量子阱带间跃迁探测器基础研究(特邀)

岳 琛^{1,2},杨浩军^{1,2},吴海燕^{1,2},李阳锋^{1,2},孙 令^{1,2},邓 震¹,杜春花¹, 江 洋¹,马紫光¹,王文新¹,贾海强¹,陈 弘^{1*}

(1. 中国科学院物理研究所 清洁能源重点实验室,北京 100190;
2. 中国科学院大学,北京 100049)

摘 要: 在最近的实验中, PN 结型量子阱结构被观察到反常的载流子输运情况, 其相应的物理机制和 载流子输运模型被提出。通过系统实验观察到, PN 结量子阱结构材料在共振激发模式下, 仍可测出开 路电压或短路电流。对比开路和短路情况下的光致荧光 (PL) 光谱, 发现短路下 PL 强度明显降低。这 说明短路状态下的光生载流子没有被限制在量子阱内, 而是逃逸出结区。这种载流子逃出量子阱的现 象却没有在等量偏压下的 NN 型量子阱结构中发现, 说明载流子逃出量子阱并非由传统的热激发或隧 穿的作用导致。据此, 笔者提出了相应的物理机制和载流子输运模型对此现象进行解释, 认为光生载 流子能在 PN 结内建电场的作用下直接逃出量子阱, 并且辐射复合发光发生在载流子逃逸过程之后。 关键词: 探测器; 量子阱; 载流子输运 中图分类号: O471; O475 文献标志码: A DOI: 10.3788/IRLA20211007

Fundamental researches on the quantum well interband transition detector(*Invited*)

Yue Chen^{1,2}, Yang Haojun^{1,2}, Wu Haiyan^{1,2}, Li Yangfeng^{1,2}, Sun Ling^{1,2}, Deng Zhen¹, Du Chunhua¹, Jiang Yang¹, Ma Ziguang¹, Wang Wenxin¹, Jia Haiqiang¹, Chen Hong^{1*}

Key Laboratory for Renewable Energy, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: Recently, the anomalous carrier transport in the quantum wells with the PN junction structures has been found experimentally, and the corresponding physical mechanism and the carrier transport model have been proposed. It is observed that the open circuit voltage or short-circuit current can be measured in the resonant excitation mode. Comparing the photoluminescence (PL) spectra of the two kinds of external circuits, it is found that the PL intensity decreased significantly under the short circuit condition. This suggests that the photogenerated carriers under the short circuit condition are not confined in the quantum well, but escaping from the junction region. However, this phenomenon of photocarriers escaping from the quantum wells is not found in the NN-type quantum well structure. Therefore, the effect of thermal excitation or tunneling is excluded to drive the carrier escaping from the quantum well. Based on this, the corresponding physical mechanism and carrier transport model are proposed. It is concluded that photogenerated carriers can escape from the quantum well directly under the built-in electric field of PN junction, and the radiative recombination luminescence occurs after the carrier escape process.

Key words: photodetector; quantum well; carrier transport

收稿日期:2020-11-20; 修订日期:2020-12-20

基金项目:国家自然科学基金(61991441,11574362,61210014,11374340,11474205);国家科技支撑计划(2016YFB0400302)

0 引 言

近年来,随着相干及非相干光源向红外波段及紫 外波段的扩展,对高速、高灵敏光电探测器的需求迅 速增加^[1]。而理论上看,III-N 化合物半导体材料可用 于制备从红外波段到紫外波段的光电探测器,尤其 是在紫外波段有着无可比拟的优势^[2-5]。因此,基于 III-N 化合物半导体材料的可见光及紫外探测器在光 通信、医学诊断、烟雾报警等方面具有广泛的应用 前景^[6-7]。

在光电探测器件中,光到电的转化过程是其最基 本也是最核心的问题,是设计和制备出高性能探测器 的基础。因此光电转换的动力学过程及其物理机制 一直是半导体材料科学和器件物理的研究热点。目 前,常用的太阳能电池和光伏型探测器等器件都是利 用 PN 结的光伏效应来实现光电转换的^[8-9],其被广泛 应用在氮化物太阳能电池^[10], GaAs 基单结或多结太 阳能电池^[11]、Si 基太阳能电池^[12], 以及 InSb, HgCdTe 和二类超晶格红外探测器等不同的材料体系中[13-15]。 光电转化过程主要包括光的吸收和载流子的提取两 部分。载流子的提取有采用外加偏压的方法,也有采 用内建电场的方法。其中, PN 结是内建电场提取载 流子的一种非常重要的结构,它具有收集耗尽区中电 子和空穴的特性^[16-17]。当 PN 结处于光照条件下时, 耗尽区中被激发出光生电子和空穴, 随后在 PN 结内 建电场的驱动下分别向 PN 结的两端漂移,从而输出 电信号,实现光电转换。PN 结探测器由于可以在零 偏压或很小的反向偏压下工作,具有暗电流低、响应

