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Infrared target tracking using bandwidth adaptive mean shift
Qiao Liyong', Xu Lixin', Gao Min?

(1. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China;
2. Missile Engineering Department, Ordnance Engineering College, Shijiazhuang 050003, China)

Abstract: A multiple features fusion and bandwidth adaptive mean shift tracking algorithm had been
proposed. The iterative solution expressions of location and bandwidth had been established with fully
parameterized bandwidth matrix based on M—estimator. The fused weight image had been produced with
intensity and local standard deviation. The target template model had been generated by the combination
of previous target template model and the mean value of the determined target models in the previous
frames. An enlarged bandwidth matrix had been employed in the iterative solution of location vector to
ensure location accuracy. To prevent the bandwidth from exploding in the presence of background clutter
or imploding on self —similar target, regularization terms had been introduced. The visual results and
evaluation measures show that the proposed tracking algorithm has the best performance compared with
other three scale adaptive mean shift tracking algorithms.
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0 Introduction

Being characterized by extremely low signal —to—
noise ratio (SNR), poor target visibility, and time
varying target model, infrared target tracking remains
a challenging problem in pattern recognition and
tracking applications ™",

To resolve the scale updating problem in classic
mean shift tracking algorithm, Comaniciu proposed a
scale plus-minus approach (MS,)". Zivkovic proposed
an EM like kernel based tracking algorithm®, which
simultaneously estimated the position of the local
mode and the covariance matrix that described the
approximate shape of the local mode. Ning proposed
a scale and orientation adaptive mean shift tracking
algorithm (SOAMST) ™, which utilized the estimated
area and the second order moment to adaptively
estimate the width, height and orientation changes of
the target.

In this paper, a robust infrared target tracking
algorithm using bandwidth adaptive mean shift based
on M-estimator in complex background (BAMS) has
been proposed. To improve the robustness of mean
shift algorithm while tracking scale-changing target in
challenging infrared sequences, four measures have

been taken.

1 Mean shift tracking with full
bandwidth matrix

1.1 Location vector estimation

Let {x;, i=1,---,n} be the pixels locations of the
target region, the probability density function (PDF) of
the target model based kernel function k(x) can be

defined as

q"(yo;Hy)=C 2 Ky, (3o=x:) 8 b(x)—u] (1)

Where yA*O is the target center; & is the Kronecker delta
function; b:R*—{1,2, :--,m} represents the index of
the histogram bin at the location x; C is the

normalization constant; the multivariate kernel K (x)

is employed to assign a smaller weight to the locations

far from the target center, the multivariate kernel K, (x)

is generated from the rotating of the univariate kernel
k(x) in RY i.e.
Ky =)= Hy R {IH, " (3= 112} (2)
H, is the bandwidth matrix of target region,
which determines the target size and orientation; In
this paper, the full bandwidth matrix is chosen.
Similarly, let{y;, i=1,---,n;} be the sample points
of the candidate region, the candidate target model

centered at y can defined by

PU(y:H)=Cyy 2 HI Mk (IH(y=y)I) 8lb () -] (3)

Where H is the bandwidth of candidate target region;
Cy is also the normalization constant.
The similarity between the target and candidates
is measured by Bhattacharyya distance.
d(y;H)=\/1-p(y;H) (4)
Where p (y;H) is the Bhattacharyya coefficient given
by

p(v:H)=plp(y:H),q1= X, V p"(y;H)g" (5)

u=1
The candidate at location y possessing minimum
distance with the target template model is determined

as the target region in the current frame. Using Taylor

expansion around the value 1;“ ()A'O;Ho) and after some

manipulations, the linear approximation of the

Bhattacharyya coefficient Eq.(5) is:

plp(y;:H),q] = ;— 2 Vp“(yosHo)g" +

u=1

ny

CTH D Wl HK I H 2 (y—y)I12) (6)
i=1
Where
o= 2\ —L— 8lb(x)—u] (7)
u= P"(yosHo)

