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Improvement algorithm of dynamic Allan variance and its

application in analysis of FOG start-up signal

Wang Lixin, Zhu Zhanhui, Li Rui
(High-tech Institute of Xi'an, Xi’an 710025, China)

Abstract: The classical dynamic Allan variance(DAVAR) can describe the non-stationary of random error
of fiber optical gyroscope(FOG) effectively. However, the method has defects such as poor confidence on
the estimation of long-term t—values due to the reduced amount of data captured by the fixed length
windows. Besides, the method is difficult to make a satisfactory tradeoff between dynamic tracking
capabilities and variance reduction. An improved DAVAR algorithm based on kurtosis and data extension
was proposed to solve the problems. Firstly, the kurtosis of data inside the windows was introduced as
characterization of signal’ s instantaneous non-stationary, and the window length function which was
utilized to truncate the signal was built by taken kurtosis as variables, the function can make window
length change with the non-stationary of the signal automatically. Secondly, the random error of FOG
was truncated with the function. Then the data in the windows were extended by the total variance
method to improve the confidence. At last the Allan variance of extended data was computed and
arranged by three-dimensional. The measured data of FOG start-up signal was analyzed with the proposed
algorithm and DAVAR. The results show that the proposed algorithm is an effective way to characterize
non-stationary of FOG and can also obtain a lower estimation error at long-term 7—values.
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0 Introductions

The output signal of FOG changes with time due
to several factors in the start-up phase, such as
temperature, Shupe effect, humidity and mechanical
vibrations, it demonstrates the typical non-stationary
characteristic. There is a certain bias drift error in the
working process of FOG, especially in the start-up
phase. Characterizing and identifying the dynamic
characteristics of various error sources play an important
role to compensate for the drift of FOG™". The Allan
variance is a standard quantity for the characterization
of gyro, recommended by the IEEE standard.
However, the Allan variance assumes the random
error is stationary, and the method only can be used
for analyzing statistical characteristics of FOG™.

Recent year, dynamic Allan variance (DAVAR)
which was used to analyze non-stationary of atom
clock’s frequency is introduced to analyze random
error of inertial sensor by some scholars'!. Zhang
Chunxi and Gu Shanshan introduced DAVAR to
analyze dynamic characteristics of FOG, and the
time—varying character of gyro output in vibration and
temperature test is described effectively™~!. However,
DAVAR has a poor confidence on the estimate, due
to the reduced amount of data captured by the
analysis windows in the computation of the Allan
variance, especially at the middle-term and long-term
7 —values. Besides, the truncated window has poor
flexibility resulting from the fixed length'!. Thus, an
improvement DAVAR method is proposed, as can
make the length of analysis windows change with the
signal stationary automatically and reduce the
estimation variance of the Allan variance at the long-
term T—values. The new method is proved validity by
performing signal analysis on FOG's start-up output

and simulation signal.

1 Dynamic Allan variance and kurtosis

The DAVAR is a sliding version of the classical

Allan variance, which can track and describe the non-
stationary of signal. According to the definition of
DAVAR, the original signal is truncated into data
samples by a fixed length window, and the evaluation
of the Allan variance in every sample is repeated,
then these values are arranged in chronological order
and observation interval (7) order. At last the values
are plotted in a single 3 —D graph to represent
dynamic change process of the signal.

Kurtosis is a numerical statistics which can
reflect the signal distribution characteristic, and it is
sensitive  to standard

particularly amplitude and

deviation changes in the signal, it is defined as

| tx-x1poyax
K=t ()

o

where x(7) is instantaneous amplitude; X represents average
amplitude; p (x) represents probability density; o is
standard deviation.

As the 4th —order central moment statistics,
kurtosis can reflect the non-stationary of the signal.
When the gyro is working in a stable condition, its
output is close to normal distribution, and the kurtosis
is relatively stable; when mutation occurs in the
output of FOG, signal deviate from Gauss distribution,
the kurtosis values are greater than the values in
stable conditions. Thus, the kurtosis can represent the

non-stationary of signal to some extent.