速度快等优点,是目前探测器领域研究的重点之一。

近期的研究发现, PN 结中存在一种新奇的现象, 即 PN 结中产生的光生载流子不再限制在量子阱中, 而是能够逃逸出量子阱,使得材料具有较高的量子效 率^[18-22]。这种反常的量子阱中光生载流子高效抽取 的现象为量子阱带间跃迁探测器的设计提供了基础, 使得光电探测器能够同时具备低暗电流和高响应度 的优势^[23-26]。文中将基于 PN 结型量子阱结构中这种 反常的输运现象, 通过 InGaN/GaN 量子阱带间跃迁光 电探测器进行验证,进而提出了相应的物理机制与载 流子输运模型。

1 实 验

1.1 样品制备

实验中两个样品都是用 Veeco 公司的 GaN P125 型 MOCVD (3×2)进行外延。两个样品的结构如 图 1(a)所示。从图中可以看到,这两个样品结构上基 本一致,除了最上面的一层 GaN 的掺杂不同而已,其 中一个样品进行 Mg 掺杂,形成 p-GaN;另外一个样品 进行 Si 掺杂,形成 n-GaN,也即两个样品中,GaN/ InGaN 量子阱结构处于 PN 结结构中和 NN 结结构 中,以下对这两个样品分别简称为 PN 型和 NN 型。 PN 型和 NN 型样品均在 2 inch (1 inch=2.54 cm) C 面 蓝宝石上进行外延生长,其外延工艺基本一致,先在 衬底上外延一层 GaN,然后外延 10 个周期的 GaN/ InGaN 量子阱结构,其中垒和阱的厚度分别为 14 nm 和 2.5 nm。其中生长参数和各层厚度对两个样品完

图 1 (a) 实验样品结构示意图及外加偏压情况; (b) 共振激发模式示意图

Fig.1 (a) Schematic diagram of experimental sample with the applied bias voltage; (b) Schematic diagram of resonance excitation mode

全一致,唯一的区别是最后一层的生长,PN型样品在 最后一层外延一层 p-GaN,厚度 200 nm,掺杂 Mg (需 通过退火条件)使获得 p型掺杂浓度约为 5×10¹⁷ cm⁻³; NN型样品最后一层是 200 nm 厚的 n-GaN,掺杂 Si 获 得 n型掺杂浓度约为 3×10¹⁸ cm⁻³。外延片在制备完 成后,通过半导体器件加工技术 (光刻、ICP-RIE 和电 子束蒸发等)加工成芯片尺寸 1 mm×1 mm 的器件 (n电极用 Cr/Ti/Ni, p电极用 Ni/Au)。在芯片制作完 成后,对其进行光电性质的测量表征分析。

1.2 测试方案设计

光致荧光发光光谱 (PL)测试是分析表征半导体 量子阱结构材料的重要手段^[27],文中主要通过 PL 谱 对 PN 型和 NN 型两种结构进行波长为 405 nm 共振 激发条件下的光电测试分析。实验中, PL 测试系统 利用衰减片实现激发光功率的连续可调,其最大激发 功率为 27 mW。PL 测试系统是由此实验室自主搭 建,包括:半导体激光器,金属膜衰减片,平凸透镜组 件,斩波器,光栅光谱仪,光电探测器,SR830 锁相放 大器,测试软件等。光电响应测试系统也由实验室搭 建,包括:半导体激光器,金属膜衰减片,平凸透镜组 件,Keithley4200-SCS 半导体参数分析仪等。测试采 用 405 nm 激光器激发 PN 型和 NN 型结构中 GaN/ InGaN 量子阱材料,这是一种共振激发模式,即激发 光子能量介于量子阱阱层材料带隙和垒层材料带 隙之间,入射光子只能被阱层材料吸收,产生电子空 穴对^[28-29]。