To minimize the distance Eq. (4), the second
term in Eq.(6) has to be maximized, the first term
being independent of y. Observe that the second term

represents the multivariate kernel density estimate '
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f‘ (y;H) computed with kernel profile k(x) at y in the

current frame, with the data being weighted by .

ny

FoiHy=GE X o HPRAH G-yl (@)

By taking the partial derivative of the f (v;H)
with respect to location vector y, we can obtain the

expression of density gradient estimators:

Vf(y;m:Vf‘(y;H):QLg;LH):

S 3 @l HIH (=30 H G-y Y =y (9)
H i=1
Where g(x)=—k’(x), assuming that the derivative of
k(x) exists for all x € [0,%), except for a finite set of
points.

After some manipulations, we can obtain the

iterative solution expression of location vector y as

following:

ny

Y wg{Gey) H ' o=y )y
i=1

= (10)

> wg{(Gey)H o=y }
i=1

When the kernel profile function is Epanechnikov
kernel function

l-x O0=sx=1

k(x)= 11
(x)0 (11

x>1
g(x)=—k'(x)=1, substituting k(x) and g(x) to Eq.(10),

the iterative solution expression of location vector y is:

Ny

)A’lz Z “)LYi/Z w;
i=1

i=1

(12)

1.2 Relation to M—-estimator and full bandwidth
matrix estimation
Huber” extended Maronna’s definition™ to the most
general form of M—estimators of multivariate location
and scatter as following which are affine equivalent.
Let {y,i=1,2,
from density f(y), f(y)=f(lyl) is a spherically symmetric

---,n} € R be a data set sampled

probability density in RY, the prototype distribution
f() is only approximately known. We apply general
non—degenerate affine transformations y,—H™"? (y-y,)
to obtain a d—dimensional location and scale family of

"elliptic"densities™”

% 44 %
FOH)=IHI"fIH(y=y)Il) (13)
Where |l-Il stands for Euclidean norm, H P, P,

denote the set of all dxd positive definite symmetric
matrics. The problems are to estimate the location
vector y and the scatter matrix H from the sampled
data set {y;,i=1,2,---,n}.

Assume p (v;H)=-logf (y;H), the M—estimate of

(y,H) can be obtained by minimizing 2 p(y;H).
i=1

The most general form of affine equivariant M —
estimator of multivariate location and scatter are
usually defined implicitly as the solutions y € R and

H e P,, respectively, to the simultaneous equations:

z u,(8,)yi
y=tt— (14)

n

2 () (=) (-3)"
H= i=1

(15)

n

z us(s;)

i=1
Where s=(y—y)"H™'(y—y,), and with u,, u, and u; being

real-valued functions.

Kernel density estimation f(y;H) in Eq.(8)
represents the probability density at data point y,. The
relation between mean shift algorithm and M —

estimator for location can be obtained by

y=arg max f(y;H)=

arg max
v

i=1

% Y wiIHI”2k{IIH”2(y—y,~)II2}}=
arg min <%H D, o IHIP 2 1=K[IIH2(y=y))I12]} )=
y i=1

(16)

arg min %H > o HI2p[IH2(y—y)II?]
y i=1

We shift

equivalent to M —estimator for location estimation,

can see that mean algorithm is
which also had been proved in the seminal paper for
mean shift tracking.

Equally, we can obtain the bandwidth matrix
estimate based on scatter M —estimator for mean shift

algorithm.
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AL = G 3 w0 HIPPH k(=) TH (=) )~
i=1

S 3 o IHI (=) H (=x) )
i=1

{H'(y=x)(y—x)"H™'} (17)

After some manipulations, we can obtain the

iterative solution expression of bandwidth matrix as

follows:

? Z g {(=y)H, (=3 =)=y}

H= (18)

ny 21
2 Ok {((-y)™H, (-3}
i=1

When the kernel profile function is Epanechnikov
kernel function as in Eq.(11), substituting k(x) and g(x)
to Eq. (18), the

bandwidth matrix is:

iterative solution expression of

22, of (-3 (-y)")
H= = (19)

