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Abstract: A multiple features fusion and bandwidth adaptive mean shift tracking algorithm had been
proposed. The iterative solution expressions of location and bandwidth had been established with fully
parameterized bandwidth matrix based on M-estimator. The fused weight image had been produced with
intensity and local standard deviation. The target template model had been generated by the combination
of previous target template model and the mean value of the determined target models in the previous
frames. An enlarged bandwidth matrix had been employed in the iterative solution of location vector to
ensure location accuracy. To prevent the bandwidth from exploding in the presence of background clutter
or imploding on self -similar target, regularization terms had been introduced. The visual results and
evaluation measures show that the proposed tracking algorithm has the best performance compared with
other three scale adaptive mean shift tracking algorithms.
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带宽自适应均值偏移红外目标跟踪
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摘 要院 提出一种多特征融合和带宽自适应均值偏移跟踪算法。基于 M-估计器建立位置和带宽关

于完整参数型带宽矩阵的迭代更新公式。分析权值图像的本质，基于灰度和局部标准差建立融合权

值图像。通过先前目标模板模型和确定的目标模型的平均值生成当前目标模板模型。在位置向量的迭

代公式中，采用扩大的带宽矩阵，确保定位精度。为防止由于背景杂波导致带宽膨胀或者由于目标自

我相似导致带宽收缩，引入规范准则。跟踪的视觉结果和评估尺度表明，提出的跟踪算法相比于另外

三种尺度自适应均值偏跟踪算法，具有最好的性能。
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0 Introduction

Being characterized by extremely low signal-to-
noise ratio (SNR), poor target visibility, and time
varying target model, infrared target tracking remains
a challenging problem in pattern recognition and
tracking applications[1-4].

To resolve the scale updating problem in classic
mean shift tracking algorithm, Comaniciu proposed a
scale plus鄄minus approach (MS依)[5]. Zivkovic proposed
an EM like kernel based tracking algorithm [6], which
simultaneously estimated the position of the local
mode and the covariance matrix that described the
approximate shape of the local mode. Ning proposed
a scale and orientation adaptive mean shift tracking
algorithm (SOAMST) [7], which utilized the estimated
area and the second order moment to adaptively
estimate the width, height and orientation changes of
the target.

In this paper, a robust infrared target tracking
algorithm using bandwidth adaptive mean shift based
on M-estimator in complex background (BAMS) has
been proposed. To improve the robustness of mean
shift algorithm while tracking scale鄄changing target in
challenging infrared sequences, four measures have
been taken.

1 Mean shift tracking with full
bandwidth matrix

1.1 Location vector estimation
Let {xi, i=1,噎 ,n} be the pixels locations of the

target region, the probability density function (PDF) of
the target model based kernel function k (x ) can be
defined as

q赞 u(y赞 0;H0)=C
n

i=1
移KH0

(y赞 0-xi) [b(xi)-u] (1)

Where y赞 0 is the target center; is the Kronecker delta
function; b:R2寅{1,2, 噎 ,m} represents the index of
the histogram bin at the location xi; C is the
normalization constant; the multivariate kernel KH0

(x)

is employed to assign a smaller weight to the locations
far from the target center, the multivariate kernel KH0

(x )

is generated from the rotating of the univariate kernel
k(x) in Rd, i.e.

KH0
(y赞 0-xi)=|H0|-1/2k{||H

-1/2
0 (y赞 0-xi)||2} (2)

H0 is the bandwidth matrix of target region,
which determines the target size and orientation; In
this paper, the full bandwidth matrix is chosen.

Similarly, let{yi, i=1,噎,nH} be the sample points
of the candidate region, the candidate target model
centered at y can defined by

p赞 u(y;H)=CH

nH

i=1
移|H|-1/2k{||H-1/2(y-yi)||2} [b(yi)-u] (3)

Where H is the bandwidth of candidate target region;
CH is also the normalization constant.

