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Abstract: Hierarchical Kalman鄄particle filter (HKPF) is successfully applied to target tracking with
adaption to motion changes. However, it only focuses on the optimization of the target position rather
than other affine parameters, resulting in many particles needed to find the optimal state. To achieve fast
tracking in complex environment, self鄄tuning strategy鄄based hierarchical Kalman鄄particle filter was
proposed to solve the problem. The proposed algorithm marginalized out the linear states in the dynamics
to reduce the state dimension, and then found the optimal nonlinear states in a chainlike way with a very
small number of particles. The detail process of our algorithm was as follows: first, a local region was
estimated by KF; second, self鄄tuning strategy was used to incrementally generate particles in this region,
and an online鄄learned pose estimator (PE) was introduced to iteratively tune them along the optimal
directions according to observations. The comparison among the proposed algorithm and the existing
tracking algorithms with real video sequences was implemented, in which the target undergo rapid and
erratic motion, or/and dramatic pose change. The results demonstrate that the proposed tracking algorithm
can achieve great robustness and very high accuracy with only a very small number of particles.
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自调整分层卡尔曼粒子滤波的快速目标跟踪

徐 超 1，高 敏 1，杨 耀 2

(1. 军械工程学院 导弹工程系，河北 石家庄 050003；2. 重庆光电技术研究所，重庆 400060)

摘 要院 分层卡尔曼粒子滤波成功应用于目标跟踪，但其只对目标位置进行了优化，忽略了其他仿射

参数，导致跟踪中的粒子数目仍然很大。为了实现复杂环境下的快速目标跟踪，提出一种带有自调整

策略的分层卡尔曼粒子滤波方法。该方法将目标划分为线性和非线性状态空间，并通过少量粒子的迭

代过程在非线性状态空间逐步搜索最优状态。其详细过程如下：首先，利用卡尔曼滤波预测目标位

置，结合目标运动信息计算潜在目标区域；然后在该区域内生成一组随机粒子，通过在线姿态估计对
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粒子状态进行调整，并将观测结果与目标模板进行比较，修正粒子摄动的方向以逼近目标。把该方法

应用于大机动目标的视频序列中，并与现有的跟踪方法进行了对比。结果表明，所提方法能够以少量

粒子实现准确、稳定的目标跟踪，大大降低了跟踪算法的运算量，提高了跟踪效果。

关键词院 分层卡尔曼粒子滤波； 自调整策略； 姿态估计； 目标跟踪

0 Introduction

Particle filter (PF) is used to tackle the nonlinear
non鄄Gaussian tracking problem by a set of random
samples with associated weights [ 1-3] . However, PF is
quite computing intensive, and the computational
complexity increases quickly with the state dimension
and the number of particles [4-7]. One remedy for this
problem is to generate a small number of samples that
can better fit the true distribution by optimizing
importance function. Kwon et al[8] derived an optimal
importance function from an analytical appearance
measurement function. Robust tracking was achieved
but the number of sampling particles was still large.
Kalman鄄particle filter[9-10] and unscented particle filter[11-12]

provide a deterministic way to sample particles. The
reduction in the number of particles is often offset by
added computational cost of generating samples.
Another remedy for fast tracking is to reduce the
dimension of the state space by marginalizing out the
states appearing linearly in the dynamics. Khan and
Hu et al[13-14]. applied Rao鄄Blackwellized particle filter
(RBPF) to Eigen鄄tracking, in which the appearance
part was handled efficiently, while the location
(motion) part still remained in efficient. Unlike those
approaches , Yin et al [15] proposed HKPF to partition
the state space into an analytically tractable part and
an intractable part, and the analytically tractable state
variable was shared by all particles. HKPF noticeably
improved the efficiency of practical tracking, but the
optimization is centered on the position of the target
rather than all states such as scale, orientation, aspect
ratio and so on. An ideal solution is to tune the particles
perturbation around true position. Fortunately, such an

issue had been introduced in[16], called incremental self鄄
tuning particle filter (ISPF), in which particles were
incrementally drawn and then an online鄄learned PE
was applied to guide random particles to move toward
their neighboring. The major problem of ISPF is:
autoregressive process can not deal with abrupt motion
and the initial samples in each frame have to be
distributed in a large region, in which some particles
drawn randomly often are far away from the true
position. In this case, PE cannot predict the pose of
target successfully from background, resulting in some
useless calculation.