Ty

> w{1-G-y)™H, (v-y)}

i=1

2 Target and local background model

2.1 Estimating target parameters from full
bandwidth matrix
For the symmetric positive definite bandwidth
matrix H, the following Eq. (20) defines a unique
ellipse region™ which is used to represent the target.
(x=x)"H ' (x—x) <1 (20)
The axes of the ellipse

point along the

eigenvectors of H, the half-length of these axes equal

to VA, and the center is x. The elliptical parameter,
namely, the width, height, and the orientation of the
target can be well estimated by the singular value
decomposition (SVD) of bandwidth matrix H. Because

H is symmetric positive definite, it is decomposed as

follows:
H=RAR" (21)
Where
/ cosf sinf
= (22)
—sinf cos6 |

R is the eigenvector matrix; 60 is defined as the

orientation of the ellipse which is the angle between

the major axis and the horizontal axis, as in Fig.1.

Fig.1 Parameters of an ellipse

o
) (23)

|
0 A
A is the eigenvalue matrix the major axis of the
ellipse corresponds to the maximum eigenvalue, the
minor axis corresponds to the minimum eigenvalue, as
in Fig.1.
a=V'A (24)
b=\/A (25)
2.2 Target window and local background region
The target window is initialized manually with an
ellipse to determine the target center and bandwidth
matrix simultaneously. As is shown is Fig.2, an
ellipse can provide more precise shape in for mation
than a rectangle bounding box, which is tighter for
the target contour and defines the orientation of the

target region.

Fig.2 Ellipse and bounding box

The "center-surround" approach has been used to
sample pixels from the target and the background ™.
That is, a compact set of pixels composed by an
ellipse covering the target is chosen to represent the
target pixels, while a larger annulus of neighboring

pixels surrounding the ellipse is chosen to represent
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the background, whose center is the same as the ki A L, ] (28)
=

target region. If the bandwidth of the target region is AU+ s 15l

H;, then the local background region will be defined 2 dlysg-is) (29)

by bandwidth
(26)

Fig.3 Target and local background

2.3 Weight image and multiple features fusion

The weight , calculated in Eq.(7) can actually
be considered as the likelihood of a pixel in the
current frame being part of the tracked target. A
likelihood map or weight image where the value at a
pixel is proportional to the likelihood that the pixel
comes from the target we are tracking can be
computed through weight w;.

The intensity and local standard deviation are
employed to label pixels with the likelihood that they
belong to the target, and the sum rule has been
employed to produce the fused weight image because
of its excellent properties.

The fusion weight w; is obtained by

w=k o +kywy; 27)
Where Kk

and k, are the weight coefficients for

intensity weight ; and local standard deviation

weight @, respectively. An adaptively weight
coefficients updating is achieved by the Bhattacharyya
distance between target and local background model.
The target and local background model are represented
by their original one dimensional histograms without
kernel weight, I and J, respectively.

The first row of Fig.4 is intensity histograms of
target and local background, and the second row is
the local standard deviation histogram. The weight

coefficients k, and k, are calculated as following:

 d[ L Jiw)+d[ L 1sal
Where [I, lisy, Ji» Jisa] are the intensity and local
standard deviation one dimensional histograms of
target and local background respectively, d[[,Ji,] and
d[Ilsg,Jisq] are the intensity and the local standard

deviation Bhattacharyya distances between target and

local background calculated according to Eq. (4)
respectively.
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Fig.4 Gray and LStd hist

3 Target window updating and complete

tracking algorithm

Target window updating includes target template
model updating, target location vector updating and
bandwidth matrix updating.