The similarity between the target and candidates
is measured by Bhattacharyya distance.

d(y;H)= 1- (y;H)姨 (4)
Where (y;H) is the Bhattacharyya coefficient given
by

(y;H)= [p赞 (y;H),q赞 ]=
m

u=1
移 p赞 u(y;H)q赞 u姨 (5)

The candidate at location y possessing minimum
distance with the target template model is determined
as the target region in the current frame. Using Taylor

expansion around the value p赞 u (y赞 0;H0) and after some
manipulations, the linear approximation of the
Bhattacharyya coefficient Eq.(5) is:

[p赞 (y;H),q赞 ]抑 1
2

m

u=1
移 p赞 u(y赞 0;H0)q赞 u姨 +

CH
2

nH

i=1
移 i|H|-1/2k{||H-1/2(y-yi)||2} (6)

Where

i=
m

u=1
移 q赞 u

p赞 u(y赞 0;H0)姨 [b(xi)-u] (7)

To minimize the distance Eq. (4), the second
term in Eq. (6) has to be maximized, the first term
being independent of y. Observe that the second term
represents the multivariate kernel density estimate [ 8]
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f赞 (y;H) computed with kernel profile k (x) at y in the
current frame, with the data being weighted by i.

f赞 (y;H)= CH
2

nH

i=1
移 i|H|-1/2k{||H-1/2(y-yi)||2} (8)

By taking the partial derivative of the f赞 (y;H)
with respect to location vector y, we can obtain the
expression of density gradient estimators:

荦f (y;H)=荦 f赞 (y;H)= 鄣 f赞 (y;H)鄣y =

CH
nH

n

i=1
移 i|H|-1/2k忆{(y-yi)TH-1(y-yi)}H-1(y-yi) (9)

Where g (x)=-k忆 (x), assuming that the derivative of
k(x) exists for all x沂[0,肄), except for a finite set of
points.

After some manipulations, we can obtain the
iterative solution expression of location vector y as
following:

y赞 1=

nH

i=1
移 ig{(y赞 0-yi)TH-1(y赞 0-yi)}yi

nH

i=1
移 ig{(y赞 0-yi)TH-1(y赞 0-yi)}

(10)

When the kernel profile function is Epanechnikov
kernel function

k(x)=
1-x 0臆x臆1
0 x跃1嗓 (11)

g(x)=-k忆(x)=1, substituting k(x) and g(x) to Eq.(10),
the iterative solution expression of location vector y is:

y赞 1=
nH

i=1
移 iyi/

nH

i= 1
移 i (12)

1.2 Relation to M-estimator and full bandwidth
matrix estimation
Huber[9] extended Maronna忆s definition[10] to the most

general form of M-estimators of multivariate location
and scatter as following which are affine equivalent.

Let {yi袁i=1,2, 噎,n}沂Rd be a data set sampled
from density f(y), f(y)=f(|y |) is a spherically symmetric
probability density in Rd , the prototype distribution
f (y) is only approximately known. We apply general
non-degenerate affine transformations yi寅H -1/2 (y-yi)
to obtain a d-dimensional location and scale family of
"elliptic"densities[10]

f (y;H)=|H|-1/2f(||H-1/2(y-yi)||) (13)
Where ||窑|| stands for Euclidean norm, H 沂Pd, Pd

denote the set of all d伊d positive definite symmetric
matrics. The problems are to estimate the location
vector y and the scatter matrix H from the sampled
data set {yi袁i=1,2,噎,n}.

Assume (y;H)=-logf (y;H), the M-estimate of

(y,H) can be obtained by minimizing
n

i=1
移 (y;H).

The most general form of affine equivariant M-
estimator of multivariate location and scatter are
usually defined implicitly as the solutions y沂Rd and
H沂Pd, respectively, to the simultaneous equations:

y=

n

i= 1
移u1(si)yi

n

i=1
移u1(si)

(14)

H=

n

i= 1
移u2(si)(y-yi)(y-yi)T

n

i =1
移u3(si)

(15)

Where si=(y-yi)TH-1(y-yi), and with u1, u2 and u3 being
real鄄valued functions.

