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Abstract: An efficient lossy compression algorithm was presented based on distributed source coding. The
proposed algorithm employed multilevel coset codes to perform distributed source coding and a block -
based scalar quantizer to perform lossy compression. Multi -bands prediction was used to construct the
side information of each block, and the scalar quantization was performed on each block and its side
information simultaneously. According to the principles of distributed source coding, the bit-rate of each
block after scalar quantization was given. To reduce the distortion introduced by scalar quantization, skip
strategy was employed for those blocks that containing high distortion in the sense of mean squared errors
introduced by scalar quantization, and the block was directly replaced by its side information.
Experimental results show that the performance of the proposed algorithm is competitive with that of
transform-based algorithms. Moreover, the proposed algorithm has low complexity which is suitable for
onboard compression of hyperspectral images.
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摘 要院 针对超光谱图像压缩进行了研究，提出了一种有效的基于分布式信源编码 (Distributed
Source Coding, DSC)的有损压缩算法。该算法利用多元陪集码和标量量化的方式实现超光谱图像的

分布式有损压缩，针对分布式信源编码，利用多波段预测的方式为每个编码块构造边信息，然后采用

标量量化的方式对编码块和其边信息同时进行量化处理。根据分布式信源编码原理，给出了各编码

块量化后的编码码率。为了减少标量量化带来的信息丢失，算法引入了跳跃策越。部分均方误差意义

上损失较大的编码块将由其边信息直接代替。实验结果表明，所提出的算法性能与基于小波变换的算

法性能相当；此外，该算法复杂度较低，适合星载超光谱图像的压缩。
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0 Introduction

Hyperspectral remote sensing has been paid more
attention in the recent years. Since hyperspectral
imaging technique provides more accurate and detailed
information extraction than possible with any other
type of remotely sensed data, it has been widely used
in a large number of applications. The hyperspectral
images are usually acquired by a remote platform (a
satellite or an aircraft), and then downlinked to a
ground station. With the increase of the image
resolution, the data volume increase rapidly, which
creates the great challenges for onboard storage and
transmission. Due to the huge size of the datasets,
lossy compression manner should be taken into
account for hyperspectral images compression.

As we know, besides the spatial correlation,
hyperspectral images also have strong correlation in
the spectral direction. Regarding the transform used to
decorrelate the spectral correlation, two approaches
must be taken into account [ 1 -5]: the DWT (Discrete
Wavelet Transform) and the KLT (Karhunen -Lo侉ve
Transform). Note that both DWT and KLT have been
included in part two of the JPEG2000 standard, which
are defined for both lossless and lossy compression [6].
However, transform鄄based algorithms are not suitable
for the on鄄board compression due to the high encoder
complexity and poor error resilience. DSC (Distributed
source coding) has been paid more and more attention[7].
Different from the source coding methods, DSC is
typically performed by powerful channel codes, such
as multilevel coset codes or binary error鄄correcting
codes, where multilevel coset codes mainly contain (n,
k) linear grouping codes while binary error鄄correcting
codes mainly contain Turbo, LDPC (Low Density
Parity Check) and so on [8]. DSC was originally used
for lossless compression with its basis of Slepian鄄Wolf
theory[9] . Wyner A D and Ziv J later proposed the
corresponding theory for DSC lossy compression based
on the Slepian鄄Wolf theory [10]. Nonnis A proposed a

DSC鄄based lossless compression, which employs
Slepian鄄Wolf coding of the bit鄄planes of the CALIC
prediction errors to improve the compression
performance[11]. However, the common shortage of the
above algorithms is that the correlation estimation is
supposed to be known beforehand. Although
distributed source coding schemes are typically based
on the use of channels codes as source codes,
Grangetto M proposed a new paradigm named
distributed arithmetic coding, which extends arithmetic
codes to the distributed case employing sequential
decoding aided by the side information [ 12 ] . Magli E
proposed two DSC -based lossless compression
algorithms by using multilevel coset codes [8] . Andrea
A developed three distributed lossless compression
algorithms, which provide different tradeoffs between
compression performance, error resilience, and
complexity[13]. Nian Y J extended the distributed lossless
compression to near lossless compression [14] and lossy
compression[15]. According to the above description, we
can see that the DSC -based compression by using
multilevel coset codes is mainly focus on lossless
compression. In this paper, we extended the DSC -
based lossless compression to lossy compression and
proposed an efficient lossy compression algorithm
based on distributed source coding. Experimental
results show that the proposed algorithm can provide
competitive performance and low complexity compared
with the transform鄄based algorithms.

