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Abstract Powdery mildew and stripe rust are two of the most prevalent and destructive wheat diseases causing
severe decreases in wheat yield in China. It is necessary to quantitatively identify different diseases for spraying
specific fungicides. In this study, a line-scanning hyperspectral imaging system (ImSpector VIOE) was utilized
to capture spectral and imagery information of wheat leaves infected by powdery mildew. stripe rust and nor-
mal leaves. Based on 320 hyperspectral images, strong spectral reflectivity responses were discovered at the
bands of 550~680 nm in the wheat leaves infected with powdery mildew and stripe rust after the savitzky-go-
lay (SG) smoothing method. To reduce the dimensionality of the spectral matrix, 3, 6 and 30 variables were
extracted as sensitive wavelengths from full spectra for different diseases using X-loadings of principal compo-
nent analysis (PCA), successive projections algorithm (SPA), and competitive adaptive reweighted sampling
(CARS), respectively. Least squares support vector machine (LS-SVM) and extreme leaning machine (ELM)
were applied to build identification models using full spectra and sensitive wavelengths extracted by X-loadings
of PCA,SPA and CARS to distinguish powdery mildew, stripe rust and normal leaves. The accuracy rates of
all the models in the calibration set and test set were above 94. 58 %. Among these models, the ELM classifi-
cation model combined with X-loadings of PCA had the best performance, with accurate identification rates of
99. 18% on the calibration set and 100% on the test set. Moreover, this model was simple in structure with
only three variables (560, 680 and 758 nm). Meanwhile, the microstructure of three kinds of wheat leaves
were also studied. Although the infection mechanisms of these two diseases were slightly different, they both
destroyed the mesophyll cells, reduced chlorophyll content and photosynthesis markedly. The string of chan-
ges leaded to weakened light absorption but increased reflectivity in the visible light band. Thus. the results
indicated the potential for the rapid and non-destructive detection of wheat diseases by hyperspectral imaging,

which could help to develop online multispectral detection system for different kinds of plant diseases.
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rust induced by Puccinia strii formis f. sp. tritici are two of

Introduction economically diseases that have compromised the safe produc-

[1]

tion of wheat in China for a long time They each have a

Powdery mildew caused by Blumeria graminis and stripe wide incidence range, strong infectivity and epidemicity, and
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cause severe damage. What’s more, they are frequently com-
plicated by each other. The pathogenesis of the two wheat
diseases are different, and different bactericides should be ap-
plied for prevention. Incorrect use of pesticides poses a hidden
danger to food security, and pesticide residues can also pollute
the soil and underground water.

Common methods for the diagnosis and detection of plant
diseases include visual plant disease estimation by human rat-
ers, microscopic evaluation of morphology features to identify
pathogens, as well as molecular, serological, and microbio-
logical diagnostic techniquest’. But these methods demand
experienced individuals with well-developed skills in disease
detection and are thus subject to human bias. Consequently, a
convenient, accurateand simple method is urgently needed for
qualitative identification of different kinds of diseases at wheat
seedling stage.

Hyperspectral imaging is an emerging technique, which
combines conventional imaging and spectroscopy to acquire
both spatial and spectral information from the detected target
in the same time. Because of the combined features, it has
been successfully used for agricultural product quality evalua-

(3] 1, plant disease identifica-

tion™, food defect inspection"*
tion"® and so on. Most scholars have carried out experimental
studies on the common disease types in crops such as

s tV and oilseed rapet'®,

wheat'™ , barleyt™ , rice!®’, sugar bee
attempting to clarify the spectral response features of disease
and search for optimal models to improve the exactness of dis-
ease recognition.

