8545 5 8 1) o F o= Vol. 45 No. 8
2016 4 8 A ACTA PHOTONICA SINICA August 2016

doi: 10. 3788/gzxb20164508. 0829002
R B P AR DA ik 57 A R Y Bl 2 O HIUH R S T

Nl 1 I 1 1,2 == 1 > 1 - 1 1 > 1
B 2721, W, John C Thomas ", L E4 . E%% . FmH I RN 4 E
(1 IMARBTR2E BRSHEFTREER, LK HE 255049
(2 Group Scientific Pty Ltd, Grange, SA 5022, Australia)

B EAHIAEAFENET, ATAA R A A IHBABE P EARERBEEE > H, 2T
Tikhonov E M AL F ik ATk it KR F A — AL R4 T 5 5 A5 ENH AT 47865 BIR.
EHEIEP. AR B P ERARIEEGTRIN K, 5T KBk E A HEAANABREL R kTG
ATH A I B AT R B SRk BRI BIRAER . RS F AR T ML E R LR R, Rt E M
G I ERGKAE R DEARNRBELEERRE R ERE,ER TR A XA B4R

XER AR BEE >R ;HEN T AP AR ;% FN S
hESEE . TNOLL. 74 TEFRIRAGD A XEHE.1004-4213(2016)08-0829002-6

Inversion of Dynamic Light Scattering Data by Treating Noise
as an Independent Variable
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Abstract: In dynamic light scattering measurements, noise often makes inversion of the autocorrelation
function to obtain the particle size distribution unreliable. To obtain accurate particle size distributions
from noisy dynamic light scattering data, a modified inversion method based on the original Tikhonov
regularization algorithm is proposed. In the method, the noise in the data is considered an independent
variable. During the inversion process the number of rows and columns of the coefficient matrix equation
is increased to accommodate this. Finally, using the dimensions of the coefficient matrix, the poor
particle size distribution data is separated from the recovered particle size distributions, reducing the
influence of noise in the data. The particle size distributions recovered from the dynamic light
scatteringdata show that the modified Tikhonov regularization inversion algorithm can give rise to
improved accuracy compared with the original inversion algorithm, especially for low signal-to-noise ratio
data.
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0 Introduction

Dynamic Light Scattering (DLS) is a major

method for submicron particle size measurement ",

In DLS measurements, noise is inevitable, and
attention has to be paid to minimize the effect of noise
In 1983, Schatzel™”

investigated noise in photon correlation and photon

to acquire high quality data.

structure functions, and in 1988 he and colleagues-”
proposed photon correlation measurements at large lag
times to improve statistical accuracy. Subsequently,
others have considered the effect of noise on the
Autocorrelation Function (ACF) curves” and its effect
on particle size measurement with DLS™’. These efforts

the DLS
Given that the ACFs always contain

were aimed at minimizing noise during
measurement.
noise at some level, there is also interest in reducing
Shen et al. ™

demonstrated that de-noising of DLS data using wavelet

this noise, or de-noising, post priori.

packet filtering is beneficial and leads to more accurate
particle sizes being recovered.
A core problem with particle size measurement

using DLS is solving a Fredholm integral equation of

the first kind. Tikhonov regularization ' is an
effective method for solving ill-posed problems of this
kind and is commonly used for this in DLS"""! The

method works by adding constraints which converts an
ill-posed problem to one that has good numerical
stability, in turn reducing the diversity of the inversion
results. However, in these techniques, the noise in the
DLS data often increases the difficulty of regularization
parameter choice and affects the accuracy of the
Zhu et al [

regularization techniques to analyze noisy DLS data.

inversion results. used constrained

To improve the performance of the regularization
method with noisy DLS data, in this paper, we put
forward a modified inversion method, based on the
original Tikhonov regularization algorithm, to get more
accurate Particle Size Distribution (PSD) results from
noisy ACFs.

1 Tikhonov regularization and modified
regularization

For DLS from a

particles, the normalized electric field ACF is

polydisperse suspension of

V() = fcmexp(— rodr 50

where G (I") is the intensity distribution function of
decay constants. I" and ¢ is the delay time. For spheres
the particle diameter, dps, is related to I' by the
Stokes-Einstein equation, so that
ky T
3nql’

dms:kz (2)

where k is the magnitude of the scattering vector, kj is
the Boltzmann constant, T is the absolute temperature
and 5 is the viscosity of the suspending liquid.