2 结果与分析

常温下,用 405 nm 激光对两种样品进行了光电 测试分析,其激发功率为 27 mW,在对 NN 型样品的 测试中,考虑到其能带结构及量子阱中的量子限制斯 塔克效应 (QCSE),外加 3 V 电压来模拟 PN 型样品中 的内建电场^[30]。笔者分别测量了开路下的 PL 光谱以 及短路 (外加 3 V 偏压)下的 PL 光谱和此时的电流。 测得开路和闭路条件下的 PL 光谱如图 2 所示。短路 条件下的 PN 型样品的 PL 光谱峰相比于开路条件下 有非常明显的降低,其积分强度只占开路条件下的 4.85%。而对于 NN 型样品,外加 3 V 偏压下的 PL 强 度相比开路条件下没有明显变化,其积分强度仅降低 了 0.18%。这说明在共振激发模式下, PN 型样品的光 生载流子没有被限制在量子阱内进行辐射复合发光, 而 NN 型样品中的载流子则仍然在量子阱内复合。

图 2 样品在开路和短路条件下的 PL 光谱。(a) PN 型样品的 PL 光谱; (b) NN 型样品的 PL 光谱

Fig.2 PL spectra of samples under open and short circuit conditions. (a) PL spectra of the PN-type sample; (b) PL spectra of the NN-type sample

为了深入了解光生载流子没有被限制在量子阱 内的物理机制,笔者对 PN 型样品进行了常温下变激 发功率的测试,也即是在不同的激发功率下测量样品 的光电方面的性质。短路条件下的 PL 积分强度与开 路条件下的比值随着功率的变化曲线如图 3 所示。

随着功率的增加,积分强度比值从1.42%增加到4.85%,即说明超过95%的光生载流子从量子阱中逃逸,并进入外电路形成光生电流。通过计算量子效率,

在 27 mW 的激发功率下, PN 型样品的外量子效率达 到 38.3%, 而普通的量子阱结构材料的带间跃迁探测 的量子效率不超过 10%, 所以其具备优异的光电探测 器能力。对比之下, NN 型样品却没有光生载流子的 高效抽取现象, 其实验结果表明共振激发产生的光生 载流子被限制在量子阱中, 只是在阱内进行辐射复 合。而 NN 型样品中的量子阱结构和 PN 型样品中的 完全相同, 所以 NN 型样品的实验结果可排除热激发

Fig.3 Curves of the PL spectral integral intensity versus the excitation power

或者隧穿的作用导致光生载流子逃逸出量子阱,也说明了光生载流子在 PN 型量子阱带间跃迁探测器中的 高效抽取具有全新的物理机制和输运模型。

为了更深入的探究其机理,笔者在以上量子阱 PN型材料基础上制备了吸收边为460 nm 的 InGaN/ GaN 量子阱带间跃迁光电探测器原型器件,并测量了 其响应曲线,随后改变了激发光波长,得到了不同激 发光波长下的开路与短路条件下的 PL 积分强度及比 值,如图 4 所示。

由图中,可以注意到当激发光能量为 2.75 eV 时(达到材料的吸收边),样品开始有光电流响应,而 PL积分强度比高达 92.1%,说明此时大部分光生载流 子仍被限制在量子阱内。当激发光能量升高超过 2.95 eV时,短路与开路条件下的 PL积分强度比值迅 速下降并保持在 30% 左右,此时光电流趋近于 40 μA, 趋于不变。该结果证明了 PL 谱中未辐射复合发光的 载流子的确是逃逸出了量子阱,进而输运进入了外电 路,产生了光电流。

比较 PN 结构和 NN 结构样品的实验结果可以看 出, PN 结可以使大部分共振激发产生的光生载流子 从量子阱中逃逸。这些不再参与复合发光的载流子 漂移进入外电路,形成了光电流。由此可见, PN 结的 存在使得大部分共振激发产生的光生载流子从量子 阱中逃逸,从而加强了量子阱材料对光的吸收及量子 阱中载流子的提取效率。

对于该现象的物理机制,笔者给出了一些解释。 量子阱中光吸收产生的光生载流子并不是一开始就 处于限制能级之上, 而是处于如图 5(a) 中 e1 所示的 对应于吸收光子能量的位置。处于该能量位置的载 流子将不受垒的限制,可以直接从量子阱中逃逸。因 而,当样品处于开路时,光生载流子首先从量子阱中 逃逸,形成开路电压。当光生电压产生的电场与内建 电场迅速建立起新的平衡后,光生载流子不再往 PN 结两端漂移。此时,大部分载流子将弛豫到基态 e2 进行复合发光。当 PN 结处于短路或者偏压下时,由 于没有开路电压来抵消内建电场的作用,因而不受垒 层限制的光生载流子 el 在产生的瞬间立即被从量子 阱中提取出来,来不及弛豫到限制态 e2。因此,当 PN 结短接或处于偏压下时,大部分共振激发产生的光生 载流子从量子阱中逃逸,形成光电流,而不是弛豫到 限制态进行复合发光。

