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Infrared-visible image patches matching via convolutional neural networks

Mao Yuanhong, Ma Zhong', He Zhanzhuang
(Xi’an Microelectronics Technology Institute, Xi’an 710065, China)

Abstract: Infrared-visible image patches matching is widely used in many applications, such as vision-based
navigation and target recognition. As infrared and visible sensors have different imaging principles, it is a
challenge for the infrared-visible image patches matching. The deep learning has achieved state-of-the-art
performance in patch-based image matching. However, it mainly focuses on visible image patches matching,
which is rarely involved in the infrared-visible image patches. An infrared-visible image patch matching network
(InViNet) based on convolutional neural networks (CNNs) was proposed. It consisted of two parts: feature
extraction and feature matching. It focused more on images content themselves contrast, rather than imaging
differences in infrared-visible images. In feature extraction, the contrastive loss and the triplet loss function could
maximize the inter-class feature distance and reduce the intra-class distance. In this way, infrared-visible image
features for matching were more distinguishable. Besides, the multi-scale spatial feature could provide region and
shape information of infrared-visible images. The integration of low-level features and high-level features in
InViNet could enhance the feature representation and facilitate subsequent image patches matching. With the
improvements above, the accuracy of InViNet increased by 9.8%, compared with the state-of-the-art image
matching networks.
Key words: infrared-visible image patches matching;  convolutional neural networks;  contrastive loss;
triplet loss;  multi-scale spatial feature integration
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0 Introduction

Infrared-visible image patches matching is a fun-
damental task of infrared-visible image processing. It
compares the object or region by analyzing the similarity
of content, features, structures, relationships, textures, and
grayscales in infrared-visible images. The infrared-visible
image matching is often used as a subroutine that plays an
important role in a wide variety of applications, such as
visual navigation!' ! and target recognition” ..

Infrared-visible image patches is more challenging
compared with traditional visible images. Since infrared
and visible sensors use different imaging principles, the
images taken by multiple sensors also have more
differences than those by a single sensor. The edges of the
object are blurred in infrared images. Less texture and
color features are found in the object. The infrared-visible
image pairs have significant grayscale distortion and
illumination change.

Manual descriptors are used to extract features, such
as SIFTP!, SURF. ORB!, etc. The features extracted
with the descriptors should have the invariance of
illumination, rotation, scale, and affine. After feature
extraction, image patches matching is predicted by
comparison of features similarity. Most work is focused
on improvements to infrared and visible image descriptors
in the traditional infrared-visible image system. Sima'®!
optimized the SIFT method for the infrared-visible image.
Li® detected object edges and extracted the features of
SURF to match the infrared-visible images. Chao
Zhiguo"” proposed a matching method based on
histograms of oriented gradients used as the matching
feature and the correlation coefficient used as a similar

[11]

measure. Cao Zhiguo' "’ adopted an approach to shape

contexts for matching infrared-visible images based on

[12]

their similar shape. Jiao Anbo"“ proposed the image

matching algorithm using linear group geometric primi-
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tives for infrared and visible template matching.

Hand-craft descriptors need to improve continuously
for new applications to extract efficient features. The
feature extraction and similarity measure are two
independent and unrelated stages, which cannot be
optimized end-to-end. With the widespread application of
deep learning in computer vision, the image patches
matching based on deep learning has become a trend.
MatchNet!"”! extracts the image features from two CNN
branches. It uses two full connection (FC) layers to
determine whether the extracted features are similar. Deep
Compare Network!" compares the image patches by Si-
amese networks, 2-channels, and pseudo-Siamese models.
Patch match networks'®! proposed improved architecture
for two-channel and Siamese networks to compare the
visible image patches. The networks above have achieved
excellent performance in visible images. However, they
do not solve the infrared-visible image patches matching
well. The patches have different imaging principles. It is
necessary to design a new deep neural network to achieve
better performance in infrared-visible images matching.

This paper proposes an infrared-visible image deep
matching network (InViNet) to tackle these challenges
above. Two CNN branches extract the infrared and visible
image features independently. The full connection layers
compare their similarity.

