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Distributed compression for hyperspectral images
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Abstract: An efficient lossy compression algorithm was presented based on distributed source coding. The
proposed algorithm employed multilevel coset codes to perform distributed source coding and a block —
based scalar quantizer to perform lossy compression. Multi—bands prediction was used to construct the
side information of each block, and the scalar quantization was performed on each block and its side
information simultaneously. According to the principles of distributed source coding, the bit—rate of each
block after scalar quantization was given. To reduce the distortion introduced by scalar quantization, skip
strategy was employed for those blocks that containing high distortion in the sense of mean squared errors
introduced by scalar quantization, and the block was directly replaced by its side information.
Experimental results show that the performance of the proposed algorithm is competitive with that of
transform —based algorithms. Moreover, the proposed algorithm has low complexity which is suitable for
onboard compression of hyperspectral images.
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0 Introduction

Hyperspectral remote sensing has been paid more
attention in the recent years. Since hyperspectral
imaging technique provides more accurate and detailed
information extraction than possible with any other
type of remotely sensed data, it has been widely used
in a large number of applications. The hyperspectral
images are usually acquired by a remote platform (a
satellite or an aircraft), and then downlinked to a
ground station. With the increase of the image
resolution, the data volume increase rapidly, which
creates the great challenges for onboard storage and
transmission. Due to the huge size of the datasets,
lossy compression manner should be taken into
account for hyperspectral images compression.

As we know, besides the spatial correlation,
hyperspectral images also have strong correlation in
the spectral direction. Regarding the transform used to
decorrelate the spectral correlation, two approaches
must be taken into account''°!: the DWT (Discrete
Wavelet Transform) and the KLT (Karhunen—-Logve
Transform). Note that both DWT and KLT have been
included in part two of the JPEG2000 standard, which
are defined for both lossless and lossy compression.
However, transform-based algorithms are not suitable
for the on-board compression due to the high encoder
complexity and poor error resilience. DSC (Distributed
source coding) has been paid more and more attention'”.
Different from the source coding methods, DSC is
typically performed by powerful channel codes, such
as multilevel coset codes or binary error-correcting
codes, where multilevel coset codes mainly contain (7,
k) linear grouping codes while binary error-correcting
codes mainly contain Turbo, LDPC (Low Density
Parity Check) and so on™. DSC was originally used
for lossless compression with its basis of Slepian-Wolf
theory”. Wyner A D and Ziv J later proposed the
corresponding theory for DSC lossy compression based

[10]

on the Slepian-Wolf theory Nonnis A proposed a

DSC-based lossless compression, which

Slepian-Wolf coding of the bit-planes of the CALIC

employs

prediction errors to improve the compression
performance™!. However, the common shortage of the
above algorithms is that the correlation estimation is
beforehand.  Although

distributed source coding schemes are typically based

supposed to be known
on the use of channels codes as source codes,
Grangetto M proposed a new paradigm named
distributed arithmetic coding, which extends arithmetic
codes to the distributed case employing sequential
Magli E

compression

decoding aided by the side information'"!
two DSC -based

algorithms by using multilevel coset codes!. Andrea

proposed lossless
A developed three distributed lossless compression
algorithms, which provide different tradeoffs between
compression  performance, error resilience, and
complexity™, Nian Y J extended the distributed lossless
compression to near lossless compression™! and lossy
compression™. According to the above description, we
can see that the DSC —based compression by using
multilevel coset codes is mainly focus on lossless
compression. In this paper, we extended the DSC —
based lossless compression to lossy compression and
proposed an efficient lossy compression algorithm
based

results show that the proposed algorithm can provide

on distributed source coding. Experimental
competitive performance and low complexity compared
with the transform-based algorithms.

This paper is organized as follows. In Section 2,
we describe the DSC —based compression briefly and
describe the proposed distributed lossy compression of
hyperspectral images based on scalar quantization. The
compression performance evaluation of the proposed
algorithm is reported in Section 3. Finally, conclusions

are drawn in Section 4.