Considering the performance of HKPF and ISPF
synthetically, we propose a novel framework called
self鄄tuning strategy鄄based HKPF for efficient tracking.
Figure 1 gives an illustration of the detailed optimal
process of traditional PF, HKPF, ISPF and the
proposed framework. The process of our PF is
detailedly divided into two steps: first, object motion
is analyzed in a coarse鄄to鄄fine way, in which kalman
filter predicts a local region around the estimation of
global linear motion, and the local elliptical region is
adaptive to motion change; second, the self鄄tuning
strategy incrementally generates small number of
particles in the local region, and then utilizes an
online鄄learned PE to iteratively tune them close to the
true pose according to observations. In each loop of
iteration, resampling is implemented and would be
terminated if the maximum similarity of all tuned
particles exceeds a desired target鄄patch similarity
trained online or if the number of particles reaches
maximum. The result is that a set of particles forms a
short chain in the estimation region to find the
optimal state fast.
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Fig.1 Detailed optimization processes of standard PF, HKPF, ISPF

and our PF

1 Overview of the tracking algorithm

We describe the framework of our tracking
algorithm in Fig.2, consisting of hierarchical estimation
and PE framework. The hierarchical estimation
includes position estimation by KF and region
estimation by maneuver detection, providing a local
region for random distribution of particles. Pose
estimation is introduced to make the "smart" particles
close to the optimal state, and in the process
resampling is implemented iteratively until a desired
target鄄patch similarity is obtained. The final state
would be feed back to KF in the hierarchical
estimation as an observation.

Fig.2 Framework of our tracking algorithm

The global linear m otion state of object is

described by Xk=(xk, yk, x觶 k, y觶 k, x咬 k, y咬 k)T, where xk, yk, x觶 k,

y觶 k, x咬 k, y咬 k denote horizontal and vertical position,
velocity and acceleration at time k, respectively. The
local non鄄linear terms of motion in PE framework is
represented by 2 -D affine translation parameters Yk=

(驻xk, 驻yk, k, Sk, k, k)T where 驻xk, 驻yk, k, Sk, k, k

denote local dis鄄placements, orientation, scale, aspect
ratio, and skew direction. Then, the state Yk is
rewritten as a 2-D affine transformation matrix

Mk=
A b
0 1蓸 蔀 (1)

Where, A is a nonsingular 2 伊2 matrix and b 沂A2,
denotes local displacements. Given the elliptical region
by KF, PF randomly draws a little number of
informative samples on the affine group, and then an
online鄄learned PE is used to tune particles to their
neighboring. In this pose鄄tuning process, appearance
model containing target鄄 patch similarity distribution
(TSD) and background鄄patch similarity distribution
(BSD) is needed to judge whether the random
particles are moving toward the correct directions.
TSD is the similarity distribution of target patches and
denoted by NT( T, T). BSD is similarity distribution
of background patches and described as NB( B , B)
respectively. If the maximum similarity between all
tuned particles and appearance model is smaller than

T - T, we will resample sparse particles for next
pose鄄tuning process by PE. The iteration would not
stop until the threshold is satisfied, i.e., the maximum
similarity score Sk跃 T+ T or the predefined number of

loop is achieved. The optimal state M *
k is defined as

the maximum confidence particle and calculated as

M*
k =M

(argmax(Si
k ))

k (2)

Where, i is the subscript of the particles, and M *
k is

the output of fine estimation and should be feed back
into coarse estimation as a measurement of KF. Note

that the needed observations Z *
k are two positional

elements extracted from M *
k . If the final maximum

similarity score Sk is larger than B + B, TSD, BSD
and appearance model (target template) should be

updated based on the estimated state M *
k . Moreover,

LWPR for pose鄄tuning is also trained online by new

samples generated from M*
k .
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2 Self鄄tuning hierarchical Kalman鄄
particle filter