In infrared-visible image patches matching, we think
that the differences between unrelated patches are still
more significant than those within similar patches, even if
multi-sensors take the infrared and visible images. The
feature extraction subnetwork uses the contrastive loss
and triplet loss to maximize the distance of the feature
between unrelated patches and minimize it within similar
patches. It makes the distribution of the high-level feature
more centralized within the intra-classes and more

separate between the inter-classes.
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For the infrared images, their regions and shapes still
have essential references in the infrared-visible image
matching. Integrating the spatial features with semantic
features is necessary. We combine the multi-scale spatial
features with the high-level features to enhance the per-
formance. Compared to the previous CNNs, our method

can increase the accuracy from 78.95% to 88.75%.

1 Infrared-visible image patches matching
network

1.1 Overview of our network architecture
Our network mainly consists of two parts: the feature

extraction network and the metric network, as shown in

Fig.1. The feature extraction network is responsible for
extracting features in infrared and visible images. The
metric network mainly matches the feature’s similarities.

The feature extraction network extracts the dis-
tinguishing features of visible and infrared images. In the
feature extraction network, infrared and visible images are
input into two VGG16!"”! branches, which constitute a
Siamese network. To be compatible with the visible
image ’s three channels, we copy an infrared image
into three channels as another branch input. The
weights are shared in the two branches. There are five
blocks and two FC layers in a single VGG16 branch. A

block consists of two or three convolution layers, an
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Fig.1 Infrared-visible image deep matching network. The black line with the arrow indicates the data-flow. The blue lines represent shortcut connections

through the reshape layers. This figure describes the process of the infrared-visible image patches matching
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activation layer, and a pooling layer. In a single VGG
branch, we retain the original FC6 and FC7 layers in
VGG16. There are two reasons for retaining the two
FC layers. Firstly, the FC7 layer can produce a feature
of 1x4096 dimension, rather than 7x7x512 dimensions
from the Conv5 block. It can significantly reduce the
parameters and calculations in the metric network. Se-
condly, we find that the branch with FC layers has better
performance than that without them in training.

For infrared and visible images, although their
imaging principles are different, the same target is very
similar in semantic features. Therefore, branches share
network weights in network design. We believe that deep
convolutional networks have strong feature representation
capacity. It can extract common feature in infrared and
visible images. Multiple network branches that tradi-
tionally use contrastive loss or triplet loss generally share
weights. The shared weights can map high-level features
to the same feature space for distance comparison.

The metric network is composed of two FC layers
with softmax loss as the objective function. It esti-
mates the probability of whether the visible image and
the infrared image are similar or not. Ideally, if they
match, the prediction is 1. If they don’t match, the
prediction is 0.

1.2 Multi-scale spatial feature integration

Compared with visible images, infrared images have
no color and less texture information. The edges are
usually blurred. However, the objects still have rough
outlines and region information in infrared images. These
outlines and shapes are common features in visible and
infrared images. Therefore, we believe that their spatial
information is essential in infrared images for image
matching. It is necessary to integrate the spatial features
with the semantic features to enhance feature repr-
esentation.

On the other hand, it is feasible to propose features
with multiple scales in the deep neural network's
hierarchical framework. The features proposed from the

low-level layers are similar to those extracted with the

hand-craft descriptors, such as SIFT, SURF. As the CNN
layers deepen, the feature maps less focus on the imaging
difference. The semantic features gradually reveal in the
high-level layers. In our network, the multi-scale features
are input into the metric network. So, the metric network
can use more comprehensive information to make simil-
arity decisions. Each block in our network directly
connects to the input of the metric network. It can preserve
more multi-scale spatial information for similarity

comparison in the metric network, as shown in Fig.2.

‘ Metric network

Concat layer

FC7
P
Block 5
Reshape layer
! 1x1
“ 77| _Conv

4 ol 1x1 =
e Conv

Fig.2 Multi-scale spatial feature integration in a single branch. The
output feature map in each block shorts to the concatenation layer.
The output of the concatenation layer is one input of the metric
network
In multi-scale spatial feature extraction, two
problems need to be solved. Firstly, the shortcut feature
should maintain the original feature maps' size in each
block to preserve spatial information. Secondly, the
shortcut feature dimensions should not be too high after it
reshapes into a vector. The great dimension eventually
results in vast parameters and high computation in the
metric network.

