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0 Introduction

Digital Speckle Pattern Interferometry (DSPI) "™ provides an effective means of full-field and non-
contact measurement of deformation or displacement. It has been widely used in material properties analysis"™ ",
structural design verification'” , and thermal stress analysis”'. With the advancement of the aerospace and
automotive industry, deformation measurements with a large Field of View (FOV), high resolution and wide
measurement range are becoming more and more urgent. The synthesis of multiple sub—holograms has proven
effective in increasing the field of view and improving the lateral resolution of Digital Holography (DH)""".

In the current DH aperture synthesis methods, sub—holograms are obtained by a multi-step image
acquisition operation as the object or camera is scanned along the x and y-axis'"" " In the case where there is
a certain overlap area between adjacent sub—holograms, the aperture synthesis algorithm can stitch all the sub-
holograms by image registration to obtain a full-field hologram. This method assumes that two neighboring sub—
holograms have the same intensity distribution in the overlapping region. It is only applicable to the
measurement and observation of stationary objects. In DH or DSPI deformation measurements, two surface
states of the object are involved, corresponding to before and after deformation, and the full-field deformation
i1s obtained by subtracting the pre—deformation hologram or interferogram note from the post-deformation
hologram or interferogram. Positioning errors in objects or cameras during successive sub—image acquisitions
can lead to mismatches in the position of the corresponding pixels of the stitched image before and after the
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deformation, which may invalidate the resolved deformation. In addition, axial misalignment between
corresponding hologram pairs will result in stitching failure'""'".

The use of multiple CCDs to cover the full field of view can overcome the disadvantages of multi—step
image acquisition schemes. However, the relative positions among the CCDs need to be addressed. Using
multi-CCDs to cover the full field of view can overcome the drawback of the multi-step image acquisition
scheme. However, the relative positions among CCDs need to be addressed. This is usually estimated by

13-14,17-18] However
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calculating the similarity of intensity images in overlapping regions between adjacent images'
the intensity distribution in the overlapping areas is usually unequal due to non—uniform illumination light,
angular differences between the reference and object beams and differences in the CCD, which affects the
correctness of the relative position estimation. Therefore, a method is proposed to estimate relative positions
based on the consistency of unwrapped phase maps between adjacent CCDs. At the same time, phase deviations
between sub—images of multiple CCDs in the overlapping area caused by the distinct phase reference points of
sub—images can be compensated for. Additionally, multi-CCDs solutions pose the problem of bulky and
uneconomical systems, so the size of the overlap region should be as small as possible.

To evaluate the effectiveness of image registration of multi-CCDs DSPI system, a dual-CCDs DSPI
system was constructed, the relative positions between CCDs were estimated based on the unwrapped phase
diagram, the effect of the size of the overlapping area on the image registration accuracy was analyzed, and a
compensation method of the phase deviation between CCDs was proposed. Finally, the registration accuracy of
the stitching method is evaluated with a calibrated artifact.

1 Method

The optical setup of the two CCD DSPI system is shown in Fig. 1. The light source is a laser with a
wavelength of 532 nm. A fiber optic coupler and beam splitter are used to split the laser beam into two beams,
one of which serves as thereference light while the other is the illumination light, forming a, 8 angle with the
optical axis of the CCDs (= 45" in our setup). The backscattered light from the object is collected by a lens
with a focal length of 85 mm, which is approximately 96 mm from the CCD sensor. There is an aperture in front
of the lens to reduce high high—frequency noise and to limit the size of the first-order spectrum in the Fourier
transform domain. The reference and object beams are brought together by a 50: 50 beam combiner in front of
the CCD sensor. Each CCD records the corresponding sub—speckle pattern and transmits it to the computer for
sequential data processing. To improve the quality of the interferogram, an NDF is used to adjust the intensity
ratio between the object beam and the reference beam. Note that the distance between NDF and the outlet of
optical fiber should be as small as possible to avoid the influence of the NDF on the wavefront of reference

wavefront.

Lens aperture

CCD-2
OFS, optical fiber coupler and beam splitter; BS, beam combiner; NDF, neutral density filter

Fig. 1 Multi-CCD DSPI experimental setup
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The speckle interferograms before I, (x, y) and after I,(x, y) the object surface deformation are recorded
with each CCD, one of the interferograms obtained by CCD#1 and CCD#2 are shown in Fig.2 (a) and (b),

19]

respectively. By using the Fourier-transform method'"”, the phase difference & (x, y) caused by the deformation

“and phase unwrapping ",

or displacement of the object surface is obtained. After noise suppression filtering'
the unwrapped phase maps (¢,(x,y) and ¢,(x,y)) of each CCD are obtained. The flow chart of proposed

method of phase stitching is shown in Fig. 2.
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Fig. 2 The flow chart of proposed method of phase stitching

After the unwrapped phase maps are obtained, shown as Fig. 2(c) and (d), assuming a set of relative
positions (e,, e,), calculating the similarity between the phase ¢} (u;, v;) and ¢} (u/, v]) of the overlapping area
by Zero~Normalized Cross—Correlation (ZNCC) criterion™".
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where the overlapping area of the two unwrapped phases is IXJ pixels, u/=wu,—e,,vj=v,— ¢,
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(iel1,1],jel1,7]) ¢/ (u;,v;) and ¢ (ul,v]) denote the phase value at coordinates (u;, v;) and (], v]) of the
overlapping area of the CCD#1 and the CCD#%2, respectively; and ¢, and ¢ are the mean values of the
overlapping area of the CCD#1 and the CCD#2, respectively.

