PMT 阵列在水下 MIMO 无线光通信中的应用

李金佳^{1,2}, 叶德茂³, 王林宁¹, 傅 康¹, 王永进^{1*}

南京邮电大学 通信与信息工程学院,江苏南京210003;
 2.哈尔滨理工大学(威海),山东威海264300;

3. 中国船舶集团有限公司第七一三研究所,河南郑州 450015)

摘 要:水下无线光通信具有的高带宽、低时延等特点,已成为水下通信的可行选择。系统发送端光源由6只绿光发光二极管(LED)构成阵列,接收端由3只光电倍增管(PMT)构成阵列,形成了6×3的多输入多输出(MIMO)传输方式。在室内10m水槽水下信道下,实现了1 Mbps的信息传输速率。通过MATLAB软件对接收平面光功率分布仿真,最大值为-35.8 dBm。此外,测试了 PMT 阳极输出电压波形,并推导出阴极电流波形。理论计算得出信噪比为19.4 dB,理论误码率约为1.1×10⁻⁵。所选PMT 模块理论上最小接收功率可低至1.5×10⁻⁹ W,体现出极高的探测灵敏度。最后,通过蒙特卡洛(Monte Carlo)数字仿真说明,在信噪比25 dB 可达到约35 bit·s⁻¹·Hz⁻¹的信道容量。 关键词:水下无线光通信; MIMO; 绿光 LED; PMT 阵列 中图分类号: TN929.1 文献标志码: A DOI: 10.3788/IRLA20200382

MIMO scheme for underwater wireless optical communication system using PMT array

Li Jinjia^{1,2}, Ye Demao³, Wang Linning¹, Fu Kang¹, Wang Yongjin^{1*}

College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
 Harbin University of Science and Technology (Weihai), Weihai 264300, China;

3. The 713th Research Institute of China Shipbuilding Industry Corporation, Zhengzhou 450015, China)

Abstract: Underwater wireless optical communication (UWOC) has the characteristics of high bandwidth and low latency, and have become a viable alternative for underwater communication. The transmitter and receiver arrays of this system are composed of six green light emitting diode (LED) and three photomultiplier tube (PMT), respectively, and forming a 6×3 multiple input multiple output (MIMO) transmission mode. This system achieved a 1 Mbps data transmission rate over a distance of 10 m water tank underwater channel. MATLAB was adopted to simulate this underwater channel model and predict the received optical power distribution on the receiving plane and the maximum value is -35.8 dBm. Moreover, the PMT anode output voltage and the cathode current waveform were tested. Derivation and calculation show that the signal-to-noise ratio (SNR) is 19.4 dB, and the bit error rate (BER) is approximately 1.1×10^{-5} . The theoretical minimum received power of the this PMT module can be as low as 1.5×10^{-9} W, which reflects its extremely high sensitivity. Finally, through Monte Carlo channel

叶德茂,男,研究员,博士,主要研究方向为图像处理、高精度跟瞄和水下光通信等。

收稿日期:2020-09-19; 修订日期:2020-10-24

基金项目:江苏省研究生科研与实践创新计划项目 (KYCX20_0712)

作者简介:李金佳,男,讲师,博士生,主要研究方向为水下/自由空间无线光通信。

通讯作者:王永进,男,教授,博士生导师,主要研究方向为可见光通信、微纳光电子器件与信息系统。

simulation, the performance of MIMO is further verified, and the channel capacity of 35 bit $s^{-1} Hz^{-1}$ can be reached at a SNR of 25 dB.