The 1x1 convolution is adopted in our network to
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solve the problems. The 1x1 convolution is widely used
in GoogLeNet!'. The multi-channel feature maps are
compressed into a single-channel feature map, which
preserves the spatial information and avoids the too high
dimensions. To connect the features of different dimen-
sions, they are converted to the vectors of length NxN
with the reshape layer. N represents the size of the
corresponding feature map. All multi-scale feature maps,
including the semantic feature from the FC7, are
concatenated as the input of the metric network. In the
metric networks, its inputs include the infrared image
branch and the visible image branch.

1.3 Two shared branches in feature extraction

network

As shown in Fig.3, the network of feature extraction

Constrastive loss
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Fig.3 (a) Feature extraction network architecture with the contrastive
loss; (b) Input data for feature extraction network with the
contrastive loss. The visual patches are in the first row. The
infrared patches are in the second row. The positive samples are in

odd columns. The negative ones are in even columns

consists of two branches. Two branches are identical in
structure and share weights. A visible image and an
infrared image make up an image pair. The contrastive
loss was first used for dimensionality reduction''™. Here,
the contrastive loss is used as the objective function to
train the two branches.

The contrastive loss is shown in Eq.(1).
d(f(xl)’f(-XZ))a P1= D2

I s =
(%1,%2) { max(0, margin —d(f(x,), f(x2))), P1# P2 .

where d(f(x;), f(x,)) represents the Euclidean distance of
two sample features; p, is the label of input visual image;
p, is the label of input infrared image. p, = p, means a
similar patches pair. p, # p, means an unrelated patches
pair. The margin is a threshold in Eq.(1). It represents the
distance that should be separated from the unrelated
features, at least. In our experiment, the margin is set to 1.
1.4 Triplet shared branches in the feature extraction

network

As shown in Fig.4 (a), the network consists of triple
branches. Three branches are identical in structure and
share weights. A visible patch (anchoring sample), an
infrared patch (positive sample), and another infrared
patch (negative sample) form an image pair. We input a
triple pair at a time to train the feature extraction network.
The triplet loss was used for face recognition” firstly.
Here, it is used as the objective function to train the triple
branches.

The triplet loss shows in Eq.(2).

max(d(f(x,), f(x,)) —d(f(x.), f(x,)) + margin,0)  (2)

The input data include anchoring sample (x,), posi-
tive sample (x,) and negative sample (x,). d(f(x,), f(x,))
represents the Euclidean distance of the anchoring sample
and the positive sample. d(f(x,), f(x,)) represents the
Euclidean distance of the anchoring sample and the
negative sample. By optimizing the function, the distance
between the anchoring example and the positive example
is less than the distance between the anchoring example
and the negative example. The anchoring example is
randomly selected from the sample set. The positive

example and the anchoring example go to the same class,
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Fig.4 (a) Feature extraction network architecture with the triplet loss;
(b) Input data for feature extraction network with the triplet loss.
The anchor patches are in the first row. The positive patches are in
the second row. The negative patches are in the third row. Each
column is triple patches input
while the negative example and the anchoring example
belong to different classes.
d(f(xa), f(x,)) + margin < d(f(x,), f(x,)) 3)
Eq.(3) illustrates that there is a margin between
d(f(x,), f(x,)) and d(f(x,),f(x,)) to distinguish positive
and negative samples. Unlike contrastive loss, the triplet
loss function compares the distance between positive and
negative samples in a forward and backpropagation
process. Compared to visible image matching, the same
object’s imaging difference is also relatively large in
multi-source image patches matching. So, it is found
that a larger margin can achieve better performance in
our experiment. The margin is set 3 to achieve the best

performance.