This paper is organized as follows. In Section 2,
we describe the DSC-based compression briefly and
describe the proposed distributed lossy compression of
hyperspectral images based on scalar quantization. The
compression performance evaluation of the proposed
algorithm is reported in Section 3. Finally, conclusions
are drawn in Section 4.

1 Distributed lossy compression based
on scalar quantization

1.1 Side information
First, each band is partitioned into non鄄
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overlapping square blocks with a size of N伊N. Let xk,i,j
be the pixel of the current block in the i-th line, j-th
pixel, and k-th band, with k=1,2,噎,L and i, j=1,2,噎 ,
N. To design a compression algorithm with low
encoder complexity, it has been decided to employ a
reference band based on a linear combination of the
previous two bands [15-16]. Let mk be the average value
of the current block, the side information is generated
as follows

x軃k,i,j=
2

l=1
移 l(xk-l,i,j- k-l)+ k i,j=1,2,噎,N (1)

where k=[ 1, 2]T are the prediction coefficients. The
goal of the side information is as close as possible to
the current block with respect to the standard of
minimum mean鄄squared error. The principle of the
prediction coefficients is to minimize the energy of
the prediction errors which can be written as

(P k-Q)T(P k-Q) (2)
where

P=
xk-1,1,1- k-1 xk-2,1,1- k-2
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(3)

By using the least鄄square estimator, the optimal
k can be expressed as follows

1= Ck,k-2Ck-1,k-2-Ck,k-1Ck-2,k-2

C2
k-1,k-2 -Ck-1,k-1Ck-2,k-2

(4)

2= Ck,k-1Ck-1,k-2-Ck,k-2Ck-1,k-1

C2
k-1,k-2 -Ck-1,k-1Ck-2,k-2

(5)

where Ck-u,k-v is the correlation coefficient between the
co鄄located blocks in the u -th band and v -th band,
which is expressed as follows

Ck-u,k-v= 1
N2

N

i=1
移 N

j =1
移(xk-u,i,j- k-u)(xk-v,i,j- k-v) (6)

The errors between the current block and the side
information are computed as follows

ek,i,j=xk,i,j-x軃k,i,j i,j=1,2,噎,N (7)
1.2 Quantization strategy

In particular, the scalar quantization manner has
been widely used in the prediction鄄based lossy
compression algorithm for hyperspectral images due to

the simple implementation. Let qk be the quantization
step size of the current block in the k-th band, thus
the quantized version of the current block is given as

yk,i,j= xk,i,j
qk

(8)

Under the condition of lossy compression, the
side information of the current block is constructed as
follows

x軃k,i,j=
2

l=1
移al(x赞 k-l,i,j-m

^

k-l)+mk (9)

where x赞 k -l,i,j is the reconstructed value of the co -
located block in the (k-l) -th band and mk -l is the
average value. The quantized version of the side
information is also given as

y軃k,i,j= x軃k,i,j
qk

(10)

The error between the current block and its side
information is given as

ek,i,j=round(yk,i,j)-y軃k,i,j (11)
In fact, the bit鄄rate of the current block is just

the LSBs that required to be transmitted to the
decoder. According to the expression of bit鄄rate
without any quantization proposed in[13], we can simply
obtain the bit鄄rate of the quantized version of the
current block as follows

Rk= log2
max

i , j=1,2,噎 ,N
|e忆k,i,j|

qk
蓸 蔀蓘 蓡 (12)

Once obtain the bit鄄rates of co鄄located blocks in
the spectral orientation, the total bit鄄rate of these
blocks is computed as

Rf= 1
L

L

k=1
移Rk (13)

The distortion between the original block and the
reconstructed one is given as

ek,i,j=xk,i,j-x赞 k,i,j (14)
where

x赞 k,i,j=round(yk,i,j)*qk (15)
1.3 Skip strategy

When the target bit鄄rate is low, for a given
block, the introduced distortion by scalar quantization
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may be too large. In this case, to reduce the
introduced distortion, the "skip" strategy is employed
for the proposed algorithm. Note that skip scheme has
been used in video coding and hyperspectral images
coding[16-17]. In this situation, we can neglect the LSBs
that need to be transmitted by using a flag that
indicated to the decoder to simply replace the block
with its prediction values. If the current block
determined to be skipped, the reconstructed values of
the current block are given as follows

x赞 k,i,j=round(x軃k,i,j) (16)
The distortion between the original block and the

reconstructed block is given as

ek,i,j=xk,i,j-x赞 k,i,j (17)
In practice, we use the MSE (Mean Squared

Errors) to measure the distortion of each block, which
is given as

D= 1
N2

N

i=1
移 N

j =1
移e2

k,i , j (18)

For a given block, if the D value obtained by
the scalar quantization is less than that obtained by
the skip strategy, this block will be processed by
scalar quantization, otherwise, it will be skipped and
replaced by its side information. Based on the above
description, the proposed algorithm can be shown in
Fig.1.