2 Ways to increase confidence of

estimation

2.1 Total variance method

The con fidence in the estimate of the Allan
variance depends on the number of independent cluster
time can be divided. The number is proportionate to
the length of windows which are used to truncate
original signal by DAVAR. However, once the length
of windows is determined, the number of data inside
the window will not be changed.

Fortunately, many methods were developed to
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increase the confidence of limited data on the estimate
of the Allan variance over the last few years, such as
total variance', overlapping Allan variance™, theoretical
variance #1 and ThéoH variance ™. An effective way
to get around the small-sample problem is to apply a
two-sided invert mirror mapping method to obtain a
new virtual time series, total Allan variance is just
based on this approach. The estimation of the total
deviation and the Allan deviation for the same data
series is shown in Fig.1. The total variance is less

fluctuation than Allan variance at long-term 7—value.

10'

—— Allan variance
. Total variance
107
;i 10’1 -
<
107
N
107
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Fig.1 Log-log plot of Allan and total variance

A time-residual data x,(i=1,2,---,N,) can be extended

to a new, longer virtual sequence x, by mirror

mapping reflection as follows:

#

xl—j =2x1—x1+j (7:1,""Nx_2)

X =x, (i=1,2,+.N,) (2)

*

Xy, =2xv—xy (j=1,--+,N.=2)

The result of this extension is a virtual data
sequence x,,3—-N,<n<2N,-2.
2.2 Confidence in the estimation of total variance

Confidence, expressed as the equivalent degrees
of freedom (EDF), is analysis in Reference [10] with
different algorithms for computations of frequency
stability at 7=7/2. The conclusion is that the edf of
ThéoH variance is larger than total Allan variance,
and the total Allan variance is larger than overlapping
Allan variance. But the ThéoH variance has an
extremely heavy computation burden, and it is not
suitable for real-time dynamic algorithm. So we

choose the total variance to estimate the variance of

the data in the analysis window instead of the Allan
variance. The total variance can further increase the
estimation accuracy of FOG random error at long-term
T —value than overlapping Allan variance, which has

also proved in reference'®.

3 Improved dynamic Allan variance

3.1 Establishment of adaptive window function

When we analyze the output signal of gyro, if
the gyroscope is behaving in a stationary way,
obviously long window can captures a larger amount
of data and increase the number of samples in the
computation of the Allan variance, consequently the
confidence in the estimate of the DAVAR could be
highly increased. Nevertheless, if long window is still
used when the gyroscope is behaving in a non-
stationary state, the non-stationary in the signal will
not be tracked accurately and there is always an
advance and delay before and after it really happens.
Hence, short window will get a better choice to track
fast variations in the non-stationary time series.

The instantaneous non-stationary of the signal is
represented by the kurtosis value computed with data
in truncation windows in the new algorithm. We use
the current kurtosis values to determine subsequent
truncation window length in our improved algorithm.

The window length function proposed by us is

A L(t)<\,
L(t+1)=|L(t)-AL*(K(1)=k) M<L(O<A,  (3)
A L()> A

Where L(t) is the window length of time #; A, and A,
is constant, A, >A,, they are the upper and lower
boundary for the adaptive window length. The values
rest with the length of the signal to be analyzed and
threshold &k is

determined by the calculation of the kurtosis under

confidence level we expect. The
stationary working state. AL is the step of window
length increase or decrease each time. It can be
summarized that if signal is nonstationary in time f,
the value of K(r) will be greater than &, and the window

length L(7+1) will become shorter step by step. On the
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contrary, If the signal tends to be stationary, the
value of K(#) will be less than k, and the window length
L(t+1) will become large gradually until to the upper
boundary.
3.2 K-DTVAR algorithm design

The proposed algorithm is an improved DAVAR
method based on kurtosis adaptive sliding window and
the total variance, K-DTVAR (Kurtosis-Dynamic Total
Variance) for short. We introduce the continuous-time
formulation of the K-DTVAR by starting from the
signal x(7) that represents the gyro signal. In Fig.2, we
give a flow chart of the K-DAVAR algorithm.