Kernel density estimation f赞 (y ;H ) in Eq . ( 8 )
represents the probability density at data point y,. The
relation between mean shift algorithm and M -
estimator for location can be obtained by

y赞=arg max
y

f赞 (y;H)=

arg max
y

CH
2

nH

i =1
移 i|H|-1/2k{||H-1/2(y-yi)||2}嗓 瑟 =

arg min
y

掖 CH
2

nH

i =1
移 i窑|H|-1/2{1-k[||H-1/2(y-yi)||2]}业=

arg min
y

CH
2

nH

i=1
移 i窑|H|-1/2 [||H-1/2(y-yi)||2]嗓 瑟 (16)

We can see that mean shift algorithm is
equivalent to M -estimator for location estimation,
which also had been proved in the seminal paper for
mean shift tracking.

Equally, we can obtain the bandwidth matrix
estimate based on scatter M-estimator for mean shift
algorithm.
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鄣 f赞 (y;H)鄣H = CH
4

nH

i=1
移 i窑|H|-1/2H-1k{(y-xi)TH-1(y-xi)}-

CH
2

nH

i=1
移 i窑|H|-1/2k忆{(y-xi)TH-1(y-xi)}窑

{H-1(y-xi)(y-xi)TH-1} (17)
After some manipulations, we can obtain the

iterative solution expression of bandwidth matrix as
follows:

H1=
2

nH

i= 1
移 ig{(y-yi)TH

-1
0 (y-yi)}{(y-yi)(y-yi)T}

nH

i =1
移 ik{(y-yi)TH

-1
0 (y-yi)}

(18)

When the kernel profile function is Epanechnikov
kernel function as in Eq.(11), substituting k(x) and g(x)
to Eq. (18), the iterative solution expression of
bandwidth matrix is:

H1=
2

nH

i= 1
移 i{(y-yi)(y-yi)T}

nH

i=1
移 i{1-(y-yi)TH

-1
0 (y-yi)}

(19)

2 Target and local background model

2.1 Estimating target parameters from full
bandwidth matrix
For the symmetric positive definite bandwidth

matrix H, the following Eq. (20) defines a unique
ellipse region[11] which is used to represent the target.

(x-xi)TH-1(x-xi)臆1 (20)
The axes of the ellipse point along the

eigenvectors of H, the half鄄length of these axes equal

to j姨 , and the center is x. The elliptical parameter,
namely, the width, height, and the orientation of the
target can be well estimated by the singular value
decomposition (SVD) of bandwidth matrix H. Because
H is symmetric positive definite, it is decomposed as
follows:

H=R RT (21)
Where

R=
cos sin
-sin cos蓸 蔀 (22)

R is the eigenvector matrix; is defined as the

orientation of the ellipse which is the angle between
the major axis and the horizontal axis, as in Fig.1.

Fig.1 Parameters of an ellipse

= 1 0
0 2

蓸 蔀 (23)

is the eigenvalue matrix the major axis of th e
ellipse corresponds to the maximum eigenvalue, the
minor axis corresponds to the minimum eigenvalue, as
in Fig.1.

a= 1姨 (24)

b= 2姨 (25)
2.2 Target window and local background region

The target window is initialized manually with an
ellipse to determine the target center and bandwidth
matrix simultaneously. As is shown is Fig.2, an
ellipse can provide more precise shape in for mation
than a rectangle bounding box, which is tighter for
the target contour and defines the orientation of the
target region.