Key words: underwater wireless optical communication;

MIMO; green LED; PMT arrays

0 引 言

近年来,移动设备数量与无线连接服务的指数级 增长使射频资源日益紧张,海量数据对通信的高带宽 和低时延提出了更高要求,给传统通信技术带来巨大 的考验[1]。射频所占频段约为3kHz~300 GHz, 而电 磁波谱中的可见光 (375~780 nm) 部分所占频段介于 400~800 THz, 大约是射频带宽的1万倍。可见光通 信 (Visible light communication, VLC) 是以光波作为信 息载体进行数据传输的无线光通信 (Optical wireless communication, OWC) 技术, 具有绿色低碳、高带宽、 抗截获、免频谱申请及通信与照明兼具等特点。在发 光二极管出现后,世界照明的电力消耗从25%降到 了4%。历史上,光通信早于射频通信。1880年"电话 之父"Alexander Graham Bell 实现了可传输 213 m 的 光电话 (Photophone), 是最早的无线光通信系统。 VLC 与现有不同网络间的融合、优势互补,将极大的 解决通信频谱紧张问题,更好的改善人类的通信服务 体验[1]。可见光通信技术广泛应用于室内/户外通信 与照明、芯片内光互联、空间卫星通信等场合,凭借 光的抗电磁干扰特性,在核电站、矿井等电磁敏感场 景也有广泛应用。

可见光通信技术正在向深空和海洋方向发展。 海洋面积约占地球表面的71%,平均水深约3795 m, 且蕴藏着丰富的矿物、生物资源。然而,还有95%的 海底对人类来说还是未知的。随着人类对海洋的不 断探索与海洋信息化的发展,水下无线通信起到越来 越重要的作用。近十几年来,一种新兴的水下无线光 通信 (underwater wireless optical communication, UWOC) 技术已引起世界科技、商业和军事界的广泛研究兴 趣。水下无线光通信可理解为 VLC 技术应用在海洋/ 水下环境中,又称水下可见光通信 (underwater visible light communication, UVLC)。传统的水声通信具有通 信速率低、多径效应严重等不足。水下射频通信由于海水 对射频波段的严重衰减,使传输距离一般不足10m, 虽然在 30~300 Hz 的超低频 (super low frequency, SLF) 波段可显著提升通信距离,但需较长的天线和复杂的 系统设计。而 UWOC 采用光波作为信息载体,因此 具有高速低时延、高带宽、低功耗和高安全性等特 点,已成为水下无线通信的可选方式或重要补充[2-5]。 但是,海水对光波的衰减 (3.5~5 dB/m) 比对声波的衰 减 (0.1~4 dB/km) 严重的多, 使得 UWOC 系统接收端 光强信号微弱,并不适合于远距离传输,典型距离不 超过100m。另外,海水复杂的生化环境、海洋湍流 等现象使得海洋/水下信道存在着较强的频率选择性 衰落。因此,如何探测微弱的光强信号、抑制水下信 道衰落是 UWOC 系统不可回避的基本问题。

多输入多输出 (Multiple in multiple out, MIMO) 是 在通信系统收发之间构成多个并行且独立信道的天 线系统。它利用多径效应来改善通信质量,提高了通 信系统可靠性,有效抑制了信道衰落问题^[6-8]。MIMO 已是 4G/5G 移动通信的核心技术之一, MIMO 技术可 提供系统收发端分集增益和空间复用增益,并具有提 高系统容量、增大传输可靠性、抑制信道衰落等作 用^[2-4]。近年来, MIMO 技术已逐渐应用到水下无线 光通信领域。表 1 为近年水下无线光通信 MIMO (UWOC-MIMO) 系统的相关工作。参考文献 [9] 提出

Source/PD	MIMO Scheme	Ref.	Year
LED/PD	1×5 SIMO	[9]	2015
LED/PD	6×1 MISO	[10]	2016
LED/PIN	1×4 SIMO	[11]	2019
LED/APD	6×1 MISO	[12]	2020
LED/PMT	6×3 MIMO	This work	2021

表1 水下无线光通信 MIMO 系统 Tab.1 UWOC-MIMO system

了由 5 只光电二极管形成的阵列接收端,并分析了阵列 中器件间距问题以及水下湍流对系统的影响等。参 考文献 [10] 讨论了多输入单输出 (multiple input single output, MISO) 对水下弱湍流的抑制能力及性能改 善。参考文献 [11] 讨论了以 2×2 的 PIN 阵列为接收 端的水下系统。参考文献 [12] 设计了以 APD 为接收 端的 6×1 MISO 系统。另外,参考文献 [8] 对 UWOC-MIMO 系统的信道特性、性能表征等做了较深入的 分析。