对于 NN 结构,即使在有外加偏压的情况下,吸 收产生的光子载流子 e1 也是首先弛豫到限制能级

图 4 (a) 光电流与激发光能量的响应曲线; (b) 不同的光激发下在开路和短路条件下的 PL 积分强度以及其比值

Fig.4 (a) Response curve of the photocurrent versus the excitation photon energy; (b) PL integral intensities and its ratios under the open circuit and short circuit conditions versus different excitation photon energy

图 5 量子阱带间跃迁探测器中的载流子输运机制示意图。(a) 开路条件;(b) 短路条件

Fig.5 Schematic diagram of the carrier transport mechanism of the quantum well interband transition detector. (a) Under the open circuit condition; (b) Under the short circuit condition

e2, 而处于限制能级的载流子从量子阱中逃逸相当困 难。因此, 即使给 NN 结构施加 3 V 的偏压, 也只有 不到 1% 的载流子从量子阱中逃逸。另外, 该团队在 InGaAs 量子阱、InAs 量子点等多个材料体系中也观 察到了在 p-n 结电场作用下的类似现象, 也进行了相 应的讨论, 得到了类似的结果^[25]。

3 结 论

第1期

通过对比研究 PN 和 NN 型两种量子阱结构的光 电转换性能,提出了量子阱带间跃迁探测器的物理机 制和载流子输运模型。发现 PN 结的存在使得共振激 发产生的光生载流子能够从量子阱中逃逸,从而获得 较高的量子效率。而对于外加偏压下的 NN 结,只有 少部分载流子能够从量子阱中逃逸,无法达到与 PN 结相同的效果。这说明 PN 结起到了一种特殊作用, 能够加强量子阱中的光吸收和载流子输运能力。这 让笔者能更深入理解 PN 结的存在对耗尽区内量子阱 性质的影响,也提供了一种新的思路,可以将量子阱 应用于 PN 结构的量子阱带间跃迁探测器中,来制备 高性能的量子阱带间跃迁探测器。

参考文献:

- Levine B F. Quantum-well infrared photodetectors [J]. J Appl Phys, 1993, 74(8): R1-R81.
- [2] Razeghi M, Rogalski A. Semiconductor ultraviolet detectors[C]//Photodetectors: Materials & Devices, 1996.
- [3] Oder T N, Li J, Lin J Y, et al. Photoresponsivity of ultraviolet detectors based on InxAlyGa1-x-yN quaternary alloys [J].

Applied Physics Letters, 2000, 77(6): 791-793.

- [4] Akasaki I, Amano H, Murakami H, et al. Growth of GaN and AlGaN for UV/blue p-n junction diodes [J]. J Cryst Growth, 1993, 128(1-4): 379-383.
- [5] Chang P C, Yu C L, Chang S J, et al. Low-noise and highdetectivity GaN UV photodiodes with a low-temperature AlN cap layer [J]. *IEEE Sens J*, 2007, 7(9): 1289-1292.
- [6] Monroy E, Calle F, Pau J L, et al. Application and performance of GaN based UV detectors [J]. *Physica Status Solidi (a)*, 2001, 185(1): 91-97.
- [7] Alaie Z, Nejad S M, Yousefi M H. Recent advances in ultraviolet photodetectors [J]. *Materials Science in Semiconductor Processing*, 2015, 29: 16-55.
- [8] Hartmann R, Hauff D, Lechner P, et al. Low energy response of silicon pn-junction detector [J]. Nuclear Instruments & Methods in Physics Research, 1996, 377(2-3): 191-196.
- [9] Zhou Y H, Zhang Y M, Meng X Z. Simulation and analysis of 6H-SiC pn junction ultraviolet photodetector [J]. *Acta Phys Sin-Ch Ed*, 2004, 53(11): 3710-3715.
- [10] Jani O, Ferguson I, Honsberg C, et al. Design and characterization of GaN/InGaN solar cells [J]. *Appl Phys Lett*, 2007, 91(13): 1-20.
- [11] Fan J C C, Bozler C O, Chapman R L. Simplified fabrication of GaAs homojunction solar cells with increased conversion efficiencies [J]. *Appl Phys Lett*, 1978, 32(6): 390-392.
- [12] Mallorqui A D, Eppie F M, Fan D, et al. Effect of the pn junction engineering on Si microwire-array solar cells [J]. *Physica Status Solidi*, 2012, 209(8): 1588-1591.
- [13] Li L K. Molecular-beam epitaxial growth of InSb on GaAs and Si for infrared detector applications [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1993,

11(3): 872-874.