3.1 Target template model updating

To update target template model adaptively while
preventing it from being polluted by background
feature, two measures have been taken in this paper.
First, the target template is updated in a fixed length
frame interval n, which can be 3 —5. Second, the
newly updated target template model is generated by
the combination of the previous target template model
and the mean value of the determined target models
in the previous n frames. Let & be the similarity
based on Bhattacharyya coefficient between the
determined target model and the target template model

in the current frame,so
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&=> \p (:H)Yq' (30)

u=1
The target template model is updated for next

frame by the following equation:

Eln £<=0.7
= g +(1-H*q, 0.7<€<=0.9 (3D
Eq+(1-9%q., 0.9
Where
E(G+&at - +&n)in (32)
q=(qrH gt +q)in (33)

3.2 Location vector updating

Peng have found that the changes of target scale
and position within the region of previous tracking
window would not impact the location accuracy of
mean shift tracker™!. Therefore, to insure the location
accuracy of target center, the tracking window, i.e.
the bandwidth matrix should be enlarged appropriately
enough to cover the target inside the elliptical tracking
window in despite that the actual target scale
increases or decreases, and even the target rotates
arbitrarily. In this paper, the enlargement ratio is
1.44. Assuming the previous bandwidth matrix of
target template model is H,, and then the bandwidth
matrix Hg, used in the iterative expression of location
vector Eq.(10) for current frame is given by

Hg,=1.44*H, (34)
3.3 Full bandwidth matrix updating

The bandwidth matrix will be inclined to explode
in the presence of background clutter; and it will be
inclined to implode on self-similar target. To make
the bandwidth matrix suitable for tracking,
regularization terms should be introduced™.

Being different from location vector, the initial
value in iteration expression of bandwidth matrix in
Eq.(18) is the original previous bandwidth. To control
the iteration of bandwidth more precisely, we do not
use common the matrix norm as the stop criterion of
bandwidth iteration, but analyze the variations of

eigenvalues and eigenvector, which correspond to the

elliptical major axis, the minor axis and the orientation.

4 Experiments results and tracker

evaluation

4.1 Experiments setup

The proposed algorithm BAMS is compared with
other scale adaptation target tracking algorithms
originating from standard Mean-shift algorithm with
available source code, including SOAMST algorithm,
scale plus- minus Mean shift algorithm (MS.), and
EM algorithm,

compared tracking algorithm are left default as set by

and the parameters of the three

the authors.
4.2 Evaluation measures

In this paper, we adopt four evaluation measures
proposed by Maggio ™, such as Euclidian center
location error, normalized center location error, dice
error, and lost track ratio.

Euclidian center location error. The Euclidian
distance between the center location vector y of the

tracked targets and the manually labeled ground truths

y is used to evaluate the center location error.

dy)=V -y (-y) = ;@,—592

Normalized center location error. Assuming the

(35)

state s of an elliptical tracker

s=(u,v,a,b,0) (36)
is represented by the center (u,v), the length of the
two semi-axes (a,b) and the rotation of the estimated
elliptical target area 6. Also, assuming the ground-

truth information

s=(u,v,a,b,0) (37)
on the expected position of the ellipse is available.
The center location error can be normalized by
rescaling and rotating the coordinate system so that

the errors in # and v become

cos é(u—;t)—sin é(v—{’) (38)

eu(S,S)=
a

sin O(u—u)+cos B(v—v) (39)
b

e,(s,9)=
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The normalized center location error at frame ¢ is

et(sh*;t)=veu(st’;t)2+ev(st7;t)2 (40)

Note that, when the estimated center is outside

the ground-truth area, then e,(s,,:vt)>1.

Dice error. A measure of the match between the

set of pixels A, and A,, defined by the estimated and
ground-truth ellipse in each frame ¢, is called dice

€rror.

D=1- 2I1A,NAJL ﬂAI
IAI+IAI

Where || denotes the cardinality of a set.

(41)

Lost track ratio. The lost track ratio m is the
ratio between the number of frames where the tracker
is not successful N, and the total number of frames in
a test sequence Np:

1M=N,/Ny (42)

A track at time index ¢ can be defined lost when
the dice error D, in that frame exceeds a certain value
T,

D>T, (43)

T, =0.8 is adopted in this paper.