1 Distributed lossy compression based

on scalar quantization

1.1 Side information

First, each band is partitioned into non-
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overlapping square blocks with a size of NxN. Let x;;;
be the pixel of the current block in the i—th line, j—th
pixel, and k—th band, with k=1,2,---,L and i, j=1,2,--,
N. To design a compression algorithm with low
encoder complexity, it has been decided to employ a
reference band based on a linear combination of the
previous two bands ™7 Let m, be the average value
of the current block, the side information is generated

as follows

2

-;Ck.ij= z a/(xk-l,i.j—Mk-1)+Mk i,j=1,2,---.N (D

=1
where o,=[a,,0,]" are the prediction coefficients. The
goal of the side information is as close as possible to
the current block with respect to the standard of
minimum mean-squared error. The principle of the
prediction coefficients is to minimize the energy of

the prediction errors which can be written as

(Pay=Q)'(Poy—Q) (2)
where
Xpo110— Mam1 X211~ M2 X1~ Mo
P= : : , O= : 3)
K-t NNT M-t Xi—2 NN M2 Xk NN Mok

By using the least-square estimator, the optimal

o, can be expressed as follows

o= Ck 1;—2Ck—1 k—2_Ck k—]Ck—2 k=2 ( 4)
Ck—l,k—2 _Ck71<k71Ck—2<k—2
= G 1;—1Ck—1 k2= CissCior i (5)

Ck,] k=2 _Ck—l,k—le—Z,k—2
where C,_,_, is the correlation coefficient between the
co-located blocks in the u—th band and v—th band,

which is expressed as follows

N N
1
Ck*lhk*l}: F Z (xkfuj‘/'_ I-kau) (xkfv,tj_ I-kav) (6)
i=1 j=1

The errors between the current block and the side

information are computed as follows

Cls=Xes=Xeiy iy=1,2,00,N (7)

1.2 Quantization strategy
In particular, the scalar quantization manner has
been widely used in

the prediction-based lossy

compression algorithm for hyperspectral images due to

the simple implementation. Let g, be the quantization
step size of the current block in the k—th band, thus

the quantized version of the current block is given as

ykj,j:ﬂi (8)
k

Under the condition of lossy compression, the
side information of the current block is constructed as

follows
2

Xiij= Z a( X —m )+ 9)
=1

where )zk_l,,,j is the reconstructed value of the co—
located block in the (k—I)—th band and my_, is the
average value. The quantized version of the side

information is also given as

Vou= Xk (10)
gk

The error between the current block and its side

information is given as

ekj,j:round()'m)_;’kj,j (11)

In fact, the bit-rate of the current block is just

the LSBs that required to be transmitted to the
decoder. According to the expression of bit-rate
without any quantization proposed in™!, we can simply
obtain the bit-rate of the quantized version of the

current block as follows

Rk= J=1.2,-.N

\ U
Once obtain the bit-rates of co-located blocks in

(12)

[ max le'i,;;l
log, | =L )

the spectral orientation, the total bit-rate of these

blocks is computed as

L
Re=y 2R (13)

The distortion between the original block and the

reconstructed one is given as

A

Crij=Xk,ijXkij (14)
where
)Ek,i,jzround(yk,,-‘,-)*qk (15)
1.3 Skip strategy
When the target bit-rate is low, for a given

block, the introduced distortion by scalar quantization
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may be too large. In this case, to reduce the
introduced distortion, the "skip" strategy is employed
for the proposed algorithm. Note that skip scheme has
been used in video coding and hyperspectral images
coding"™. In this situation, we can neglect the LSBs
that need to be transmitted by using a flag that
indicated to the decoder to simply replace the block
with its prediction values. If the current block
determined to be skipped, the reconstructed values of

the current block are given as follows

)zkw,;jzround(;ck‘,.,j) (16)
The distortion between the original block and the

reconstructed block is given as

A

Crij=Xk,ij~Xk.ij 17
In practice, we use the MSE (Mean Squared
Errors) to measure the distortion of each block, which

is given as

N N
D=% DI (18)

For a given block, if the D value obtained by
the scalar quantization is less than that obtained by
the skip strategy, this block will be processed by
scalar quantization, otherwise, it will be skipped and
replaced by its side information. Based on the above
description, the proposed algorithm can be shown in

Fig.1.