The ZNCC criterion defined in Eq. (1) is a parametric objective function involving two unknown
parameters of the relative positions (e,,e,) of the two CCDs. Mathematically, this becomes a parametric
optimization problem. The position corresponding to the maximum value of the objective function Eq. (1) is the
best estimate of the relative position (¢,, ¢,). Then the phase error (¢;,) between ¢, (u,, v;), in the overlapping
area can be calculated by Eq. (2). Note that the relative position (¢é,, ¢,) between CCDs needs to be solved
once, but the phase error (¢;,) under different deformation values needs to be solved every time.

1
s v DD N CRAR U] (2)
Then compensating the phase deviation between CCDs by Eq. (3) and
0, (2, 5)=¢,(x,3)+ ¢, (3)

where ¢, (x,y) is the compensated phase map of ¢,(x,y) . Then a larger unwrapped phase map ¢,,(x',y")
(zel1,M+e,], €[1,N—¢,]) can be correctly stitched, shown as Fig.2 (e), and the deformation /, (z', y")
can be calculated by Eq. (4).

A @u (2 y")

Zw(I,y):EXm (4)

where /,,(z', y') is the out of plane deformation of the tested specimen, A is the wavelength of the laser, g is the

included angle between illumination direction and detection direction.
2 Experiment and results

The experiment setup is shown in Fig. 3, where two CCDs with a pixel size of 4.4 um X4.4 pym and
1 600X1 200 pixels were utilized to record multiple sub—images. An artifact fixed to a calibrated loading device
was employed to investigate the proposed method. The deformation is imposed by piezo actuators. The artifact
is a disk shape. The displacement of the central area is calibrated with a universal length meter (HELIO-
SIP550M). It is often the case that one always expects the maximum field of view from as few CCDs as
possible. Therefore, it is essential to explore the effect of overlap area size on the stitching results. Comparing
the standard deviation of the difference in overlap area measurements before and after stitching different sizes of
overlap areas, the results are shown in Fig. 4. The standard deviation is not sensitive to the size of the

overlapping area, the smallest overlap area size in our experiments is 59 pixels and the largest size is 817 pixels

e CCD#1 |5 - P
i i Reference

wave

Fig.3 Experiment setup
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in the x—axis direction. The maximum standard deviation is less than 0.018 pm and the minimum standard
deviation is greater than 0.013 pum, and the difference between them is less than 0.005 pm which is neglibible.
The standard deviation is less than 0.015 pm when the size of the overlap area is between 141 and 461 pixels,
corresponding to a percentage of the overlap area between 8.8% and 28.8%. Therefore, when using multiple
CCDs for phase stitching in the DSPI, it is appropriate to take an overlap area of around 10%.
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Size of overlapping area/pixel
Fig.4 The relationship between the standard deviation of the difference of before and after stitching and size of overlapping area
In order to prove the effective of the proposed method, the relative error which is defined as
_leo— ¢l
|

where ¢, and ¢ are the phases of the overlapping region before and after stitching, respectively. When the

E(p) X 100% (5)

deformation of the workpiece is 9 pm the unwrapped phase and the relative error of the overlapping region
before and after stitching are shown in Fig.5. The FOV expends from 5.5 cm X4 cm to 10 cm X4 cm after
stitching. The maximum relative error before and after stitching is less than 1%, which illustrates the
effectiveness of the proposed method.

To further evaluate the proposed method, a total of 9 displacement loading points are included, and three
groups of values are measured by CCD#1, CCD#2, and the phase stitching method. The fitted curves and
residual errors are shown in Fig.6. The Root Means Squared Errors (RMSE) and coefficient of determination R
are shown in Table 1. A good fit to a range of discrete deformation values using the Least Square (1.S) method
is shown in Fig.6(a) and is evaluated quantitatively using the metric R in Table 1. The measurement errors and
fitting residuals are shown in Fig. 6 (b) are small and illustrate the validity of the measurement method. By
comparing the RMES values shown in Table 1, the measurements of the proposed method are more accurate
than those of a single CCD. It seems to violate that the errors in stitching must be larger than the measurement
of a single CCD. However, it should be noted that the values of the overlapping areas are averaged out during
the stitching process, which may account for the lower mean square error of the sutures compared to the single
CCD measurements. Maybe the random noise was suppressed during the averaging process.
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(a) Sub-aperture unwrapped phase map obtained by CCD#1 (b) Sub-aperture unwrapped phase map obtained by CCD#2
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Fig. 5 Unwrapped phase map and the relative errors of the overlapping area before and after stitching
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(a) The fitting lines of each group data and corresponding data points (b) The residuals of the fitting
Fig. 6 Least square fitting and fitting residuals
Table 1 The RMSE and R of the measurement results
Measuring method CCDh#1 CCD#2 Stitched
R 1.000 0 1.000 0 1.000 0
RMSE /pm 0.015 0.012 0.010

Based on the results obtained above, it can be concluded that phase stitching is effective and allows for
FOV expansion.