文献中,很少有关光电倍增管 (Photomultiplier tube, PMT) 阵列的 UWOC-MIMO 系统的研究报道。 PMT 因内部具有电子倍增系统,是可检测极微弱光 信号的真空光电探测器件。相比雪崩光电二极管 (Avalanche photon diode, APD),其具有超高的灵敏度 和低噪声等特点,甚至可作为单光子探测器^[2]。虽然 PMT 具有体积大、脆弱、对电磁敏感及怕强光辐射等 不足,但 PMT 与 MIMO 技术相互结合,可抑制水下信 道衰落现象并实现水下微弱光链路远距离传输,这也 是此文的研究意义所在。

文中设计了基于绿光发光二极管 (light emitting diode, LED) 阵列和 PMT 阵列的 6×3 UWOC-MIMO 系统,重点对系统总体设计及 PMT 与 MIMO 的基本 原理与特点进行了介绍。

1 系统模型

系统结构框图如图 1 所示,发送端采用绿光 LED 阵列,接收端采用 PMT 阵列,形成了 6×3 的 UWOC-MIMO 系统,并由室内长为 10 m 的水槽模拟 水下信道环境。

图 1 水下无线光通信 MIMO 系统结构图

Fig.1 The structure of the proposed UWOC-MIMO system

1.1 发送端及绿光 LED 阵列

以太网收发器芯片为网口数据包提供物理层功能。现场可编程门阵列 (Field programmable gate array, FPGA) 实现 RS (Reed-solomon) 信道编码、光强调制,

并驱动 LED 阵列。通常,海洋水体对蓝绿光波段衰减相对较小,是天然的海洋光波传输低损耗窗。如图 2(a) 所示,光源由 6 只相同的绿光 LED 构成阵列, 形成发射分集,目的是抑制水下信道湍流、增大发送 光功率并降低收发两端对准要求^[7-8]。如图 2(b) 所示,为绿光 LED 的电致发光 (electroluminescent, EL) 谱,中心波长在 524 nm 左右。另外,为 LED 设计全 内反射透镜 (total internal reflection, TIR),用于减小发 射角度,达到适当减小水下信道几何衰减等目的。发射光束间要尽量减小相关性,使各个光束独立传输,这是 MIMO 技术的基本要求。由水下信道相干长度 分析 LED 孔径间距 *d* 应满足^[6]:

$$d \ge \sqrt{\lambda L} \approx 0.23 \text{ cm}$$
 (1)

式中: λ 为波长 (524 nm); L 为链路距离 (10 m)。

图 2 绿光 LED。 (a) LED 阵列结构; (b) 电致发光谱 Fig.2 Green LED. (a) structure of LED array; (b) EL spectra

1.2 光电倍增管 PMT 阵列

光电二极管 (photo-diode, PD) 是把光信号转变为 电信号的光电器件。PIN 二极管和雪崩二极管 (avalanche photodiode, APD) 为最常见的光电二极管。系 统采用具有极高灵敏度、低噪声和超快响应时间 的 PMT 作为光探测器件,此真空电子器件可用于极 限微弱光探测,成为水下远距离光通信的重要器 件^[2-3]。其工作原理为:光波透过其入射窗激励光阴 极面产生光电效应,使光电子向真空放出,再经聚焦 级汇集到倍增系统,最后由末极倍增极发射二次电子 通过阳极输出。

如图 3(a) 所示,系统选用滨松光子 (Hamamatsu

Photonics) 公司型号为 H10493-003 的电压输出型 PMT 模块,其光谱响应范围为 300~650 m、带宽达 8 MHz、 感光面积直径 φ22 mm、电流电压转换系数为 0.1 V/μA、 外形尺寸 φ35×120 mm。接收端由 3 支相同型号的 PMT 构成阵列,如图 3(b) 所示。

为了使接送端达到各路径的独立衰落副本, PMT间距 *d* 应大于水下信道相干长度^[9]:

$$\rho = \left[44.2K \left(\frac{2\pi}{\lambda} \right)^2 L \right]^{-3/5} \tag{2}$$