With regard to wheat diseases, some scholars have stud-
ied the spectral response features of stripe rust and powdery
mildew. For instance, a study conducted by Zhao et al.l'
showed that the spectral reflectance of wheat leaves infected
by stripe rust was positively correlated with disease severity
at the bands of 550~680 and 750~1 300 nm. Zhang et al. ['?
discovered a strong spectral response at 520 ~ 720 nm of
wheat powdery mildew. It is noteworthy that the characteris-
tic bands of wheat stripe dust and powdery mildew are greatly
overlapped in some spectral waves, but at this present time,
to the best of our knowledge, there are few reports on the de-
tection of these two kinds of wheat diseases. Liang et al. 1'%
selected the sensitive bands of powdery mildew at 519, 643,
696, 764, 795, and 813 nm, and the sensitive bands of stripe
rust at 494, 630, 637, 698, 755, and 805 nm, to establish
the discriminant model for recognizing powdery mildew and
stripe rust, with the accuracy of 92%. However, this method
involves many bands, which is not convenient for the develop-
ment and realization of a multispectral system for wheat disea-
ses. Therefore, further intensive study is required.

The objective of this study is to discriminate powdery

mildew and stripe rust in wheat through a series of opera-

tions, including spectral data collection, dimensionality reduc-
tion, related characteristic band extraction, and identification
model establishment based on hyperspectral imaging technolo-
gy. This optimized identification model can provide a new
method for the rapid and accurate diagnosis of powdery mil-

dew and stripe rust in wheat at the leaf level.

1 Materials and Methods

1.1 Sample Preparation

Wheat Mingxian 169 was grown in plastic pots (7 ecm X7
cmX 8 cm) at a density of 10~ 15 strains in each pot, in a
rust-free growth chamer [ (16 =3) °C, 16 h light/8 h dark-
ness | in the State Key Laboratory of Crop Stress Biology for
Arid Areas and College of Plant Protection, Northwest A& F
University, China. When the seedling had grown to two or
three leaves, the first wheat seedling leaf was gently rubbed
with a clean moistened finger to remove the waxy layer from
the leaf surface. Puccinia strii formis and Blumeria graminis
on naturally infected leaves (from living tissues) were collect-
ed and evenly smeared on the first wheat seedling leaf with a
brush, and the inoculation zones were labeled with a marker.
Each pathogen was inoculated on ten pots, while another ten
pots without inoculation were used as healthy controls. The
inoculated plants were covered with wet polyethylene bags to
maintain 100% relative humidity and were stored for 24 h at
10 °C in a dark chamber. Immediately after incubation, plants
were transferred to a clean growth chamber set to a diurnal
cycle of 16 °C for the 16-h light period and 13 °C for the 8-h
dark period™'*!,

the surface of the inoculated wheat leaves. 80 strip rust leav-

On day 15, various scabs were observed on

es, 100 powdery mildew leaves, and 140 healthy leaves were
collected.
1.2 Acquisition and Calibration of Hyperspectral Images

The hyperspectral images of wheat leaves were captured
by a line-scanning hyperspectral imaging systemin reflectance
mode. The hyperspectral imaging system was constituted by a
visible/infrared imaging spectrometer ( ImSpector VI10E,
Spectral Imaging, Finland), an area array CCD camera with
320X 256-pixel resolution (XEVA2616, XenlCs, Belgium),
an illumination system with four 150-W quartz tungsten halo-
gen lamps adjusted at an angle of 45° to illuminate the camer-
a’s field of view, a mobile platform operated by a stepper mo-
tor, a camera obscurer, and a computer with data acquisition
and preprocessing software ( Spectral-Cube data acquisition
V10 software). The hyperspectral imaging system was set up
in the laboratory with the room temperature of (28 +1) °C
and relative humidity of 50%. The spectral region was 375~
1 017 nm, with a total of 256 bands. To obtain clear and un-

distorted hyperspectral images., the distance between samples
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and lens was 65 cm, and the speed of the conveyor was 14
1

acquisition.