4.3 Tracking results and performance evaluation
Due to space limitations, the visual tracking
results of only the proposed BAMS algorithm and
SOAMST algorithm for the flying jet plane infrared
sequences are shown in Fig.5. The tracking window
of the proposed BAMS algorithm is shown as red
ellipse, and the center is represented as red octagon.
The tracking window of SOAMST algorithm is shown
as cyan ellipse, the external green ellipse is the search
window, and the center is represented as red crosses.
The results of evaluation measures, such as
Euclidian center location error d, normalized center
location error e,, dice error D,, are shown in Fig.6(b)
—(d). In these figures, only the evaluation measures of
trackers which can contain the target inside the
tracking window from the first frame to the end frame
through out the current infrared sequence are plotted.
The intensity and local standard deviation Bhattacharyya
distances between target and local background annotated

manually are shown in Fig.6 (a), which show the

complexity variations of the two infrared sequences.

The results of the final performance vector ( n,;l,é,B)

(a) Proposed BAMS algorithm

(b) SOAMST algorithm
Fig.5 Visual tracking results for flying jet plane infrared sequence
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Fig.6 Feature distance variations and tracking errors for flying jet plane infrared sequence
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are listed in Tab.l. The values of lost track m are
compared first. If the difference of the lost track value
7 between other tracking algorithm and the proposed

algorithm is higher than 0.1, then the other evaluation

measures (Zi,;',B) of this algorithm are not listed in this

table.

As shown in Fig6 (b)—(d) and Tab.1, the proposed
BAMS algorithm produces the least errors in terms of
both location and target size for the flying jet plane

infrared sequence.

Tab.1 Performance evaluation results of the four tracking algorithms

Algorithm BAMS SOAMST MS. EM
Sequences n d e D n d e D n d e D n d e D
Flying jet
0.00 1.74 0.11 0.10 0.11 - - - 0.91 - - - 0.77 - - -
plane

4.4 Computation complexity

According to Comaniciu®, the mean computation
cost C, of the location iteration is approximately given
by

C,=N(cytn;cs) = Nnycs (44)
Where N is the average iterations number per frame;
cy is the cost of the histogram; n, is the number of
target pixels, and c¢g is the cost of an addition, a
square root, and a division.

Because the compared tracking algorithms are all
developed from the standard mean shift tracking
algorithm, the mean computation costs of the location
iteration of these algorithms for the same infrared sequence
are dependent on the average number N of iterations
per frame. In addition, because the Epanechnikov
kernel function is employed in the iteration solution

expression of bandwidth matrix of the proposed

BAMS algorithm, as in Eq. (18), the mean
computation cost of the bandwidth matrix iteration is
approximate with that of the location iteration.

Therefore, the total computation cost of the proposed
BAMS algorithm is dependent on the total iterations
number of location and bandwidth matrix.

Based on the aforementioned analysis, we compare
the computation complexity of the proposed BAMS
algorithm with that of other tracking algorithms by the
total iterations number per frame, as shown in Fig.7.
Tab. 2 shows the average iterations numbers of the four
compared tracking algorithms, and the average is done
over all frames in each infrared sequence. In the
scale Mean shift

implementations  of plus-minus

algorithm and EM algorithm by Zivkovic', the iterations
iterations numbers are fixed as 6.

As shown in Fig.7, the total iterations number
per frame of the proposed BAMS algorithm is smaller
in general than that of other three tracking algorithms
for the flying jet plane infrared sequences. As listed
in Tab.2, the average interations numbers of the

proposed BAMS algorithm are also the least among

the four tracking algorithms.