Original signal x(¢)

Window length function L(¢,)

F—

| Truncated signal y (¢,) |'—
3
Allan variance Mirror extend ¢
1) V) | Kurtosis (¢,) |
¥

| Window length function L(z,)

|—>
L2
Mhr;;(z))ctend | | Kurtosis (t,) |
¥ |_’
—

Mirror extend y*(¢,) |

| Truncated signal y (¢,)

Allan variance
Jz(tz,rz)

| Window length function L(¢,)

1
Allan variance| !
o'(t,7,) '

]—bl Collection of Allan variance o°(t,2)~t-7 |

Fig.2 Flow chart of the K-DTVAR

We choose 1, as a starting point of calculate and
truncate the signal x(#) with a rectangular window of
length L(t,) which center is #,. We use support variable
t" to describe the elapsing time inside the window.

The interval is

h=L(t)/2<t"<t+L(1,)/2 (4)
The truncated signal can be defined as
vt t" )=y (" )P (t,—1") (5)
P,(t,—t") is the rectangular window of length L(t)).
1,lid<L/2
Py(1)= (6)

0,elsewhere
Now, an extended virtual sequence y; (#,t') can be
produced by performing invert mirror method on y(t,,t"),

in other words, Equation(2) is applied to y;(t,t"). At

the same time, the kurtosis K(t,) of y(t,,t") is computed
and window length L () can be obtained by
substituting in Equation (3).

We convolve y;(t,t") with the Allan window h(t")

to build process of increment A(t,t',7),
A(t,t',m)= J, h(t'=t")yr (t,6")dt” (7

The range of the variable ¢’ is f,—(L(t)/2-7)<t’
stH+(L (1)/2-7) 0 <T<T,, the bound 7, is the
maximum observation interval; it can only reach NT,/2
in the Allan variance estimation, but it can reach (N-—
4)7, in the total variance. We square the increment

and average in time with respect to ¢'.

J HL(H)2-7

0, (1= (A0t )=

m A2(t1,t,,T)dt,(8)

=L(t)2+1
We define the dynamic total variance as the

ensemble average (expectation value) of Eq.(9).
2 p !
0, (7= EL( & (1", 7)) O

Some main noise coefficients A(t),---A(t,); can be
extracted and confirmed by fitting the Allan variance
curve with the least squares method.

2
(1, m)= ng(tl),-Ti (10)

We choose new epoch f, as center of window to
truncate signal x(z), then repeat the calculation process
ahead, By analogy, the collection of dynamic total
Allan deviation related to the different epochs ¢, and
the different observation intervals 7, gives a measure
of the FOG stochastic error of x(7).

a\'(tl’ T)9 O-)‘(t29 T) a\'(tmT) (11)

4 Simulation results

In this section, we apply the K-DTVAR and the
DAVAR to the simulation process x(f) to compare their
performance in the analysis of non-stationary signal.
x(¢) is an uncorrelated and zero mean white Gaussian
phase noise. Sampling time is 1 s, and time length is
6 000 s. Before 1 000 and after 3 000, o=1, between
1000 and 3 000, 0=2, the 1000 and 3 000 is the point

where the mutation occurs. Figure 3 shows the simulated
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data x(r). The date was analysis by K-DTVAR, and

the result was presented in Fig.4.
8
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Fig.3 Dynamic white Gaussian model
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Fig.4 K-DTVAR analysis of simulation data

In Fig.5, we can observe that the length of

truncation window decrease gradually when the

mutation occurs and instantaneous kurtosis becomes

large at 1000 and 3 000 sampling points.