mm * s ', and the exposure time was 5 ms during the image
Yellow Rust
Powdery Mildew
Healthy Wheat
CCD camera
Spectrograph
Lens
\ Tllumination
Mobile {atform Sample
Computer
Fig. 1 Photographs of wheat seedlings (upper) and schematic diagram of hyperspectral imaging system (lower)

1.3 Spectral Acquisition and Preprocessing

The spectral reflectance of collected samples were collect-
ed from hyperspectral images using ENVI+IDL 5. 1 software
(ITT Visual Information Solutions, Boulder, CO, USA).
Rectangles of 5 X 4 pixels were selected on inoculation zones
of the corresponding leafl as the regions of interest (ROI).
The spectra of each pixel in the ROI were averaged, and this
spectrum was considered the spectral reflectance of the sam-
ple. According to this procedure, a total of 320 mean reflec-
tance spectra of three kinds of wheat samples were obtained
and imported into the MATLAB 2016a software ( Math-
Works, Natick, MA, USA) for further data analysis.

The common processing methods of SG smoothing, mul-
tiple scatter correction, standard normal variate transforma-
tion, first derivative, and second derivative were tested in this
study. SG smoothing was found to eliminate spectral noise
while maintaining the spectral characteristics. Therefore, SG

smoothing was selected for data treatment throughout the

study.

The kennard-stone(KS) algorithm was adopted to divide
80 powdery mildew samples, 100 wheat stripe rust samples
and 140 normal wheat samples at a ratio of 3 ¢ 1 in this study.
Afterward. the respective division results were summarized to
form calibration sets with 240 samples and test sets with 80
samples.
1.4  Characteristic Wavelengths Selection and Classification

Models

Full spectra contain all spectral information with large
data files, information redundancy, and multiple collinear var-
iables, which could add to the complexity of identification
model, reduce the computation speed, and affect the model
accuracy. Therefore. it is necessary to reduce the dimension-
ality of the spectral data to improve the correct identification
rate. In this study, PCA, SPA and CARS" were used as
optimization methods to select the characteristic wavelengths.

Classification approaches aim to divide the data into a
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number of distinct classes. LS-SVM and ELM™* algorithm-
were applied to build classification models to distinguish pow-
dery mildew, stripe rust and normal leaves in this study. And
the model performances were evaluated by accuracy rate of
identification. Typically, a higher correct identification rate
was associated with better model precision. In addition, the
number of input variables in the model was used to evaluate
whether the model was simple or not, and fewer input varia-

bles in the model suggested a simpler model.

2 Results and Discussion

2.1 Spectral Features of Wheat Leaves

The mean spectral reflectivity curves and standard devia-
tion of stripe rust, powdery mildew, and normal wheat sam-
ples were shown in Figure 2. It could be seen that the spectra
of inoculated and unvaccinated wheat seedlings had similar
change trends with wavelength. However, the mean reflectiv-
ity of inoculated wheat leaves was higher than that of the
healthy samples over the band range of 400 ~1 000 nm. In
particular, there was a strong spectral reflectivity response in
the wheat leaves infected with powdery mildew and stripe rust
at the band of 550 ~ 680 nm, and the greatest reflectance
difference could reach 0. 15 compared with healthy leaves. In
addition, the leaf reflectivity manifested small fluctuations in
the band at 750~900 nm, which was largely consistent with
the result trend observed by Yuan et al’”). It was previously
reported that pathogen infection led to structural destruction
of chloroplasts, loss of cell water, and weakened the spectral
absorption of pigment and water. Thereby, the spectral re-
flectivity of the infected leaves increased at the visible band
and the short-wave infrared band.