Fig.2 Ellipse and bounding box

The "center鄄surround" approach has been used to
sample pixels from the target and the background [12].
That is, a compact set of pixels composed by an
ellipse covering the target is chosen to represent the
target pixels, while a larger annulus of neighboring
pixels surrounding the ellipse is chosen to represent
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the background, whose center is the same as the
target region. If the bandwidth of the target region is
HT, then the local background region will be defined
by bandwidth

HLB=k*HT (26)

Fig.3 Target and local background

2.3 Weight image and multiple features fusion
The weight i calculated in Eq. (7) can actually

be considered as the likelihood of a pixel in the
current frame being part of the tracked target. A
likelihood map or weight image where the value at a
pixel is proportional to the likelihood that the pixel
comes from the target we are tracking can be
computed through weight i.

The intensity and local standard deviation are
employed to label pixels with the likelihood that they
belong to the target, and the sum rule has been
employed to produce the fused weight image because
of its excellent properties.

The fusion weight i is obtained by
i=k1 1i+k2 2i (27)

Where k1 and k2 are the weight coefficients for
intensity weight 1i and local standard deviation
weight 2i respectively. An adaptively weight
coefficients updating is achieved by the Bhattacharyya
distance between target and local background model.
The target and local background model are represented
by their original one dimensional histograms without
kernel weight, I and J, respectively.

The first row of Fig.4 is intensity histograms of
target and local background, and the second row is
the local standard deviation histogram. The weight
coefficients k1 and k2 are calculated as following:

k1= d[Iint,Jint]
d[Iint,Jint]+d[ILStd,JLStd]

(28)

k2= d[ILStd,JLStd]
d[Iint,Jint]+d[ILStd,JLStd]

(29)

Where [Iint, ILStd, Jint, JLStd] are the intensity and local
standard deviation one dimensional histograms of
target and local background respectively, d[Iint,Jint] and
d [ ILStd ,JLStd ] are the intensity and the local standard
deviation Bhattacharyya distances between target and
local background calculated according to Eq. (4)
respectively.

Fig.4 Gray and LStd hist

3 Target window updating and complete
tracking algorithm

Target window updating includes target template
model updating, target location vector updating and
bandwidth matrix updating.
3.1 Target template model updating

To update target template model adaptively while
preventing it from being polluted by background
feature, two measures have been taken in this paper.
First, the target template is updated in a fixed length
frame interval n, which can be 3 -5. Second, the
newly updated target template model is generated by
the combination of the previous target template model
and the mean value of the determined target models
in the previous n frames. Let i be the similarity
based on Bhattacharyya coefficient between the
determined target model and the target template model
in the current frame,so
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i=
m

u=1
移 p赞 u

t (y;H)q赞 u
t姨 (30)

The target template model is updated for next
frame by the following equation:

q赞 t+1=

q赞 t, 约=0.7

*q赞 t+(1- )*q, 0.7约 约=0.9

*q+(1- )*q赞 t, 跃0.9

扇

墒

设设设设设设设缮设设设设设设设

(31)

Where
=( k+ k-1+噎+ k-n+1)/n (32)

q=(q赞 t+q赞 t-1+噎+q赞 t-n+1)/n (33)
3.2 Location vector updating

Peng have found that the changes of target scale
and position within the region of previous tracking
window would not impact the location accuracy of
mean shift tracker [13]. Therefore, to insure the location
accuracy of target center, the tracking window, i.e.
the bandwidth matrix should be enlarged appropriately
enough to cover the target inside the elliptical tracking
window in despite that the actual target scale
increases or decreases, and even the target rotates
arbitrarily. In this paper, the enlargement ratio is
1.44. Assuming the previous bandwidth matrix of
target template model is H0, and then the bandwidth
matrix HEn used in the iterative expression of location
vector Eq.(10) for current frame is given by

HEn=1.44*H0 (34)
3.3 Full bandwidth matrix updating

The bandwidth matrix will be inclined to explode
in the presence of background clutter; and it will be
inclined to implode on self鄄similar target. To make
the bandwidth matrix suitable for tracking,
regularization terms should be introduced[14].