The hierarchical estimation is referring to [9], and
we do not describe the detail pleonastically. Our focus
is on the fine estimation. Thus, the affine transform is
used to model local tracking by the state transition
from Mk -1 to Mk between two consecutive frames. As
men鄄 tioned above, the fine state is modeled by 2D
transfor鄄 mation matrix, often described by six basis
elements
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(3)

Brownian motion model is introduced for the
particle filter in the local region, and the local
dynamic model is expressed by a nonlinear state
transition equation evolving on the affine group

Mk=exp(移6
i=5 d

g
k (i-4)窑Ai)

Llinear

窑h(Mk-1, k)
Nonlinear

(4)

h(Mk-1, k)=Mk-1窑exp( k) (5)
The first term of the right in Eq. (4) is a pure

linear term that represents the translation of the

previous state at time k-1, where dg
k (窑) is the global

displacement predicted by KF, Ai is the basis element
in Eq.(3). h(Mk-1, k) implies the dynamics of natural
motion, in which the non鄄linear motion is assumed to
be restricted in a local region and considered as
Brownian motion. k denotes the process noise of
nonlinear filter determined by region estimation,

calculated by algebraic expression 移 6
i=5 wk.iAi with wk=

{wk.1, wk.2, wk.3, wk.4, wk.5, wk.6} sampled from the Gaussian
distribution N(0, k), k is covariance matrix of local
region.

In HKPF, a small number of particles are
generated randomly after hierarchical estimation to
find the best estimate of target state. Restricted in a

local region, those particles are not sparse concerned
with translation, but the parameters of pose are not
expressed exactly. By using a PE framework, we
adjust each particle for optimal pose iteratively and
make accurate and time鄄efficient tracking possible.
Algorithm Self鄄tuning process of particles shows the
whole process in detail. PE framework addresses the
tracking problem using piecewise strategy. Firstly, The
initial particles are drawn by Eq.(4), and the number
of samples 驻N0 for each frame is usually 10% of the
maximum number Nmax. These particles are tuned to

their neighboring best states Mt
k iteratively, see Step(2),

where, t is the index number of loop for pose tuning
and t =0,1,2, 噎 ,Lmax; Lmax is the maximal loop

determined by step 4) b). Secondly, 驻Nt+1 particles Mt+1
k

will be added by resampling from previous optimized

particles (Mt
k , W

t
k ), see Step(4)-1), where Wt

k={w
t
k,i }

驻Nt

i=1

is the normalized weights of the particles in Mt
k . The

resampling process makes the incremental particles
concentrate on the tuned particles with large weights.
These newly particles are propagated by a Gaussian
motion model concern with the value of similarity, see
Step (4)-4), which means the uncertainty of Gaussian
model will be enlarged if the similarity is small and
vice versa. Such iteration for gradual optimization of
state would be stopped until the maximum similarity
score of tuned particles exceeds the predefined

threshold, i.e., St
max 约 T- T, see Step(5). Since we set a

terminating condition to make the iteration stop in
advance while achieving the satisfied similarity score,
see Step(4)-5), not all particles need to be calculated.
If the final similarity score is larger than B+ B, all
online models are updated, see Step (7).

Algorithm Self鄄tuning process of particles
Input: maximum number of particles Nmax, initial

number of particles 驻N0, increment factor inc,

previous particle states Mk-1, S
0
max =0.

Process:

(1) Draw 驻N0 particles Mk-1={Mk-1, i}
驻N0

i=1 and then

Xu Chao et al院Self 鄄 tuning hierarchical Kalman鄄particle filter for efficient target tracking 1945
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propagate them to new states M0
k ={M

0
k,i }

驻N0

i=1 according to
state transition equation.

(2) While (i约=驻N0 and S0
max 约 T- T) do

Tune M0
k,i to the best neighbor M0

k,i , and assign M0
k

accordingly. Computer S 0
i =Sim (O (M0

k ,i )) and S 0
max =

max{S0
max ,S

0
i };

End
(3) n=驻N0, t=0.