式中: K 为水下湍流强度, 取值为 $10^{-8} \sim 10^{-14} \text{ m}^{-2/3}$, 弱湍 流强度常取 $10^{-12} \sim 10^{-14} \text{ m}^{-2/3}$; L 为链路距离 (10 m); λ 为光波长 (445 nm)。经计算, 在 10 m 弱湍流条件下, 相干长度 ρ 取值约 0.1~1.7 cm, 实际的 PMT 间距容易 满足此条件^[9]。

1.3 自动增益放大器

为了适应因链路距离等引起的光信号强较弱变 化,设计了闭环负反馈自动增益控制 (automatic gain control, AGC)环节,即放大电路的增益自动地随信号 强度而调整,达到稳定并维持输出信号幅度的目的。 如图 4 所示,前置放大器输出电压信号经压控放大器 (voltage-controlled amplifier, VCA) VCA81 处理,再输 出送入运放 AD828 第一级做二阶压控高通滤波器输

出。AD828 第二级做全波整流器使用,采集 VCA810 输出信号幅度,由 STC 单片机控制数字电位器 (digital potentiometer) X9C103 做自动增益控制调节使用, 产生控制电压 0~~2 V,控制 VCA810 增益~40~40 dB。

2 水下光信道模型

2.1 水下光学特性

水下是时域、空域时变信道^[13],光波在水下传输 会经历复杂的生化 (Physio-chemical) 现象,分析光波 在水下的基本特性,有助于水下信道的建模及系统的 设计。水下固有光学特性 (Inherent optical properties, IOP) 和水下表观光学特性 (Apparent optical properties, AOP)^[3]。

吸收系数表示为:

 $a(\lambda) = a_w(\lambda) + a_{CDOM}(\lambda) + a_{phy}(\lambda) + a_{det}(\lambda)$ (3)

式中:右侧各项依次表示纯海水 (Seawater)、有色可溶 性有机物 (Colored dissolved organic material, CDOM), 又称黄色物质 (Yellow substance)、浮游植物 (Phytoplankton) 中的叶绿素 (Chlorophyll)、非色素悬浮粒子, 又称腐质 (Detritus) 的吸收系数。吸收系数与波长有 关,如纯海水的最低吸收窗为 400~500 nm 蓝绿波段。

光子与水分子及其他悬浮物质作用,还形成了散 射现象,并不消耗能量,散射系数表示为:

$$b(\lambda) = b_w(\lambda) + b_{CDMA}(\lambda) + b_{phy}(\lambda) + b_{det}(\lambda)$$
(4)

式中:各项与公式(3)类似,为相应物质的散射系数, 通常 b_{CDMA}(λ)可忽略不计。另外,散射系数还与悬浮 物质的浓度有关,而产生瑞利散射或米耶散射^[2-5]。

体散射函数 (Volume scattering function, VSF),能

精确的描述散射现象,即在某方向上单位散射体积、 单位立体角内散射辐射强度与入射体积上的辐射照 度之比。散射相位函数 (Scattering phase function, SPF) 表征散射方向的概率分布,定义为:

$$\tilde{\beta}(\theta,\lambda) = \frac{\beta(\theta,\lambda)}{b(\lambda)}$$
(5)

式中: $\beta(\theta, \lambda)$ 为体散射函数; $b(\lambda)$ 为散射系数。散射相 位函数很难测量,常用 (Henyey-Greenstein, HG)函数 代替:

$$\tilde{\beta}(\theta, g) = P_{\rm HG}(\theta, g) = \frac{1}{4\pi} \frac{1 - g^2}{\left(1 + g^2 - 2g\cos\theta\right)^{3/2}} \qquad (6)$$

式中:g为调整前向与后向散射相对大小的因子,g越接近1则光更有可能向前散射,g越接近-1则更加有可能向后散射。g的值等于全部散射角余弦的平均值。文献表明,g取 0.924 对于大多数水体都有比较好的近似^[14]。但是,HG函数在较小与较大散射角范围的表现不够好,因此提出更为精确的二阶 HG函数(Two-Term Henyey-Greenstein, TTHG)函数:

$$\tilde{\beta}(\theta, \alpha, g_f, g_b) = \alpha \tilde{\beta}(\theta, g_f) + (1 - \alpha) \tilde{\beta}(\theta, -g_b)$$
(7)