2 Experiment

2.1 Data set

There are no available infrared-visible image patches
matching datasets on the Internet, so we have to collect
image pairs ourselves. In data acquisition, the visible
camera is the default equipment in the DJI UAV. The
infrared camera is manufactured by FLIR company. The
wavelength of the infrared camera ranges from 7.5 to
13.5 pum. In terms of image resolution, the UAV acquires
infrared and visible images at different altitudes. In the
original image, the proportion of the same target to the
image size is 0.8%, 0.5%, and 0.25%, respectively. In the
following data preprocess, we crop the target area from
the original images. The input images of the neural
network resize to 224x224. Therefore, we use different
resolution images during training and testing.

Our data set contains 2 000 images, falling into 25
classes. For scene selection, the target taken by UAVs
should be different in shape and outline. The classes cover
bridges, buildings, roads, parking lots, factories, houses,
towers, gas storage tanks, etc., as shown in Fig.5. In the
data set, the ratio of visible and infrared images is 1 : 1.
80% of the images are used as training data. The rest
images are used as test data. A sample includes an
infrared patch and a visible patch. If the image pairs are
similar, they are positive samples. Their ground truth is 1.
If they are not similar, they are negative samples, and the
ground truth is 0. In the training and test data set, the ratio

of positive and negative samplesis 1 : 1.
B i A B0 o I S R i B
MTPETRESMmE

Fig.5 Infrared-visible image samples. Ten image pairs randomly was

selected. The ground truth of the first five images is 0. The ground

truth of the last five columns is 1

2.2 Experiment method

InViNet using two-stage training is better than the
traditional classification network. In two-stage training,
the feature network can improve the features repre-

sentation. It can significantly increase the accuracy of the
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metric network in the latter stage. By comparing the
existence of shortcut connections in InViNet, the low-
level spatial feature is acknowledged as a useful
complement for high-level semantic information. We use
the following settings to train our network in two stages.

The feature extraction network is trained in the first
stages. The branches in the feature extraction network are
initialized with VGG16 trained weights by the ImageNet
data set. Xavier’™ method initializes the new or modified
layers. The low-level filters in VGG16 are acknowledged
that they are beneficial for the shallow features, while
higher-level features are more closely related to specific
tasks. So, the learning rate multipliers in each layer are
also set differently. The learning rate in each layer is the
basic learning rate multiplied by its learning rate
multiplier. The basic learning rate is 10°. The learning
rate multiplier is 0.01 in Block1, Block2, and Block3. The
learning rate multiplier is 0.05 in Block4 and BlockS5. The
learning rate multiplier of FC6 and FC7 in VGG remains
1. Since all branches share weights, only one copy of the
weights is in the feature extraction network. The opti-
mizer uses the momentum SGD method. The momentum
parameter is 0.9. Minibatch size in training is 16. The
number of epochs is 2 000. The weight decay is 107,

The metric network and shortcut connections are
trained in the second stage. In metric network training, the
weights trained well in the feature network are used as the
initial value. The branches' weights slightly change during
this training. Their learning rate multipliers are less than
107, The basic learning rate is 10~°. The weights are
initialized with the Xavier method in new layers. Their
learning rate multipliers are 1 in the metric network and
shortcut layers. The number of epochs is adjusted to
2 500. The rest of the training parameters are the same as
the first training.

All experiments run on a computer equipped with
Nvidia TITAN XP GPU. Our experiment is implemented
with Caffe.

2.3 Experimental result

To validate our approach, we have implemented the

following experiments on different network architecture.

(1) Traditional method”. We enhance the object
edges and use SURF to extract the infrared-visible image
features. The similarity of images is measured by match-
ing the feature points of the infrared and visible images.

(2) Baseline Network. MatchNet"”! is used as a
baseline network. The Softmax loss function directly
optimizes the whole network. There are no two phases in
training. Two VGG16 branches train from scratch. The
network has been over-fitting soon.

(3) MatchNet"*)(F). MatchNet architecture improved
with fine-tuning. Unlike the baseline network, its VGG16
branches are initialized by the weights trained with the
ImageNet dataset.

(4) Pseudo-SiamNet"! (F). The pseudo-Siamese
Deep Compare Network architecture improved with fine-
tuning. In the two VGGI16 branches, the Convl, Conv2
and Conv3 layers use their respective weights, whereas
the Conv4 and Conv5 layers share the weights. The model
weights also are initialized by the VGG16 trained to avoid
over-fitting.