3 Conclusion

A DSPI system with two CCDs 1s used to record multiple sub—aperture images to avoid scanning errors in
the micro—positioning stage when moving the CCD or object. The registration positions were calibrated to
eliminate phase errors between SASPIs. In order to obtain the maximum FOV with fewer CCDs, the
relationship between the standard deviation and the size of the overlapping area was investigated. The size of the
overlap zone is approximately 10% , which may be appropriate in terms of the trade—off between FOV and
accuracy. To demonstrate the effectiveness of the phase stitching method, a calibrated loading device driven by
a piezoelectric actuator was used. The measurement accuracy of the phase stitching method is approximate to
that of the single-camera method when comparing the measurements of the calibration points by RMSE metric.
Since the true value of the full field is unknown, the difference in overlap area between the single CCD method
and the phase stitching method was calculated to evaluate the confidence of the full field values obtained by the
proposed method, and these values are less than 1%. Furthermore, with more CCDs, the measurement range
and axial resolution are increased to a certain FOV.
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Abstract: Digital Speckle Pattern Interferometry (DSPI) provides an effective means of full-field and non—
contact measurement of deformation or displacement. With the advancement of the aerospace and
automotive industry, deformation measurements with a large Field Of View (FOV ), high resolution, and
wide measurement range are becoming more and more urgent. However, it is difficult to increase the FOV
for a given size of CCD without compromising the lateral resolution of the deformation measurement. To
solve this problem, a technique for stitching the phases of multiple sub—images to enlarge the FOV without
impairing the lateral resolution was investigated. The existing aperture synthesis methods usually obtained
multi-images by moving CCD or object. They are only applicable to the measurement and observation of
stationary objects. For deformation measurements, at least two surface states of the object are involved,
corresponding to before and after deformation. Thus, the positioning errors and axial misalignment between
corresponding hologram pairs are difficult to estimate. To overcome the disadvantages of multi—step image
acquisition schemes. An experimental setup with multiple CCDs was constructed to obtain multiple sub—
images. The phase of each CCD was extracted by the Fourier-transform method, and then the unwrapped
phase maps of the overlapping areas were used to estimate the relative positions. Subsequently, the phase
deviations between adjacent sub—image pairs were estimated and compensated for correct phase stitching.
In order to obtain the largest possible FOV using as few CCDs as possible, the effect of the size of the
overlap area on the stitching results was analyzed. The relationship between the standard deviation and the
size of the overlapping area was investigated. The standard deviation is less than 0.015 pm when the size of
the overlap area is between 141 and 461 pixels, corresponding to a percentage of the overlap area between
8.8% and 28.8% . Therefore, the size of the overlap area is approximately 10% , which may be appropriate
in terms of the trade—off between FOV and accuracy. With the proposed method, the FOV was expanded
from 5.5 cm X4 cm to 10 cm X4 c¢cm and only two CCDs were used. The maximum relative error before
and after stitching of the overlapping area was less than 1%, which illustrates the effectiveness of the
proposed method. In addition, to further demonstrate the effectiveness of the phase stitching method, a
calibrated loading device (the loading range is 0~9 pm , the expanded measurement uncertainty is 0.2 pm
with the coverage factor £#=2) is driven by a piezoelectric actuator was used. A total of 9 displacement
loading points were included, and three groups of values were measured by CCD#1, CCD#2, and the
phase stitching method. The Least-Square (I.S) method was used to fit the measured deformation of the
three groups and the fitting residuals were evaluated. Additionally, the coefficient of determination R and
the Root Mean Square Error (RMSE) of the quality of the fitting were compared. The measurement
accuracy of the phase stitching method was equivalent to that of the single-camera method when comparing
the measurements of the calibration points by the Root Mean Square Error (RMSE) metric. In summary,
the proposed phase stitching method based on multi-CCDs deformation measurement is an effective means
to increase the FOV without impairing the lateral resolution. At the same time, with a certain FOV, the
measurement range and axial resolution can increase. Theoretically, for the deformation distribution similar
to the cantilever beam, the measurement range can increase with the increment of FOV.

Key words: Digital speckle pattern interferometry; Phase stitching; Phase errors; Deformation
measurement; Multi—-CCDs
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