式中: α 为前向 HG 函数加权值; g_f 和 g_b 分别为前向、 后向 HG 函数因子。

朗伯-比尔定律 (Lambert's law) 描述光在介质中 传播时的衰减作用, 严格来说只适用于单色光:

 $P_R(cd) = P_T \exp\left[-(1 - \eta\omega_0)cd\right], \omega_0 = b/c \qquad (8)$

式中: P_T 为发射光功率; P_R 为接收光功率; d 为链路距 离; η 为散射因子 (Scattering factor), 其取值为 0~1, 描 述所接收到的多重散射光所占的比例, 是关于水的光 学特性和接收器偏振态、孔径和初始光源状态的复杂 函数; ω_0 为散射反照度 (Scattering albedo)。此式表示 接收功率与衰减长度 (Attenuation length) cd 和散射因 子间的函数关系。

水下信道直流增益为:

$$H_{los}(0) = \frac{(m+1)A_{PD}}{2\pi d^2} \cdot \cos(\alpha) \cdot \cos^m(\beta) \cdot g(\alpha)$$
(9)

式中:*m* 为郎伯模型阶数; *A_{PD}* 为接收端光电管有效面积; *α* 为光入射角; *β* 为光辐射角; *g*(α) 为接收端透镜 增益。

则接收端光功率表示为:

 $P_{R}(d) = P_{T} \exp[-(1 - \eta \omega_{0}) cd] H_{los}(0)$ (10)

潮汐等引起的水下湍流是水下通信不可回避的 问题。水体的温度、盐度、气泡等是影响湍流的重要 因素。湍流现象将导致接收端光强闪烁等不利现象。

2.2 水下无线光通信 MIMO 技术

MIMO 利用收发两端多天线实现了多发多收,可 获得时间分集、空间分集和频率分集的分集增益 (Diversity gain)。另外,可充分利用空间独立子信道和 自由度发送不同的信息流,可获得空间复用或复用增 益 (Multiplexing gain)。当发送功率和带宽不变时, MIMO 信道容量随收发两端最小天线数的增加而 线性增加,而 MISO/SIMO 容量仅正比于天线数的对 数^[6]。对于水下衰落信道,一般只有接收端已知缓变 的信道矩阵 H,可定义遍历容量和中断容量^[6]。遍历 容量是所有信道平均后的最大可传输速率,表示为:

$$C = \max_{\boldsymbol{R}_{x}:Tr(\boldsymbol{R}_{x})=\rho} E\left[W\log_{2} \det[\boldsymbol{I}_{M_{r}} + \boldsymbol{H}\boldsymbol{R}_{x}\boldsymbol{H}^{\mathrm{T}}]\right]$$
(11)

式中, $H=U\sum V^{T}$ 为信道矩阵的奇异值分解; U是 $M_{r} \times M_{r}$ 矩阵; V是 $M_{t} \times M_{t}$ 矩阵; T 为矩阵转置运算; M_{r} 和 M_{t} 分别为接收和发送端天线数目; \sum 是半正 定 $M_{r} \times M_{t}$ 阶对角矩阵; U和 V矩阵都是酉矩阵, 一般 指幺正矩阵 (unitary matrix); R_{x} 为信道输入的协方差 矩阵; W是信道带宽; $I_{M_{r}} = U^{T}U_{\circ}$ 当 $R_{x} = \rho/M_{t} I_{M_{t}}$ 条 件下, 其中 ρ 为信噪比, 公式 (11) 取得最大值。

2.3 室内水槽信道

如图 5 所示,系统采用室内 10 m 水槽模拟水下 信道,水槽两端安装了对可见光透射率良好的光学玻 璃。市政用水中添加氢氧化铝、氢氧化镁混合物

图 5 室内水槽。(a)水槽长度 10 m,光学玻璃直径 300 mm;(b)水 槽注水

Fig.5 Indoor water tank. (a) Tank length 10 m, optical glass with a diameter of 300 mm; (b) Water injection