Quantization

Distributed
lossless
compression

Bit-stream
E—

Fig.1 Flowchart of the proposed algorithm

2 Experimental results and discussion

The performance of the proposed scheme was
Visible/Infrared
Spectrometer (AVIRIS) hyperspectral images. AVIRIS

tested on  Airborne Imaging

is an airborne hyperspectral system that collects

spectral radiance in 224 contiguous spectral bands
with wavelengths from 400 to 2 500 nm. In particular,
two scenes from the 1997 missions are used for
evaluation of compression algorithms.
2.1 Compression performance

We use bpppb (bit per pixel per band) and SNR
(Signal to Noise Ratio) to evaluate the compression
know, the

provide

performance. As we transform-based

algorithm  can perfect  rate-distortion
performance for lossy compression. In this paper, the
proposed algorithm is compared with JPEG2000 and
DWT-JPEG2000 with a large range of bit-rates. The
compression results on AVIRIS images by various
algorithms are shown in Fig.2. As can be seen, the
compression performance of JPEG2000 is the worst
because it does not remove the spectral correlation of
hyperspectral
DWT —-JPEG2000 both

compression performance compared with JPEG2000.

images, the proposed algorithm and

significantly improve the
As for the proposed algorithm, the performance is
obviously slightly better than that of DWT-JPEG2000
at high bit-rates and slightly worse at low bit-rates;
this is because the multi-prediction has the
disadvantage of error accumulation at low bit-rates,
which can seriously degrade the compression
performance while this disadvantage does not exist at
the high bit-rates. On the other hand, compared with
DWT -JPEG2000, a large number of blocks will be
directly skipped at low bit-rates, which is the other
reason of the performance decrease for the proposed
algorithm. However, this disadvantage can be
completely negligible at high bit-rates. For the reason
of fact that high bit-rates compression is usually used
for onboard compression in order to preserve the
information of hyperspectral images as much as
possible. Therefore, the proposed algorithm is a better
choice when the bit-rate is not very low. In fact, the
prediction-based algorithm is not suitable for lossy
compression and transform-based algorithm is suitable
for lossy compression. As for the proposed algorithm,

the proposed algorithm has competitive rate-distortion
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performance with DWT-JPEG2000, which fully shows
the affection of the proposed algorithm. It should be
noted that when the quantization step equals to one,
the proposed algorithm becomes the distributed lossless
compression. Therefore, the proposed algorithm can
realize both lossless and lossy compression for
hyperspectral images.
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Fig.2 Compression performance for the AVIRIS images

2.2 Complexity

For the block size (N=32), computing the mean
value within a block and subtracting it from the pixels
requires about

2 additions per pixel. Computing

prediction coefficients requires 5 additions and 5

multiplications per pixel. Computing the side
information requires 1 addition and 2 multiplications
per pixel, and computing the errors requires 1 addition
per pixel. Computing the bit —rate can be done by
using table lookup. Computing the quantized version
and the reconstructed one of the current block requires
2 multiplications per pixel. Computing the MSE of the
additions and 1

scalar quantization requires 2

multiplication per pixel while the MSE of the skip

strategy requires 1 addition and 1 multiplication per
pixel. Computing the map and the coset label only
requires bitwise operations. For differential Rice
coding, the computation of index differences between
entries at one in the binary mask requires at most 1
operation per pixel. Thus, on average, for the
encoding process, it requires to perform approximately
17 additions and 11 multiplications on each pixel for
the proposed algorithm. As for DWT —-JPEG2000, the
complexity of spectral transform and the encoding
procedure is obviously much higher than that of the

proposed algorithm.

3 Conclusion

Transform -based lossy compression algorithms
have been widely used for hyperspectral images
compression. However, these algorithms have shortages
of high complexity and poor error resilience, which
cannot satisfy the requirements of onboard compression.
We have proposed an effective compression algorithm
for hyperspectral images based on distributed source
coding, which employs scalar quantization and skip
strategy to perform lossy compression. Its rate-
distortion performance is typically equal or better than
the transform-based algorithm, with significantly lower
complexity and memory requirements. As the high
sensor-data rates of present and future hyperspectral
missions call for and fast

simple compression

techniques, the proposed algorithms represent an
attractive choice for onboard compression, with the co

mpensated by the error resilience.
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