Eq. (1) can be written in discrete form as

gV (t)= ZG(F,-)eXp(—F,z-) (3)

Eq. (3) can be written as an operator equation as

y=Ax 4)
where, A=exp(—I'z), AER"", x=G(I",) isanX1
vector, y=g'"" (r), g is a mX1 vector.

Egs. (3) and (4) are ill-conditioned. Using a
regularization algorithm the ill-posed problem and the
optimization problem can be solved as follows"*

[ Ax—y " +aQ(x) 5
Here,the coefficient matrix is A€ R"*"(m=n); a is a

and Q (x)
function which is a penalty function. In reality, G(I")

regularization parameter, is a stability

must be non-negative and this constraint condition
allows Eq (5) to be changed to

: JAx—y || *+all x| s t.x;==0 (6)
Whlch is equwalenl to
A 2
min [ }x—[y} St 2, =0 %)
Lo

where, L is the identity matrix with size of nXn.
What has been described thus far is the original
Tikhonov regularization algorithm. Noise affects the
solution, which is not well expressed in Eq. (6). In the
modified solution, where noise is incorporated into the
original equation as an independent, unknown variable,
Eq. (1) becomes
g,(l) (T) — J ( ) ex (7 k /’ TT
3 771“1 3 7%1[)1 S
where d is random noise. Eq. (4) can be written as
y=Ax-+d 9

To estimate the unknown variable x and d. we

ydr—+d4 €))

propose to minimize the function
min: | AxFd—y || " +tal x[|* s t.z=0 10
Similar to Eq. (6), Eq. (10) can be reformulated as

[ A Ld} x y
JaL 0 LJ [o]
where L, is a mX 1 vectorwith elements of 1,i.e. L,=
(1,1,... D"

In the process of the inversion calculation, let
As

the dimensions of the coefficient matrix A are m X n,

min s. t. 2,=0 1D

[xd]™" be referred to as an unknown variable x'.

we pick the first n group vector out from z' as the new
is used to select an

the

x, then the new variable x

appropriate regularization parameter to obtain

PSDs.
2 Numerical simulation and analysis
of inversion results

To verify the superiority of the modified

0829002~ 2
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regularization algorithm, we perform numerical

simulation of the DLS ACFs using Johnson’ s SB
function to generate the underlying PSD. This function
can represent all unimodal PSDs including the normal,
log-normal, Rosin-Rammler and even the modified beta

15 Simulation is carried out for two size

distribution
distributions: a narrow unimodal distribution with a
peak at 90 nm and a broad unimodal distribution with a
peak at 250 nm. The simulation data conditions are as
follows: the wavelength A of He-Ne laser is 632. 8 nm,
the refractive index m of the solution is 1. 33, the
absolute temperature T is 294K, Boltzmann constant
K, is 1. 3807 X 10~ %] /K, the coefficient of viscosity 7is
9.78X10 'Pa « s, the scattering angle 0 is 90°.

The unimodal PSDs are simulated using the

following Johnson’s SB function

t P
FXO=-"22[t(A—0] "exp|{ —0.5[p+oln(—) T
/2 H 1—¢
(12)
where, t:% is the normalized size and 1>1=>

0, X is the discrete particle size, X, and X, are
minimum and maximum particle size, respectively. u
and ¢ are distribution parameters which control the
width and shape of the PSD. For 90 nm and 250 nm
unimodal distribution, the parameters are p=3. 8,0=
3y Xow=10, X,,., =400, and p=2.3, 6=1, X, =
100, X,. = 500,

inversion

respectively.  Tocompare the

results of the original and modified
regularization method, two performance parameters,
peak error E, and distribution error Epyp, are
introduced. These are defined as
_ ‘ P, —P, ‘

P,
where, P, (peak position 1) is the peak position of the

simulated PSD and P, (peak position 2) is the peak

E; (13)

position of the recovered PSD, and

Evgp = H Ji (D) — f,(Dy) [l QEY)
where f,(Di) is the simulated PSD and f, (D:) is the
recovered PSD. The smaller the error, the better the
fit between the recovered and simulated PSDs.