(Maalox)粉末可模拟海水水质。为水槽配备了盖子, 以减小环境光的干扰。对于室内水槽,可使用水温控 制、气泡生成、机械搅动等方法近似模拟海洋湍流^[15]。

3 结果与讨论

3.1 水下信道 MATLAB 仿真

如图 6(a) 所示, 通过 MATLAB 软件仿真室内 10 m 水下信道环境下, 接收端平面的光功率分布^[16]。 最大接收光功率为-35.8 dBm 或 0.26 μW。如图 6(a), LED 阵列可看成点光源。如图 6(b) 所示, 为某参数下 形成的, 光强分布差异较大情况, 可明显看成各光束 的强度分布。主要仿真参数为: 传输光功率约 5 W、 LED 半功率角 7.5°、水下衰减系数 0.056 m⁻¹、PMT 感 光面 积 4.84 cm²、水 槽长 宽高 10 m×0.8 m×0.8 m。 LED 间距 2 cm、PMT 间距 3 cm, 均满足不相干间

Fig.6 Underwater channel received optical power distribution MATLAB simulation. (a) Formation of point lamp; (b) Non-point lamp

距条件。

3.2 PMT 模块接收端测试

如图 7 所示,发送端绿光 LED 阵列发送光束透

图 7 光信号通过水下信道

Fig.7 Optical signal through the underwater channel

过水槽,接收端接收衰减后的光信号。

如图 8(a) 所示为 PMT 接收端阳极电压波形, 并由电流电压转换系数 0.1 V/μA 推导出阴极电流 波形。

阴极电流可表示为:

$$I_k = \frac{\eta e P \lambda}{hc} \tag{12}$$

式中:η为量子效率;e为电子电荷;λ为光波长;h为 普朗克常数;c为光速;P为光辐射功率。

其中,量子效率表示为:

$$\eta = \frac{hc}{\lambda e} S_K = \frac{1240}{\lambda} S_K \approx 20.8\%$$
(13)

式中: S_K =88 mA/W,为辐射灵敏度。

如图 8(b) 所示,辐射光功率可表示为:

$$P = \frac{hcI_k}{\lambda e\eta} = \frac{0.0237I_k}{\eta} \approx 0.114I_k \tag{14}$$

图 8 PMT 测试波形。(a) 阳极输出电压与阴极输出电流;(b) 辐射功率与阴极输出电流

Fig.8 PMT test waveform. (a) Anode output voltage and cathode output current ;(b) Radiation power and cathode output current

3.3 PMT 信噪比分析

噪声主要来源于无光照下的暗电流和光信号引 起的散粒噪声。噪声指数 *F* 表示为:

$$F = (1/\alpha) \cdot (1/\delta_1 + 1/\delta_1\delta_2 + \dots + 1/\delta_1\delta_2 \dots \delta_n)$$
(15)

式中: α 为收集效率; δ_1 、 δ_2 、... δ_n 为各级倍增级的二次电子发射系数。若 $\alpha=1$ 、 $\delta_1=\delta_2...\delta_n=\delta$,则公式 (15)可简化为:

$$F \approx \delta / (\delta - 1) \tag{16}$$

噪声电流可表示为:

$$I_n = \mu (2eI_k \alpha BF)^{1/2} \tag{17}$$

式中: μ 为电流增益;e为电子电荷; I_k 为阴极电流;

B 为测量系统的带宽。

PMT 平均阳极电流可表示为:

$$I_s = I_k \alpha \mu \tag{18}$$

则 PMT 信噪比表示为:

$$SNR \approx \frac{I_s}{I_n} = \left(\frac{I_k\alpha}{2eB} \cdot \frac{1}{1 + 1/\delta_1 + 1/\delta_1\delta_2 + \dots + 1/\delta_1\delta_2 \dots \delta_n}\right)^{1/2}$$
(19)

可化简为:

$$SNR \approx \frac{I_s}{I_n} = \sqrt{\frac{I_k}{2eB} \cdot \frac{1}{\delta/(\delta-1)}}$$
 (20)