0.6 7 — Powdery Mildew Mean Spectra + SD

Stripe Rust Mean Spectra + SD

0.5 — Healthy Wheat Mean Spectra + SD
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~
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Fig. 2 Mean spectral reflectance curves [ with standard devia-
tion (SD) ] of wheat leaves with powdery mildew, stripe
rust and healthy samples covering the range of 375 ~

1017 nm

2.2 Selection of Effective Wavelengths
2.2.1 Selection of Effective Wavelengths by PCA
PCA was employed to transform the full wavebands (256

wavebands) into several principal components (PCs). Load-
ings of first PCs were applied for qualitatively identifying the
optimal wavelengths that were responsible for the specific fea-
tures. The first three PCs explained 97 % original variations
and their score plots were displayed in Figure 3(a). It indica-
ted that three groups of samples provided an apparent cluste-
ring and could be distinguished clearly in the score plots. The
X-loadings of PC1 to PC3, which revealed the importance of
the analyzed variables, were shown in Figure 3(b). The X-
loadings values reflected the correlation coefficients of the
principal components at different wavelengths. The wave-
lengths corresponding to the wave peaks or troughs were con-
sidered as the characteristic wavelengths. The first three X-
loadings plots of PCA indicated that the reflectance at three
wavelengths (560, 680 and 758 nm) with the relatively large
loading coefficients had the greatest discriminatory effect on

healthy and infected wheat.
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Fig. 3 Characteristic variables selected by PCA
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(a) ; Score projection of the first three principal components; (b): X-
loadings plot of the first three principal components on full wavelength
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2.2.2 Selection of Effective Wavelengths by SPA

The number of characteristic wavelengths to be selected
was set from 1 to 30, and the optimal characteristic wave-
lengths were selected based on the root mean square error of
calibration (RMSEC). As shown in Figure 4(a), the value of
RMSEC decreased rapidly when the number of wavelengths
increased from 1 to 5, then decreased slowly with the increase

of number of variables. Since too much variables will increase
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the complexity of model and slow down the computation
speed, the number of variables is often selected when the
RMSEC value is the minimum or has a relatively small de-
crease with increasing numbers of variables. In this study,
the determined number of wavelengths was 6. The wave-
lengths selected finally were marked with solid shapes in Fig-
ure 4(b): 481, 516, 562, 675, 789 and 838 nm. The selected
wavelengths were used as the inputs for the discrimination
models.
0.75 1
0.701
0.65 1
0.60 1
& 0.5
)
E 0.50 1
0451
0.40 1
0.351
0.30 1
0.25

(a)

0 5 0 15 20 25 30
Number of variables included in the model
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0.05 1

(b)

Reflectance

Reflectance
B Selected waves

400 500 600 700 800 900 1000 1100
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Fig. 4 Characteristic variables selected by SPA
(a): Variation of RMSEC with increasing number of variables in

SPA; (b): 6 characteristic wavelengths selected by SPA

2.2.3 Selection of Effective Wavelengths by CARS

The results for variable selection for wheat diseases using
the CARS method are shown in Figure 5. Under the action of
the exponential decay function, the rate of decrease of variable
number became slower with the increase in running times, in-
dicating the stages of roughing and handpicking of the CARS
algorithm for key variable selection. The RMSECV value first
decreased and then increased, with the smallest RMSECV
value at the sampling frequency of 22, which suggested that
information variables irrelevant to wheat disease information
were eliminated in steps 1 ~22. As shown in Figure 5, the
selected spectral variable subset was optimal at the sampling

frequency of 22, which contained 30 spectral variables.
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Fig. 5 Characteristic variables selected by CARS

2.3 Comparison and Analysis of the Identification Models

Spectral data of the samples were divided into the calibra-
tion set and the test set based on the KS method. Meanwhile,
the full spectra, the effective wavelengths selected by PCA,
SPA and CARS, were treated as the input variables of the
discrimination models. The discrimination models to identify
different diseases were constructed by ELM and SVM, and
the models were verified using the test set samples. The iden-
tification rates of the three kinds of wheat leaves in the cali-
bration set and test set by the proposed model were shown in
Table 1. The correct identification rates of the eight models in
the calibration set and test set were above 94.58%. It could
be seen that the model based on the full spectra (FS) did not
display superiority, indicating that the full spectra not only
contained useful information but also contained noise. The 30
spectral bands selected by CARS could comprehensively re-
flect the effective information in the original spectra to distin-
guish the powdery mildew, stripe rust, and healthy leaves.
However, there were only six input variables in the model
constructed by SPA and three input variables in the model of
X-loadings of PCA, which were only 2.3% and 1. 1% of the
FS input variable numbers. thus greatly simplifying the rec-
ognition model.
2.4 Microstructure Images of Mesophyll Tissue Image