Being different from location vector, the initial
value in iteration expression of bandwidth matrix in
Eq.(18) is the original previous bandwidth. To control
the iteration of bandwidth more precisely, we do not
use common the matrix norm as the stop criterion of
bandwidth iteration, but analyze the variations of
eigenvalues and eigenvector, which correspond to the

elliptical major axis, the minor axis and the orientation.

4 Experiments results and tracker
evaluation

4.1 Experiments setup
The proposed algorithm BAMS is compared with

other scale adaptation target tracking algorithms
originating from standard Mean鄄shift algorithm with
available source code, including SOAMST algorithm,
scale plus 鄄 minus Mean shift algorithm (MS依), and
EM algorithm, and the parameters of the three
compared tracking algorithm are left default as set by
the authors.
4.2 Evaluation measures

In this paper, we adopt four evaluation measures
proposed by Maggio [15], such as Euclidian center
location error, normalized center location error, dice
error, and lost track ratio.

Euclidian center location error. The Euclidian
distance between the center location vector y of the
tracked targets and the manually labeled ground truths

y軇is used to evaluate the center location error.

dt(y,y軇)= (y-y軇)忆(y-y軇)姨 =
2

i= 1
移(yi-y軇i)2姨 (35)

Normalized center location error. Assuming the
state s of an elliptical tracker

s=(u,v,a,b, ) (36)
is represented by the center (u,v), the length of the
two semi鄄axes (a,b) and the rotation of the estimated
elliptical target area . Also, assuming the ground鄄
truth information

s軇=(u軌,v軇,a軌,b軌, ) (37)
on the expected position of the ellipse is available.
The center location error can be normalized by
rescaling and rotating the coordinate system so that
the errors in u and v become

eu(s,s軇)= cos (u-u軌)-sin (v-v軇)
a軌 (38)

ev(s,s軇)= sin (u-u軌)+cos (v-v軇)
b軌 (39)
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(a) Feature distance (b) Center Euc鄄error (c) Center Nor鄄error (d) Dice error
Fig.6 Feature distance variations and tracking errors for flying jet plane infrared sequence

Fig.5 Visual tracking results for flying jet plane infrared sequence

(a) Proposed BAMS algorithm

(b) SOAMST algorithm

The normalized center location error at frame t is

et(st,s軇t)= eu(st,s軇t)2+ev(st,s軇t)2姨 (40)
Note that, when the estimated center is outside

the ground鄄truth area, then et(st,s軇t)跃1.
Dice error. A measure of the match between the

set of pixels At and A軒t, defined by the estimated and
ground鄄truth ellipse in each frame t, is called dice
error.

Dt=1- 2|At疑A軒t|
|At|+|A軒t|

(41)

Where |窑| denotes the cardinality of a set.
Lost track ratio. The lost track ratio is the

ratio between the number of frames where the tracker
is not successful NL and the total number of frames in
a test sequence NT:

=NL/NT (42)
A track at time index t can be defined lost when

the dice error Dt in that frame exceeds a certain value
T :

Dt跃T (43)
T =0.8 is adopted in this paper.

4.3 Tracking results and performance evaluation
Due to space limitations, the visual tracking

results of only the proposed BAMS algorithm and
SOAMST algorithm for the flying jet plane infrared
sequences are shown in Fig.5. The tracking window
of the proposed BAMS algorithm is shown as red
ellipse, and the center is represented as red octagon.
The tracking window of SOAMST algorithm is shown
as cyan ellipse, the external green ellipse is the search
window, and the center is represented as red crosses.

The results of evaluation measures, such as
Euclidian center location error d, normalized center
location error et, dice error Dt, are shown in Fig.6(b)
-(d). In these figures, only the evaluation measures of
trackers which can contain the target inside the
tracking window from the first frame to the end frame
through out the current infrared sequence are plotted.
The intensity and local standard deviation Bhattacharyya
distances between target and local background annotated
manually are shown in Fig.6 (a), which show the
complexity variations of the two infrared sequences.