61(a) — Change process of kurtosis
w
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g.5 Change process of kurtosis and window length

The bias instability (B) and rate random walk (N)
are two important random error sources of FOG.

of K -DTVAR and

will be compared through the identification

Dynamic
DAVAR

tracking capabilities

and analysis for these two noise coefficients. The

analysis results are given in Fig.6 and Fig.7, for
windows of N=401 samples and N =801 samples by
the DAVAR, for adaptive window which upper and

lower boundary are 801 and 401 by the K-DTVAR.

i (a) —DAVAR with 401 window length
?Ed 0 i i i
800 2000 3200 4000 6000
Time/s
0.06

(b) —K-DTVAR with adaptive window length

<
= i
5 {

0 | i i i
820 2000 3190 4000 6000
Time/s
o 0.06r—— - -
b9 (©) i —DAVAR with 801 window length
= i i i i
600 2000 3400 4000 6000
Time/s

Fig.6 K-DTVAR and DAVAR analysis of rate random walk

—DAVAR with 401 window length

3400 4000
Time/s

710 2000 6000

(b) —K-DTVAR with adaptive window length

3180 4000
Time/s

790 2000 6000

—DAVAR with 801 window length

1
2000 4000 6000

Time/s

Fig.7 K-DTVAR and DAVAR analysis of bias instability

As can be seen, the K—-DTVAR tracks the non-
stationary more effectively. In the near 1 000 and 3 000,
the transition from one region to another is very
sharp,but there is instead a larger transition region
from one situation to the other by DAVAR, and it is
hard to point out the exact position where mutation
occurred, especially for windows of N=801. Besides,
the fluctuation of the noise coefficient is very large
for windows of N=401 samples. That also makes it
hard to accurately locate the mutation points. The

result is listed in Tab.1.

It seems that the dynamic tracking capability of

0726004-5
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Tab.1 Comparison of K-DAVAR and DAVAR

in the dynamic tracking ability

Reference DAVAR DAVAR
K-DTVAR
value 401 801

Start-point 1 000 800 820 600
N

End-point 3 000 3200 3190 3400

Start-point 1 000 710 790 -
B

End-point 3 000 3400 3180 -

Notation: *represent the point where can’t be accurate positioning.

K-DTVAR is not good enough as expected. Even it
is much better than the DAVAR. But it is interesting
that the positioning error of K -DAVAR almost as
zero if it is compensated by half of the window length
(200).

5 Analysis for FOG start-up signal

The output of FOG is a typical non-stationary
time-varying sequence in start-up phase. To further
demonstrate the superiority of K -DTVAR, the K -
DTVAR and the DAVAR are applied to experimental
data of FOG' s

sampling period was 0.3 s and acquisition time was

start-up signal respectively. The

about 1h. In Fig.8, the original random drift signal of

FOG is shown.
28

N
(=)

24
22

o
~
g
<
X
=
=
<
=

[\
=3

—_
o0

—_
=)
<

1000 2000 3000
Time/s

Fig.8 Start-up signal of FOG

In Fig.9 and Fig.10, we represent Allan deviation
of the FOG output by K-DTVAR and DAVAR. As
can be viewed, the K-DTVAR analysis figure is more
clear and easy to observe. This is because the K -—
DTVAR makes the confidence on the estimate highly
increased, especially at long-term 7-values. On the

contrary, the estimation of DAVAR tends to fluctuate

dramatically at long-term 7—values due to a smaller

amount of data inside the window.

Time/s /s

Fig.9 K-DTVAR analysis result of FOG's start-up signal

—
(=1
9

o(t,2)/(°)h’

Fig.10 DAVAR analysis result of FOG's start-up signal

In addition, it can be seen by K-DTVAR that
the estimate is relatively large in long-term 7-values
at the beginning of FOG's start-up phase, and which
is gradually decreasing with the output of the gyro
tending to be stationary, but the estimate remains the
same as short-term 7-values. However, the dynamic
change is almost invisible in DAVAR analysis figure.