Fig.1 Flowchart of the proposed algorithm

2 Experimental results and discussion

The performance of the proposed scheme was
tested on Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) hyperspectral images. AVIRIS
is an airborne hyperspectral system that collects

spectral radiance in 224 contiguous spectral bands
with wavelengths from 400 to 2 500 nm. In particular,
two scenes from the 1997 missions are used for
evaluation of compression algorithms.
2.1 Compression performance

We use bpppb (bit per pixel per band) and SNR
(Signal to Noise Ratio) to evaluate the compression
performance. As we know, the transform鄄based
algorithm can provide perfect rate鄄distortion
performance for lossy compression. In this paper, the
proposed algorithm is compared with JPEG2000 and
DWT-JPEG2000 with a large range of bit鄄rates. The
compression results on AVIRIS images by various
algorithms are shown in Fig.2. As can be seen, the
compression performance of JPEG2000 is the worst
because it does not remove the spectral correlation of
hyperspectral images, the proposed algorithm and
DWT -JPEG2000 both significantly improve the
compression performance compared with JPEG2000.
As for the proposed algorithm, the performance is
obviously slightly better than that of DWT-JPEG2000
at high bit鄄rates and slightly worse at low bit鄄rates;
this is because the multi鄄prediction has the
disadvantage of error accumulation at low bit鄄rates,
which can seriously degrade the compression
performance while this disadvantage does not exist at
the high bit鄄rates. On the other hand, compared with
DWT -JPEG2000, a large number of blocks will be
directly skipped at low bit鄄rates, which is the other
reason of the performance decrease for the proposed
algorithm. However, this disadvantage can be
completely negligible at high bit鄄rates. For the reason
of fact that high bit鄄rates compression is usually used
for onboard compression in order to preserve the
information of hyperspectral images as much as
possible. Therefore, the proposed algorithm is a better
choice when the bit鄄rate is not very low. In fact, the
prediction鄄based algorithm is not suitable for lossy
compression and transform鄄based algorithm is suitable
for lossy compression. As for the proposed algorithm,
the proposed algorithm has competitive rate鄄distortion
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performance with DWT-JPEG2000, which fully shows
the affection of the proposed algorithm. It should be
noted that when the quantization step equals to one,
the proposed algorithm becomes the distributed lossless
compression. Therefore, the proposed algorithm can
realize both lossless and lossy compression for
hyperspectral images.

(a) Cuprite

(b) Lunar Lake

Fig.2 Compression performance for the AVIRIS images

2.2 Complexity
For the block size (N=32), computing the mean

value within a block and subtracting it from the pixels
requires about 2 additions per pixel. Computing
prediction coefficients requires 5 additions and 5
multiplications per pixel. Computing the side
information requires 1 addition and 2 multiplications
per pixel, and computing the errors requires 1 addition
per pixel. Computing the bit -rate can be done by
using table lookup. Computing the quantized version
and the reconstructed one of the current block requires
2 multiplications per pixel. Computing the MSE of the
scalar quantization requires 2 additions and 1
multiplication per pixel while the MSE of the skip

strategy requires 1 addition and 1 multiplication per
pixel. Computing the map and the coset label only
requires bitwise operations. For differential Rice
coding, the computation of index differences between
entries at one in the binary mask requires at most 1
operation per pixel. Thus, on average, for the
encoding process, it requires to perform approximately
17 additions and 11 multiplications on each pixel for
the proposed algorithm. As for DWT-JPEG2000, the
complexity of spectral transform and the encoding
procedure is obviously much higher than that of the
proposed algorithm.

3 Conclusion

Transform 鄄based lossy compression algorithms
have been widely used for hyperspectral images
compression. However, these algorithms have shortages
of high complexity and poor error resilience, which
cannot satisfy the requirements of onboard compression.
We have proposed an effective compression algorithm
for hyperspectral images based on distributed source
coding, which employs scalar quantization and skip
strategy to perform lossy compression. Its rate鄄
distortion performance is typically equal or better than
the transform鄄based algorithm, with significantly lower
complexity and memory requirements. As the high
sensor鄄data rates of present and future hyperspectral
missions call for simple and fast compression
techniques, the proposed algorithms represent an
attractive choice for onboard compression, with the co
mpensated by the error resilience.
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