- [14] Norton P. HgCdTe infrared detectors [J]. *Opto-Electron Rev*, 2002, 10(3): 159-174.
- [15] Rehm R, Masur M, Schmitz J, et al. InAs/GaSb superlattice infrared detectors [J]. *Infrared Phys Techn*, 2013, 59: 6-11.
- [16] Jiang C S, Moutinho H R, Friedman D J, et al. Measurement of built-in electrical potential in III-V solar cells by scanning Kelvin probe microscopy [J]. *J Appl Phys*, 2003, 93(12): 10035-10040.
- [17] Nomoto K, Hatakeyama Y, Katayose H, et al. Over 1.0 kV GaN p-n junction diodes on free-standing GaN substrates [J]. *Physica Status Solidi*, 2011, 208(7): 1535-1537.
- [18] Wu H, Ma Z, Jiang Y, et al. Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction [J]. *Chinese Phys B*, 2016, 25(11): 114-118.
- [19] Yang H, Ma Z, Jiang Y, et al. The enhanced photo absorption and carrier transportation of InGaN/GaN Quantum Wells for photodiode detector applications [J]. *Scientific Reports*, 2017, 7: 43357.
- [20] Li Y, Jiang Y, Die J, et al. Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p-n junction [J]. *Chinese Phys B*, 2018, 27(9): 097104.
- [21] Sun Q, Wang L, Jiang Y, et al. Direct observation of carrier transportation process in InGaAs/GaAs multiple quantum wells used for solar cells and photodetectors [J]. *Chinese Phys Lett*, 2016, 33(10): 103-106.
- [22] Wang W, Wang L, Jiang Y, et al. Carrier transport in III-V quantum-dot structures for solar cells or photodetectors [J].

Chinese Phys B, 2016, 25(9): 174-179.

- [23] Sun L, Wang L, Liu J, et al. Anomalous enhancement of the absorption coefficient of GaAs in a p-n junction [J]. *Superlattice Microst*, 2018, 122: 80-84.
- [24] Sun L, Wang L, Lu J, et al. Room-temperature operating extended short wavelength infrared photodetector based on interband transition of InAsSb/GaSb quantum well [J]. *Chinese Phys B*, 2018, 27(4): 47209.
- [25] Liu J, Wang L, Jiang Y, et al. A prototype photon detector based on interband transition of quantum wells [J]. *J Infrared Millim Waves*, 2017, 36(2): 129-134.
- [26] Jie L, Lu W, Ling S, et al. Anomalous light-to-electricity conversion of low dimensional semiconductor in p-n junction and interband transition quantum well infrared detector [J]. *Acta Physica Sinica*, 2018, 67(12): 128101.
- [27] Wang T, Nakagawa D, Wang J, et al. Photoluminescence investigation of InGaN/GaN single quantum well and multiple quantum wells [J]. *Appl Phys Lett*, 1998, 73(24): 3571-3573.
- [28] Graham D M, Dawson P, Godfrey M J, et al. Resonant excitation photoluminescence studies of InGaN/GaN single quantum well structures [J]. *Appl Phys Lett*, 2006, 89(21): 2988.
- [29] Schubert M F, Xu J, Dai Q, et al. On resonant optical excitation and carrier escape in GaInN/GaN quantum wells [J]. *Appl Phys Lett*, 2009, 94(8): 183507.
- [30] Miller D A B, Chemla D S, Damen T C, et al. Band-edge electroabsorption in quantum well structures: the quantumconfined stark effect [J]. *Phys Rev Lett*, 1984, 53(22): 2173-2176.

第一作者简介: 岳琛 (1994-), 2016 年 7 月毕业于北京大学物理学院, 现为中科院物理研究所 清洁能源实验室在读博士生。主要从事 III-V 族化合物半导体的材料外延和器件制备研究, 着力于研究 GaAs 基、InP 基 PIN 和量子阱光电探测器和其他相关光电器件。Email: physical2503@163.com

通讯作者简介: 陈弘 (1965-),博士,中国科学院院物理研究所研究员,清洁能源实验室 E03 组组长。长期从事基于 MBE 和 MOCVD 的化合物半导体材料生长和器件应用技术研究,在许多方面获得了原创性的成果。在 Advanced Materials、Energy & Environmental Sciences、APL、Scientific Reports、PRA、等本专业领域国际核心刊物上发表学术论文 150 余篇,获得发明专利 20 多项。2011 年获得国家科技进步二等奖"GaN 基蓝绿光 LED 的关键技术及其产业化"。Email: hchen@iphy.ac.cn