During the simulation, sets of field ACFs are
generated with noise added at the following levels:
107°, 107*, 107%, 107", 10~ "'. Noise is added to the
noise-free correlation data using""

() =g () + e (15)
where, € is a normally distributed number in the range
0~1, and § denotes the noise level.

The data are analyzed using two different inversion
methods and the regularization parameter is selected by

the L curve criteria™®. Finally, the performance
parameter values at the same noise level for the two

inversion methods are compared.

As can be seen in Fig. 1, when the noise level is
very low (107°), the recovered PSDs are exactly the
same, and close to the true PSD, for both the original
and modified regularization methods. However, as the
noise level increases to 10" and 10, the PSDs from
the two methods are clearly different and the one from
the modified method is closer to the true underlying
PSD. This can be seen in Figs. 2 and 3. Table 1
summarizes the performance results of the two
algorithms for the 90nm unimodal particle size sample,
and the better performance of the modified algorithm
can be seen clearly.

0.02

— True PSD
—e— Tik+noise 10 °
—p»— M Tik+noise 10 3

0.01

PSD

Particle diameter/nm

Fig. 1 The size distribution, PSD, for unimodal 90 nm

particles with autocorrelation function

noise of 107°
0.02
a —— True PSD
—e— Tik+noise 10 *
—— M Tik+noise 10|
@]
xn 0.01F
(=}
0
0 100 200 300 400

Particle diameter/nm

Fig. 2 The size distribution, PSD, for unimodal 90 nm

particles with autocorrelation function

noise of 107"
0.03 "
—— True PSD
—e— Tik+noise 1073 |
—»— M Tik+noise 103
0.02 r
a
78]
A
0.01
0 ' »
0 100 200 300 400

Particle diameter/nm

Fig. 3 The size distribution, PSD, for unimodal 90 nm
particles with autocorrelation function

noise of 107°
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Table 1 The performance parameters of particle size distribution
recovery for unimodal 90 nm particles under different

autocorrelation function noise levels

107° 107" 107* 107* 107!

Noise Level

Original
rigina 1.1% 4.4% 4.4% 4.4% 30%

algorithm Ep
Modified

1.1% 1.1% 2.29 0
algorithm Ep % % %

4.4%

Original
. 0.009 0.017 0.03 0.18 0.27
algorithm Epsp

Modified algorithm

0.008 0.009 0.008 0.082 0.16
EPSIJ

At 107" noise level the peak error is four times
smaller and the distribution error is two times smaller
for the modified algorithm compared with that of the
original algorithm. The superior performance of the
modified algorithm is even more apparent at higher
noise levels, as can be seen from Table 1 and Figs. 4
and 5. This is especially so at 107 noise level, where
using the modified method eliminates the influence of
noise on the peak. At 10" noise level, the PSD
recovered from the original Tikhonov method is quite
different from the true PSD, whereas the PSD from the
modified method is similar to the true PSD but shifts to

smaller sizes and is a little narrower.

0.08

— True PSD

—e— Tik+noise 10 2
0.06 —b— M Tik+noise 102 |

0.04

PSD

0.02 +

0 7 100 200 300 400
Particle diameter/nm

Fig.4 The size distribution, PSD, for unimodal 90 nm
particles with autocorrelation function

noise of 1072
0.10 -

—True PSD
—&—Tik+noise 10!
—p—M Tik+noise 10 '

0.06 - 1
)]
1%
&

0.02 + ii‘ §

0 100 200 300 400
Particle diameter/nm

Fig. 5 The size distribution, PSD, for unimodal 90 nm

particles with autocorrelation function

noise of 107!

For the 250 nm unimodal sample it can be seen
that the PSD results are similar to those for the 90 nm
sample. As the ACF noise level increases, the modified
algorithm gives better performance than the original
Tikhonov algorithm. Fig. 7 and Fig. 8 show that when
the noise level reaches 10 ' and 10 *, the inversion
results of the modified method compared with the
original Tikhonov inversion method have been greatly
improved, and the modified method eliminates the
influence of noise on the peak. The performance
parameters summarized in Table 2 show that both the
peak error and the distribution error are markedly
smaller for the modified algorithm when the noise level
is 107" or greater. It can also be seen in Figs. 6~ 10
that the PSD obtained from the modified algorithm is
closer to the true PSD than that obtained from the
original Tikhonov algorithm. PSD
results forthe 250 nm sample (Figs. 6~10) with that

Comparing the

of the 90nm sample (Figs. 1~5), it can be seen that
for larger particle size and a wider distribution, ACF
noise has a greater effect on the recovered PSD. From
Tables 1 and 2 we see that using the modified method,
gives relatively better improvement in the PSD recovery
results for the 250 nm wide distribution than for the

90 nm narrow distribution.