如果不考虑噪声在倍增过程中的放大问题,另二

次电子发射系数 δ=6,则信噪比可简化为:

$$SNR \approx (I_k/2eB)^{1/2} \approx 1.75 \times 10^3 \sqrt{\frac{I_k(\mu A)}{B(MHz)}} \approx 19.4 \text{ dB}$$
(21)

则系统的误码率可估算为:

$$P_e = \frac{1}{2} erfc \left(\sqrt{\frac{SNR}{2}}\right) \approx 1.1 \times 10^{-5}$$
(22)

式中: $erfc(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} exp(-t^{2}) dt$ 为互补误差函数。理 论上 PMT 最小检测功率值为:

$$P_{i} = \frac{e \cdot \mu \cdot F \cdot B}{S_{k}} + \frac{\sqrt{(e \cdot \mu \cdot F \cdot B)^{2} + 4e \cdot I_{k} \cdot \mu \cdot F}}{S_{k}} \approx 1.5 \times 10^{-9} \,\mathrm{W}$$
(23)

式中: S_{K} =88 mA/W,为辐射灵敏度; μ =10⁵,为电流放大 倍数; I_{k} =1 μ A,为阴极电流;F=5/6,为噪声系数;B= 8 MHz,为系统带宽。说明了 PMT 具有的极高灵敏度。

3.4 水下 MIMO 性能仿真

对不同发射、接收天线数目的 MIMO 间做性能 对比分析时,要求发送端不管如何分集,都要求发送 总功率相等,接收端不管如何分集,都要求接收端总 有效感应面积相等^[8,17]。这需要针对 LED 的功率和 PMT 的有效面积等进行细致严格的选型,因此,通过 实验进行 MIMO 的性能测试与分析有一定的困难。

蒙特卡洛 (Monte Carlo) 仿真方法已广泛应用在 自由空间或水下信道仿真中^[18],并表现出来与实际场 景较为贴切的仿真结果。蒙特卡洛仿真主要分为:发 送端初始化、光子传输和光子接收等部分。海洋湍流 模型比较复杂,类似与自由空间光通信,水下湍流也 多采用对数正态 (Lognormal),负指数 (Negative exponential), K分布 (K-distribution), 伽马 (Gamma),威布尔 (Weibull),指数-威布尔 (Exponentiated Weibull) 分布等 湍流模型^[15]。文中采用常用的对数正态分布湍流模 型,湍流衰落系数 (Fading coefficient) 表示为 α²,其中 α 的概率密度函数为^[10];

$$f_{\alpha}(\alpha) = \frac{1}{\alpha \sqrt{2\pi\sigma_{\chi}^2}} \exp\left\{-\frac{\left(\ln \alpha - \mu_{\chi}\right)^2}{2\sigma_{\chi}^2}\right\}, \alpha > 0 \qquad (24)$$

式中: μ_X 和 σ_X^2 分别为 lna 的均值和方差, a 数值越大表明湍流作用越强。结合公式 (10), 考虑湍流作用下的接收光功率公式为:

$$P_{R}(d) = P_{T} \exp[-(1 - \eta\omega_{0}) cd] H_{los}(0)\alpha^{2}$$
(25)

如图 9 所示, 在强湍流作用下 α=0.9, 应用 Monte

Carlo 仿真得出信道容量与信噪比间关系曲线。如图 可知,随着收发两端天线数的增加,MIMO系统相 对 SISO 可显著提升信道容量。特别在信噪比较大 (15 dB) 以上时,性能提升更为明显。说明采用 MIMO 技术,可在不增加频谱和发送功率的条件下,信道容 量显著提升,间接表明 MIMO 在抑制水下湍流现象的 明显优势。