(5) InViNet (F+C). InViNet with fine-tuning and
contrastive loss. We trained this network in two phases,
which are described in Sec 2.2.

(6) InViNet (F+C+S). InViNet with fine-tuning,
contrastive loss, and shortcut connection. The network
adds shortcut connections.

(7) InViNet (F+T+S). InViNet with fine-tuning,
triplet loss, and shortcut connection. This network is
mainly to compare triplet loss and constrained loss.

The ROC curve usually measures a binary classi-
fication performance to avoid the imbalance between
positive and negative samples. The commonly used
evaluation metric is the false positive rate at 95% recall
(Error@95%), the lower the better. Based on the experi-
mental results, ROC curves are drawn for different
methods. See Fig.6 for details.

From our experiments, the following conclusions can
be summarized.

(1) In infrared-visible image patches matching, it is

20200364-7
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0.95 . .
fitting effectively.
0.90
o 0.85 (3) The pseudo-Siamese network performs better
g : : - '
s 080 / Invinet (F+T+8)  11.25% than the Siamese network. The explanation may be
= 075 ~ Invinet (F+C+S)  13.10% ) ,
g 0~70 Invinet (F+C) 14.98% that the low-level convolution layers don ’t share
:_é ’ Pseudo-siamnet (F) 18.23% weights in pseudo-Siamese networks. According to the
o ; Matchnet () 21.05% different imaging principles of infrared and visible
0.60 | SURF 25.53% ging princip
0.55 Matchnet 28.63% images, they can extract their unique shallow features
0.50 . . . .
0 o1 02 . 04 0.5 from two separate branches.
False positive rate To be concrete, we visualize the deep learned
. . 21
Fig.6 ROC curves for various methods. The numbers in the legends are features of expression using t-SNE®!), a common tool

FPROS values. In the legend, the symbol “F” means the network

uses fine-tuning with VGG16. The symbol “C” means that the

contrastive loss is used in the extraction feature network. The

symbol “T” means that the triplet loss is used in the extraction

feature network. The symbol “S” means that shortcut connection

is used

hard to extract common features in infrared and visible

images with traditional methods due to the different

imaging principles. The result is not satisfying.

(2) The few samples easily lead to over-fitting when

the network is trained from scratch. With the fine-tuning,

all deep learning networks show better performance than
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used to visualize high-dimensional data. Our approach can
effectively reduce the intra-class distance and enlarge the
inter-class distance in Fig.7 which is beneficial for
patches matching.

We show some top-ranking correct and incorrect
results in InViNet in Fig.8. We find that incorrect results
also may be easily mistaken by a human.

To further analyze our method results, we list the
mean average precision (MAP) in the test set, which has
five classes. The classes have never been used in the
training process. As shown in Fig.9, our InViNet

outperforms other approaches.
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Fig.7 Visualization of the five class features in the test data set by the feature extraction network. (a) Features from the original network; (b) Features

from the network with the contrastive loss; (c) Features from the network with the triplet loss

(@)

Fig.8 Top-ranking false and true results in overpass and factory image

patches. (a) True positive samples; (b) True negative samples;

(c) False positive samples; (d) False negative samples

1.0 CJSURF_ [ MatchNet (F) B [nViNet(F+C)
0.9 3 MatchNet B2 Pseudo-SiamNet (F) B2 InViNet(F+C+S
. B [1ViNet(F+T+S

Mean average precision

Gas tank House Building Overpass Factory

Fig.9 Performance matching in the test data set. In the legend, the

symbols “F”, “C”, “T” and “S” have the same meaning in Fig. 6
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3 Conclusions

Given the difficulty of infrared-visible image patches
matching, this paper proposes an improved network based
on deep learning. Compared to the previous method, our
method can increase the accuracy from 78.95% to
88.75%. At present, it is difficult to obtain samples of
visible and infrared images. There are many multi-sensor
data sets available on the Internet. However, they are not
fully utilized because there is no corresponding similar
visible image. We believe that we can make full use of
many multi-sensor images through unsupervised learning

to further improve our matching performance in the future.
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