0.010 . .
— True PSD
—e—Tik+noise 10 3
o~ —>— M Tik+noise 10 1
0.006 - E
@)
%)
&
0.002 + —
100 200 300 400 500
Particle diameter/nm
Fig. 6 The size distribution, PSD, for unimodal 250 nm
particles with autocorrelation function
noise of 10°°
0.010 - .
— True PSD
—o— Tik+noise 10 *
—p— M Tik+noise 10 *
A 0.006 |
l7e]
(=W

0.002 ¢

100 200 300 400 500
Particle diameter/nm

Fig. 7 The size distribution, PSD, for unimodal 250 nm
particles with autocorrelation function

noise of 107!
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0.025
—True PSD
—o—Tik+noise 10 ?
—»—M Tik+noise 10 37
0.015 R

PSD

0.005

100 200 300 400 500
Particle diameter/nm

Fig. 8 The size distribution, PSD, for unimodal 250 nm
particles with autocorrelation function

noise of 107°

0.035 . "
— True PSD
—e— Tik+noise 10 2
—p— M Tik+noise 102
0.025+ 1
Q 4
78]
=
0.015¢ 1
0.005+ _
100 200 300 400 500

Particle diameter/nm
Fig. 9 The size distribution, PSD, for unimodal 250 nm
particles with autocorrelation function

noise of 107*

0.06
— True PSD
—e— Tik+noise 10!
—p>— M Tik+noise 10!
0.04 + 1
@]
7 ,
b=fr
0.02 E
0

100 200 300 400 560
Particle diameter/nm
Fig. 10 The size distribution, PSD, for unimodal 250 nm
particles with autocorrelation function
noise of 107!
Table 2 The performance parameters of particle size distribution
recovery for unimodal 250nm particles under different

autocorrelation function noise levels

Noise level 1077 100 107° 10°% 10!

Original
rigina 1.6% 3.6% 1.2% 3.2% 34%

algorithm Ep

Modified
algorithm Ep

0.8% 0 0 1.2% 8.3%

Original
. 0.02 0.02 0.06 0.11 0.21
algorithm Epgp

Modified

0.004 0.003 0.04 0.09 0.09
algorithm Epsp

Usually there are two kinds of signal noise in DLS
data; uncorrelated noise (additive noise) and correlated
noise (multiplicative noise). Eq. (15) is the relevant
expression foruncorrelated noise and the expression

forcorrelated noise is

Yo =g (D + /8g¥ (De/d (16)
where § denotes signal-to-noise ratio.

To test the performance of the modified
regularization algorithm for correlated noise, we also
add noise to the ACF using Eq. (16). The PSD
recovery results are similar tothose with the addition of
uncorrelated noise and we conclude that the modified
algorithm gives better performance also with correlated

noise.
3 Conclusions

Comparing the PSD recovery results for DLS data
with different levels of noise on the ACFs using two
kinds of regularization inversion algorithms, we
conclude that, when the noise level is high (> ~
107°), the modified method, which treats noise as an
independent and unknown variable, gives PSDs that are
closer to the true distribution. Further, as the noise
level increases, the inversion results for the modified
method are better than those of the original
regularization algorithm, and the former is better
suited for recovering PSDs from low signal-to-noise
ratio DLS data.

Comparing the inversion results for the 250 nm
wide distribution and the 90 nm narrow PSDs, it can be
seen that autocorrelation function noise more greatly
impacts the recovered PSD for larger particle sizes and
wider distributions, and the modified algorithm
performs relatively better for these samples.
Consequently, the modified regularization algorithm is
even more suitable for the recovery of PSDs involving
larger particle sizes with a wide size distribution.
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