In Fig.11, we can observe that the length of
truncation window become long gradually with the

changes of kurtosis. That means we realized to track

3.6
L34 (@) — Change process of kurtosis
5 3.2
E 3.0t
M 2.8
2.6p X \ A , .
0 1000 2000 3000 4000 5000 6000
Time/s
£
S 1400r1,) —— Change process of window length
& 1200
B
S
)
o
k3
g 400 , . . . .
= 0 1000 2000 3000 4000 5000 6000
Time/s

Fig.11 Change process of kurtosis, windows length and 7—values
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changes using short window in a non-stationary And the time—varying curves of the noise coefficients

situation and a long window in a stationary situation.
In Fig.12, we show the change process of noise
coefficients by fitting the Allan variance curve using
the least squares method. It can be summarized that
the A/D and D/A converters have good stability
because the quantization noise (Q) remains unchanged
in FOG start-up phase. The angle random walk (N)
mainly comes from various optical components. N
remaining stable means the optical components have a
good stability. The bias instability (B) is caused mainly
by environmental disturbance and residual dissimilarity
of FOG, representing the fluctuation of the FOG bias
drift. We can judge that the output has been
influenced by environment, temperature (shupe effect).
The rate random walk (R) is an important parameter for
characterization FOG drift of the trend term, it
changes in FOG start-up phase means the intensity of
the light source or the front or rear amplifier of the

detector has a one-way slow change.

~0.2 -
o1 @
00 2000 4000 6000 8000 10000 12000
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= 0‘0080 2000 4000 6000 8000 10000 12000
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= 04
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0 2000 4000 6000 8000 10000 12000
Samples n

—_
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Fig.12 Change process of noise coefficients

When the FOG is behaving in a stationary way
gradually, the output of FOG tends to be stable. We
can take the coefficients identified by Allan variance

from all of data as excepted value (reference value).

by DAVAR and K-DAVAR should fluctuate on the
baseline of the reference value™.

Here, we compare the estimating accuracy of the
two algorithms. In the stationary process, that is, the
6 000 to the 9 780 points, the noise coefficients are
identified by K-DTVAR and DAVAR with the same
length window of N =1 201 samples. At the same
time, the estimate of the Allan variance is computed
from N=3 780 samples as the standard value of high
confidence.

The change process of bias instability identified
by different methods is shown in Fig.13, and the
reference value 0.118 5 is the fitting result by Allan
variance with 3 780 samples. Fitting results of other
coefficients are given in Tab.2, values which obtained
by K-DTVAR and DAVAR are average values of

time-varying curves in a stationary process.

i 071y —DAVAR with 401 window length
& 01185—. ........... ! PR W A A -
6000 8000 9780
Samples n
0.5

“|(b) —K-DTVAR with adaptive window length

6000 8000 9780
Samples n
0.5

(c) —DAVAR with 1201 window length

i
6000 8000

Samples n

Fig.13 Change process of bias instability in stationary situation

Tab.2 Noise coefficients of FOG start-up signal

Factors  Q/prad N/(°)-h™2 B/(°)+h™" K/(°)-h™2 R/(°)+-h™
Ref value 0.0642 0.0103  0.1185 1.1083  3.5998
K-DTVAR 0.0736 0.0103 0.1338 1.0891  3.0688
DAVAR 401 0.0997 0.0107 0.2432  4.1559  27.481
DAVARI201 0.0731 0.0104  0.1379 1.5371  5.6276
It can be seen that the noise coefficients

identified by K-DTVAR are closer to the reference
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value than DAVAR. With the increase of 7 value, the
advantages of K -DTVAR are becoming more and

more obvious.

6 Conclusions

For traditional DAVAR, we often have to face
the choice between two opposite needs, that is, to
have a good confidence or to track variation quickly,
and it is difficult to have a good tradeoff with fixed
length window provided by DAVAR. Therefore we
propose the adaptive sliding window based on kurtosis
to solve the problem successfully. Furthermore, the
confidence in the estimate of the K —-DAVAR is
highly increased through the application of the total
variance, especially at the long-term 7 —value. The
proposed K—DTVAR is applied to the characterization
and identification of FOG stochastic error signal. The
results show: Both signal tracking capability and
confidence on the estimate have greatly increased.

The proposed K-DTVAR method can be utilized
to extract stochastic error coefficients of FOG in real
time. Compared with the traditional compensation
method based on the startup drift model which is built
by historical date, the application of real-time bias
instability to compensate for startup drift of FOG has

more obvious advantages.
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