(4) While St
max 约 T- T and n约Nmax do

1) t=t+1;

2) St
max =0; 驻Nt=min( inc驻Nt-1, 驻Nmax-n);

3) Draw 驻Nt particles 驻Mt
k={M

t
k,i}

驻Nt

i=1 by re鄄sampling

from(Mt-1
k , Wt

k );
4) Propagate new particles; for each particle, M

t
k, i =M

t
k ,i exp(v

t
k, i ) with vt

k,i ~N(0, 移t
k ,i ), where

移t
k, i =(1-S

t-1
max ) C

5) While (i约=驻Nt and 驻S跃TSI) do
If (Si跃 T- T)
Calculation terminates;
End

Tune M t
k,i to the best neighbor M t

k ,i , and assign

驻Mt
k accordingly. Compute St

i =Sim(O(M軜 t
k,i )) and St

max =

max{St
max , S

t
i };

End
6) n=n+驻Nt;

7) Concatenate all tuned particles: M t
k ={M

t-1
k ,

驻Mt
k }={M

t
k,i }

n
i=1 ;

End

(5) St
max =max{Sj

max }
t
j=0 ;

(6) M*
k =M

t
k,i |Sim(O(M t

k,i ))=S
t
max
, S軌k=S

t
max .

(7) If S軌k跃 B- B

Update: target template, LWPR, and TSD/BSD.
End

Output: M*
k

3 Experiment results

3.1 Experiment setup
Experiments are implemented to verify the

effective鄄ness and efficiency of the proposed
algorithm. The videos are "Cock", "Sylvester", and
"Dudek". We employ HKPF, ISPF and our PF for
those real tracking and analyze the experiment results
to find well鄄behaved tracking algorithm under these
different circumstances. Therein, "Cock" describes a
toy with abrupt and erratic motion while the
"Sylvester" shows great illumination changes and
severe pose changes. To further evaluate our
framework quantitatively, "Dudek" face sequence is
introduced with fast motion and pose change.

Some important parameters of our algorithm are
set as follows: the maximum number of particles Nmax=
50; the number of initial particles in each frame is
驻N0 =5; the particle incremental factor inc =2. The
image patch is usually resized to 36 伊36. Various
parameters of ISPF are referring to[10]. It also gives the
detail of initialization and updating of LWPR. Our
algorithm does not discuss this procedure and mainly
verifies the performance on dynamic affine
transformation.
3.2 Performance of HKPF, ISPF and our PF

The tracking results for sequence "Cock" are
shown in Fig.3. ISPF is trapped in the cluttered
background at about frame #148 due to a fast and
sudden motion and the blear image resulting from
severe camera vibration. Under this circumstance,
most particles are far from the ground truth, seldom
samples at the neighborhood of target are often
moving toward wrong direction, because the input
feature vectors of LWPR are beyond the regression
scope of the learned model. HKPF also could track
the target robustly and accurately with as much as
150 particles per frame. On the contrary, our PF
achieves best performance with least particles. Note
that in each loop of resampling, not every particle
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need to be computed if the similarity of any one
satisfies the threshold as described in Algorithm 1,
which makes the number of particles needed is further
reduced. The mean number per frame is only 28.2 for
this sequence.

Fig.3 Tracking results by our PF , ISPF and HKPF for "Cock"

sequence

The tracking results for "Sylvester" sequence are
shown in Fig.4. At the frame #76, HKPF with 100
particles tracks the target with a big error on
orientation and finally fall into failure at the frame
#269 due to severe pose change. ISPF solve the
problem easily because the ISPF tracker incrementally
generates many position hypotheses; as long as one of
the hypotheses is a good bridge state to the optimal
state, the global optimal state can be found in a
chainlike way effectively by state propagation and
pose tuning. Only the frame #107 and the follows
with target motion trouble ISPF needs slightly more
particles. Our PF tracker achieves similar tracking
results and could follow the target very tightly. In
such a sequence without dramatic motion and blear

target, the mean number of particles is reduced from
13.2 by ISPF to 9.7 by our PF. For one reason, the
local region is smaller to some extent by hierarchical
estimation; for another reason, the resampling will be
stopped in time if any particle is close to the target
rather than computing all particles. At the first sight,
the improvement of our PF is not significant, but the
calculation of the algorithm does not just depend on
the number of particles, in which the pose鄄tuning
process of each particle also costs much time because
the feature vector should be extracted from the
template. Fortunately, PE of a random particle in our
PF would execute as described in Algorithm 1, which
means less calculation of our PF even with the same
number of particles as ISPF.