16 —#—Bams
14 ~&—Soamst
w— MS+-
12
a 101
& I 1
§ gk ddkb ¥
A Nl i
| | .1I!|IINI!I
A Lima - LI
\ A \{ W LA g i)
| v T TR i )
Sl g
G 1 1 1 1
1050 1150 1250 1350
Frame No

Fig.7 Iterations numbers of the four tracking algorithms

Tab.2 Aaverage iterations numbers of the four

tracking algorithms

Algorithm

Bams Soamst MS. EM
Sequences
v
ying Jet 4.28 5.07 6.00 6.00
plane

The above computation complexity analysis and
comparisons between the proposed BAMS algorithm
and other three tracking algorithms have proved the

effectiveness of the proposed BAMS algorithm.

5 Conclusion

An adaptive multiple features fusion and
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bandwidth updating mean shift tracking algorithm has
been proposed. The iterative solution expressions of
location and bandwidth have been deduced according to
M —estimator. Fused weight image with intensity and
local standard deviation has been produced. Historical
information of the mean similarity between the
determined target region and the target template model
has been used to update the target template model.
based on the feature

Regularization  terms,

Bhattacharyya distances between target and local

background, the variations of eigen —values and
eigenvectors, have been introduced to prevent the
bandwidth from exploding in the presence of
background clutter or imploding on self—similar target.
Experiments on typical target scale changing
infrared sequences have been carried out. Tracking
performance evaluation measures appropriate for
infrared sequences in which the target’s scale changes
continuously have been introduced to compare the
tracking results of the proposed algorithm with other
scale adaptation mean shift tracking algorithms. The
visual results and evaluation measures show that the
proposed algorithm produces the least errors for the

typically challenging infrared sequences.

References:

[1] Qiao Liyong, Xu Lixin, Gao Min. Influences of infrared image
complexity on the target detection performance [J]. Infrared
and Laser Engineering, 2013, 42: 253—261.(in Chinese)

[2] Qiao Liyong, Xu Lixin, Gao Min.Fast maximum entropy
thresholding based on two-dimensional histogram oblique
segmentation in infrared imaging guidance [J]. Infrared and

Laser Engineering, 2013, 42(7): 1691-1699.(in Chinese)

[3]

[4]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Qiao Liyong, Xu Lixin, Gao Min. Survey of Image Complexity

Metrics for Infrared Target Recognition [J]. Infrared
Technology, 2013, 35(2): 88-96.(in Chinese)

Yilmaz A, Shafique K, Shah M. Target tracking in airborne
forward looking infrared imagery [J]. Image and Vision
Computing, 2003, 21(7): 623-635.

Comaniciu D, Ramesh V, Meer P. Kernel-Based Object
Tracking [J]. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2003, 25(5): 564-575.

Zivkovic Z, Krose B. An EM -like algorithm for color-
histogram-based object tracking [C]//IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
2004: 798-803.

Ning J, Zhang L, Zhang D, et al. Scale and orientation
adaptive mean shift tracking [J]. IEEE Computer Vision,
2012, 1(6): 52-61.

Webb A R, Copsey K D. Statistical Pattern Recognition[M].
3rd ed, America: John Wiley & Sons Ltd,2011: 198.

Huber P J. Robust estimation of a location parameter[J]. The
Annals of Mathematical Statistics, 1964, 35(1): 73—-101.
Maronna R A. Robust M—Estimators of multivariate location
and scatter[J]. The Annals of Statistics, 1976, 4(1): 51-67.
Strang G. Linear Algebra and Its Applications [M]. 4th ed.
Britain: Wellesley-Cambridge Press, 2005.

Collins O T, Liu Y. Online selection of discriminative
tracking features[J]. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2005, 27(10): 1631-1643.

Peng N S, Yang J, Liu Z. Performance analysis for tracking
of variable scale objects using mean-shift algorithm [J].
Optical Engineering, 2005, 44(7): 70505.

Vojir T, Noskova J, Matas J. Robust Scale-Adaptive Mean-
Shift for Tracking [M].Berlin: Springer, 2013: 7944, 652 —
663.

Maggio E, Cavallaro A. Accurate appearance-based Bayesian
tracking for maneuvering targets

[J1. Journal Computer

Vision and Image Understanding, 2009, 113(4): 544-555.



