ICE 0. 1380 20
SPICE 0. 4466 4 SPICE 0. 5084 20
MASS 0.5631 4

6 ICE 0. 3582 4
SPICE 0.4028 4

Image Original image MASS

o
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Fig. 3 Outdoor smoke unmixing

(a): Original image; (b): Smoke component unmixed using MASS;

(¢): Smoke component unmixed using ICE; (d): Smoke component unmixed using SPICE

Figure 3 displays the unmixing results of the 11 outdoor
images obtained using MASS?* , ICE', and SPICEF". In
Figure 3, the pixels recognized as smoke are shown in white
while the smoke free pixels are displayed in Black. As one can
see, for image 2 the best unmxing result was obtained using
MASS (0. 86). In fact, for this image, although the smoke is

not spread on a large area, it is thick and non transparent.

Besides, the sky is blue and cloud free which yields the good
unmixing performance. On the other hand, the image 11
which gave the lowest unmixing score using MASS (0. 59) in-
cludes white clouds in the sky which were wrongly unmixed
as smoke. The results obtained using the proposed approach
to unmix smoke pixels are not satisfactory with indoor ima-

ges. In fact, the similarity between the visual properties of
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the smoke and some regions of the indoor images, such as the
light, affected the unmixing performance. On the other hand,
the proposed approach yields better results with outdoor ima-
ges using MASS'?! unmixing. It reached an unmixing score of
80% for some images. However, for the image which con-
tains clouds this score decreased to 60%. Besides, the smoke
was accurately detected in all indoor and outdoor images.

We conducted pixel unmixing using MASS'?), ICE™®/,
and SPICEP") based on the low-level features extracted from a
set of indoor images. The obtained unmixing performance is
reported in Table 2. As it can be seen, the QHubert unmix-
ing score is relatively low for the three unmixing approaches
with all images. This means that these approaches are unable
to discriminate between smoke pixels and smoke-free pixels
for indoor smoke images.

In order to illustrate these results, we display in Figure 4
a sample indoor smoke image and its corresponding smoke
components obtained using MASS, ICE and SPICE, respec-
tively. The white pixels Figure 4 (b), (c¢) and (d) represent
the pixels unmixed as smoke while the black ones are unmixed
as smoke free pixels. As one can notice, in addition to the
smoke, the lights are also categorized as smoke. This inabili-

ty to discriminate between smoke pixels and light pixels af-

fects the overall performance of the unmixing approaches we

use in this research, and yields the results in Table 2.

Table 2 Results obtained using indoor images

RGB original images MASS

(a) (b)

Image Method QHubert #EM
MASS 0. 0093 9
1 ICE 0 9
SPICE 0.0481 9
MASS 0.1020 7
2 ICE 8.6781 X101 7
SPICE 0.0565 7
MASS 0.0282 7
3 ICE 0.0100 7
SPICE 0. 0070 7
MASS 0.0017 20
4 ICE 0 20
SPICE 0.0038 20
MASS 0.0727 7
5 ICE 0. 0036 7
SPICE 0.0207 7
MASS 0. 0485 15
6 ICE 0.0029 15
SPICE 0.0671 15
SPICE

(d)

Fig. 4 Example of indoor smoke detection. (a) original image, (b) smoke component unmixed using MASS,

(¢) smoke component unmixed using ICE, (d) smoke component unmixed using SPICE

3 Conclusions

In this paper. we proposed a novel smoke detection solu-
tion based on hyperspectral unmixing approaches. More spe-
cifically, we used unmixing approaches to recognize the image
pixels which form the smoke region. The obtained results
showed that for outdoor smoke images, the MASS unmixing
approach™® outperforms the other unmixing algorithms. Al-
though the performance measure varies from one image to an-
other, the unmxing results using MASS remain in the range
[0.86, -

cases where the smoke is not spread on a large area of the im-

, 0.59]. The optimal results were obtained with

age. On the other hand, the lowest unmixing results using

MASS were obtained with images showing white clouds in the

sky. In fact, the clouds have been wrongly unmixed and cate-
gorized as smoke pixels because they exhibit high visual simi-
larity. The presence of lights in the images captured indoor
affected the performance of the proposed unmixing based ap-
proach because the lights were wrongly detected as smoke. In
order to overcome this limitation, the difference between con-
secutive frames can be estimated to accurately detect the
smoke. This would improve the recognition of lights and/or
clouds because their visual properties are exactly the same in
consecutive frames, and yield better smoke detection.
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