图 9 信道容量与信噪比关系

Fig.9 Relationship between channel capacity and SNR

4 结 论

所述水下无线光通信系统的发送端绿光 LED 阵 列与接收端 PMT 阵列形成了 6×3 MIMO 传输方式, 在室内 10 m水槽条件下实现了 1 Mbps 的传输速 率。重点对 MIMO 水下无线光通信系统构成、发送 端绿光 LED 阵列与接收端 PMT 阵列结构及优势特 点进行了阐述。通过测试 PMT 阳极输出电压及阴极 输出电流及信噪比的计算,验证了 PMT 具有高灵敏 度、低噪声、高信噪比等特点。理论分析得到其最小 接收光功率可低至 10⁻⁹ W 量级,为水下远距离无线光 通信提供了条件。最后,通过 Monte Carlo 仿真对各 种 MIMO 模式与 SISO 在湍流下性能进行了分析,进 一步证实了 MIMO 相对于 SISO 的性能优势。

参考文献:

- Chi N, Chen H. Progress and prospect of high-speed visible light communication [J]. *Opto-Electron Eng*, 2020, 47(3): 190687. (in Chinese)
- [2] Kaushal H, Kaddoum G. Underwater optical wireless communication [J]. *IEEE Access*, 2016, 4: 1518-1547.
- [3] Zeng Zhaoquan, Fu Shu, Zhang Huihui, et al. A survey of

underwater optical wireless communications [J]. *IEEE Commun Surveys Tuts*, 2017, 19(1): 204-238.

- [4] Xu Jing. Underwater wireless optical communication: why, what, and how? [J]. *Chin Opt Lett*, 2019, 17(10): 1-10.
- Ye Demao, Liu Yuan, Wang Yantao, et al. Underwater LED optical communication technology of real-time error detection
 [J]. *Infrared and Laser Engineering*, 2019, 48(9): 0918001. (in Chinese)
- [6] 柯熙政, 谌娟, 邓莉君. 无线光MIMO系统中空时编码理 论[M]. 北京: 科学出版社, 2014: 168-186.
- [7] Wang Huiqin, Ke Xizheng. Atmosphere laser communication in MIMO channels and its key techniques [J]. *Laser journal*, 2008, 29(3): 52-54. (in Chinese)
- [8] Jamali M V, Salehi J A, Akhoundi F. Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO Scheme [J]. *IEEE Trans on Commun*, 2017, 65: 1176-1192.
- [9] Liu Weihao, Xu Zhengyuan, Yang Liuqing. SIMO detection schemes for underwater optical wireless communication under turbulence [J]. *Photon Res*, 2015, 3: 48-53.
- [10] Dong Yuhan, Liu Jinxing. On BER performance of underwater wireless optical MISO links under weak turbulence[C]//Proc. of Oceans 2016, 2016: 1–4.
- [11] Li Jiehui, Wang Fumin, Zhao Mingming, et al. Large-coverage underwater visible light communication system based on blue LED employing equal gain combining with integrated PIN array

reception [J]. *Applied Optics*, 2019, 58: 383-388.

- [12] Li Jinjia, Yang Bo, Ye Demao, et al. A real-time, full-duplex system for underwater wireless optical communication: hardware structure and optical link model [J]. *IEEE Access*, 2020, 8: 109372-109387.
- [13] Zhang Yufan, Xu Jing. Temporal and spatial methods in ocean optical systems [J]. *Infrared and Laser Engineering*, 2019, 49(2): 0203003. (in Chinese)
- [14] Gabriel C, Khalighi M A, Bourennane S, et al. Monte-Carlobased channel characterization for underwater optical communication systems [J]. *J Opt Commun Netw*, 2013, 5: 1-12.
- [15] Jamali M V, Mirani A, Parsay A, et al. Statistical studies of fading in underwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations [J]. *IEEE Trans Commun*, 2018, 66: 4706-4723.
- [16] Ghassemlooy Z, Popoola W, Rajbhandari S. Optical Wireless Communications: System and Channel Modelling with Matlab[M]. 1th ed. New York: CRC Press, 2013.
- [17] Nezamalhosseini S A, Chen L R. Optimal power allocation for MIMO underwater wireless optical communication systems using channel state information at the transmitter [J]. *IEEE Journal of Oceanic Engineering*, 2020, 99: 1-7.
- [18] Cox W, Muth J. Simulating channel losses in an underwater optical communication system [J]. J Opt Soc Amer A, Opt Image Sci, 2014, 31: 920-934.