Wheat disease leads to external morphological and inter-
nal physiological changes of the leaves. In this paper, the im-
ages of cell microstructure of the wheat samples were obtained
with a laboratory electron microscope (Olympus-BX53, O-
lympus Corp. ,» Tokyo, Japan). Figure 6 depicted the micro-
structure images of mesophyll tissue of normal leaves and
leaves affected by stripe rust or powdery mildew. It could be
seen that the healthy ones had a complete structure of cross-

cut sections, a compact structure and plentiful epidermal
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cells, and the chloroplasts were attached around the cell wall
[Figure 6 (¢)]. The powdery mildew pathogen covered the
leaf surface to form the powdery mildew layer, then entered
the leaf tissue through a primary germ tube, destroyed the
histological structure of the mesophyll cell, deprived the leaf

of nutrients, and reduced the water and chlorophyll contents

[Figure 6(a)]. Urediniospores landed on the wheat surface,
entered the leaf tissue and accumulated to create a large num-
ber of summer spore banks or spore beds, after which the his-
tological structure of the mesophyll cell was destroyed and the

chlorophyll content reduced [ Figure 6(b)].

Table 1 Results of identification method for classifying different wheat diseases

Calibration sets
detected (undetected)

Test sets
detected (undetected)

Classification Variable Number of
method selection variables Powdery Stripe Healthy Accurac Powdery Stripe Healthy Accurac
methods mildew rust wheat /% V' mildew rust wheat Y Y
(60) 70) (110 (20) (30) (30)

FS 256 59 (D) 70 (0) 110 (0) 99. 58 20 (0) 30 (0) 30 (0) 100

SUM CARS 30 58 (2) 70 (0) 110 (0) 99.17 19 (1) 30 (0) 30 (0) 98.75
SPA 6 52 (8) 69 (1) 110 (0 96. 25 18 (2) 30 (0) 30 (0 97.50

PCA 3 47 (13) 70 (0) 110 (O) 94,58 18 (2) 30 (0) 30 (0) 97.50

FS 256 54 (6) 69 (1) 110 (0) 97.92 19 (D 30 (0) 30 (0 98. 75

ELM CARS 30 56 (4) 70 (0) 110 () 98. 33 19 (D 30 (0) 30 (0) 98.75

SPA 6 58 (2) 70 (0) 110 (0) 99. 17 20 (0) 30 (0) 30 (0) 100

PCA 3 59 (D) 70 (0) 110 (0) 99. 58 20 (0) 30 (0) 30 (0) 100

Fig. 6 Cell microstructure images of wheat leaf tissue infected with powdery mildew (a),

stripe rust (b) . and healthy wheat as control (c¢)

Although the infection mechanisms of these two diseases

were slightly different, both destroyed the mesophyll cells,

reduced chlorophyll content, intensified transpiration, re-

duced photosynthesis markedly. The string of changes led to
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weakened light absorption but increased reflectivity in the vis-
ible light band. However, the optimal sensitive band for each
disease varied according to the disease type, which was con-

21 Consequently,

sistent with the observations of Mahlein
wheat disease identification could be quantitatively realized
through monitoring the characteristic spectral changes of
wheat, which could provide timely and reliable monitoring of

wheat diseases.

3  Conclusions

A novel strategy for rapidly discrimination of stripe rust,

powdery mildew and healthy wheat leaves was proposed using
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