Fig.4 Tracking results by our PF, ISPF and HKPF on "Sylvester"

sequence

3.3 Quantitative analysis
The above sequences have verified the

performance of the three algorithms under different
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environments qualitatively. For further quantitative
evaluation, "Dudek" sequence by proper affine
transformation is adopted. To analyze the detail of the
tracking results, only the center point of the object is
not enough, and seven feature points on the eyes and
mouse are usually used to describe the position and
pose of target. Considering the non鄄rigid motion of the
face, the seven feature points could not represent the
tracking results perfectly, which means that the
estimated seven feature points maybe not match the
ground truth well although the algorithm seize the
target tightly. Hence, we retain the center point and use
the weighted results as the standard for quantitative
evaluation. Fig.5 describes the detail, and as shown in
this figure we manually labeled seven ground鄄truth
feature points and the center point in every frame,
i.e., denoted as {Pi

k }
7
i=1 and Ck. The estimated feature

points at k frame {P赞 i
k }

7
i=1 are computed by {P赞 i

0 }
7
i=1 and

affine matrix from M0 to Mk, where {P赞 i
0 }

7
i=1 are set equal

to the ground鄄 truth in the first frame {P赞 i
0 }

7
i=1 . C赞 k is the

center of the tracking box. We use RMS error to
represent the tracking accuracy:

RMS(k)= 1/14移7
i=1 ||P赞

i
k-P

i
k ||2+1/2||C赞 k-Ck||2姨 (6)

Fig.5 Representive examples with true feature points marked "+",

calculated feature points marked "伊", and the box

surrounding the center point

The representative "Dudek" face sequence
tracking results by three algorithms and the errors
between the estimation and ground truth are shown in
Fig.6 and Fig.7, respectively. As shown in Fig.6,
HKPF with 50 particles tracks the face in the whole
process, but the scale and orientation of the tracking
box do not match the target accurately, especially at
frame #689, #880 and #1010 with large pose changes.

It can also be seen that the errors are inferior to that
of another two trackers from Fig.7. ISPF develops
such a precise tracker that it is hardly distinguished
from our PF in Fig.6 and Fig.7. However, the
disadvantages of ISPF are emerged in Fig.8, which
describes the number of particles used by ISPF and
our PF in each frame. Obviously, ISPF draws more
particles than the proposed approach, and the trend is
along the change of target motion, shown at frame
#570, #689, #1010 and so on. Our PF tracker still
maintains a small set of very effective particles,
consuming only 8.6 particles per frame while ISPF
drawing 15.5 particles in each frame.

Fig.6 Tracking results by our PF, ISPF and HKPF on "Dudek"

sequence

Fig.7 RMS error curves of HKPF, ISPF and our PF in "Dudek"

face sequence
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Fig.8 Number of particles consumed by ISPF and our PF for
"Dudek" face sequence

4 Conclusions
Combining the advantages of HKPF and ISPF,

we propose an algorithm called self鄄tuning hierarchical
kalman鄄particle filter for fast target tracking. The
tracking process is divided into two steps: hierarchical
estimation and PE framework. Hierarchical estimation
is to reduce the searching region and eliminate the
influence of dramatic motion.. PE framework in the
local region is to adapt the pose change by tuning the
particles in each loop towards the optimal state.
Experimental results show that: HKPF is prefer to
dramatic motion rather than pose change, whereas
ISPF is effective for pose variation, and could also
solve the non鄄significant maneuver to some extent
with sacrificid efficiency. However, this approach fails
absolutely when the target moves too quickly,
especially when the feature of target changes
significantly. Our PF over performs another two
algorithms and could provide accurate and efficient
tracking results under various affine transformations,
i.e., motion and pose changed dramati鄄cally, even
blear images caused by sudden maneuver. Moreover,
our algorithm can be extended to video surveillance
for city live, which contains pedestrian and car
tracking. Pedestrian tracking is verified effectiveness in
this paper and car tracking would be studied in future.

Pose tuning process is sensitive to the change of
target template, and we need improve the updating manner
of template to insure the input feature vectors of LWPR
included in the regression scope of the learned model.
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