The results of the final performance vector ( ,d軈,e軃,D軓)
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Algorithm BAMS

Sequences
Flying jet
plane 0.00

d

1.74

e

0.11

D

0.10

SOAMST

0.11

d

-

e

-

D

-

MS依

0.91

d

-

e

-

D

-

EM

0.77

d

-

e

-

D

-

Tab.1 Performance evaluation results of the four tracking algorithms

are listed in Tab.1. The values of lost track are
compared first. If the difference of the lost track value

between other tracking algorithm and the proposed
algorithm is higher than 0.1, then the other evaluation

measures (d軈,e軃,D軓) of this algorithm are not listed in this

table.
As shown in Fig.6 (b)-(d) and Tab.1, the proposed

BAMS algorithm produces the least errors in terms of
both location and target size for the flying jet plane
infrared sequence.

Qiao Liyong et al: Infrared target tracking using bandwidth adaptive mean shift

4.4 Computation complexity
According to Comaniciu[5], the mean computation

cost Co of the location iteration is approximately given
by

Co=N(cH+nhcS)抑NnhcS (44)
Where N is the average iterations number per frame;
cH is the cost of the histogram; nh is the number of
target pixels, and cS is the cost of an addition, a
square root, and a division.

Because the compared tracking algorithms are all
developed from the standard mean shift tracking
algorithm, the mean computation costs of the location
iteration of these algorithms for the same infrared sequence
are dependent on the average number N of iterations
per frame. In addition, because the Epanechnikov
kernel function is employed in the iteration solution
expression of bandwidth matrix of the proposed
BAMS algorithm, as in Eq. (18), the mean
computation cost of the bandwidth matrix iteration is
approximate with that of the location iteration.
Therefore, the total computation cost of the proposed
BAMS algorithm is dependent on the total iterations
number of location and bandwidth matrix.

Based on the aforementioned analysis, we compare
the computation complexity of the proposed BAMS
algorithm with that of other tracking algorithms by the
total iterations number per frame, as shown in Fig.7.
Tab. 2 shows the average iterations numbers of the four
compared tracking algorithms, and the average is done
over all frames in each infrared sequence. In the
implementations of scale plus鄄minus Mean shift

algorithm and EM algorithm by Zivkovic[6], the iterations
iterations numbers are fixed as 6.

As shown in Fig.7 , the total iterations number
per frame of the proposed BAMS algorithm is smaller
in general than that of other three tracking algorithms

for the flying jet plane infrared sequences. As listed

in Tab.2, the average interations numbers of the

proposed BAMS algorithm are also the least among

the four tracking algorithms.

Fig.7 Iterations numbers of the four tracking algorithms

Tab.2 Aaverage iterations numbers of the four
tracking algorithms

The above computation complexity analysis and
comparisons between the proposed BAMS algorithm
and other three tracking algorithms have proved the
effectiveness of the proposed BAMS algorithm.

5 Conclusion

An adaptive multiple features fusion and

Algorithm
sequences Bams

Flying jet
plane 4.28

Soamst

5.07

MS依 EM

6.00 6.00
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bandwidth updating mean shift tracking algorithm has
been proposed. The iterative solution expressions of
location and bandwidth have been deduced according to
M -estimator. Fused weight image with intensity and
local standard deviation has been produced. Historical
information of the mean similarity between the
determined target region and the target template model
has been used to update the target template model.
Regularization terms, based on the feature
Bhattacharyya distances between target and local
background, the variations of eigen -values and
eigenvectors, have been introduced to prevent the
bandwidth from exploding in the presence of
background clutter or imploding on self-similar target.

Experiments on typical target scale changing
infrared sequences have been carried out. Tracking
performance evaluation measures appropriate for
infrared sequences in which the target's scale changes
continuously have been introduced to compare the
tracking results of the proposed algorithm with other
scale adaptation mean shift tracking algorithms. The
visual results and evaluation measures show that the
proposed algorithm produces the least errors for the
typically challenging infrared sequences.
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