doi:10.3788/gzxb20164501.0110001

中图分类号:TP751.1

基于最大化 N 维立体光谱角的高光谱端元提取

赵春晖1,田明华1,齐滨2

(1哈尔滨工程大学信息与通信工程学院,哈尔滨150001)(2哈尔滨工程大学水声工程学院,哈尔滨150001)

摘 要:提出了一种基于最大化 N 维立体光谱角 (Maximum N-dimensional Solid Spectral Angle, MNSSA)的端元提取方法.该方法通过计算 N 个光谱向量在高维欧几里得空间的光谱夹角,定量衡量 该 N 个光谱向量的独立性.在线性混合模型假设下,端元光谱向量的欧几里得空间夹角大于混合像素 构成的夹角. MNSSA 法不受待提取端元数目及波段数目的限制,对光谱向量幅值变化不敏感,能够克 服阴影及光照因素对端元幅值的影响.使用模拟数据及 AVIRIS (Airborne Visible/Infrared Imaging Spectrometer)获取的真实高光谱数据对 MNSSA 端元提取法及现有基于几何的端元提取法进行了对比 评价. 仿真结果表明, MNSSA 法能够克服阴影影响因子对端元幅值的影响, 端元提取准确率优于现有 端元提取法, 且具有良好的抗噪声性能, 能显著降低高光谱数据的重构误差.

关键词:遥感;端元提取;N 维立体光谱角;高光谱数据;幅值变化;线性解混模型

文献标识码:A **文章编号:**1004-4213(2016)01-0110001-9

Hyperspectral Endmember Extraction Based on Maximum N-dimensional Solid Spectral Angle

ZHAO Chun-hui¹, TIAN Ming-hua¹, QI Bin²

(1 College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China)
 (2 College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China)

Abstract: An endmember extraction method was proposed based on the maximum N dimensional solid spectral angle theory, which was termed as MNSSA (Maximum N-dimensional Solid Spectral Angle) in this paper. By using the ability of calculating the solid spectral angle which constructed by N spectral vectors in the high-dimensional Euclid space for the method, the independences of the N spectral vectors were measured. In the assumption of linear unmixing model, the solid spectral angle constitutes the maximum value for N endmember spectral vectors. The MNSSA method is not restricted by the numbers of endmembers or the numbers of bands. More importantly, the MNSSA method is not sensitive with the amplitude variations as well as robustness with effects from shadow strength and illumination intensity. Experiment results on synthetic and real hyperspectral data collected by AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) indicate that the method of MNSSA is better than the current mainstream used endmember extraction methods. The influences on the amplitude of the endmembers caused by the shadow factor are overcomed by the method of MNSSA. The method is with good antinoise performance. Furthermore, the reconstruction errors for real hyperspectral data were reduced remarkably.

Key words: Remote sensing; Endmember extraction; *N* dimensional solid spectral angle; Hyperspectral data; Amplitude variations; Linear unmixing model

OCIS Codes: 100.4145; 110.4234; 070.4790; 280.0280; 300.6170

收稿日期:2015-08-14;录用日期:2015-10-13

基金项目:国家自然科学基金(Nos. 61571145, 61405041)、中国博士后基金(No. 2014M551221)和黑龙江省博士后基金(No. LBH-Z13057)资助

第一作者:赵春晖(1965-),男,教授,博士,主要研究方向为高光谱遥感数据处理. Email:zhaochunhui1965@126.com

а

0 引言

高光谱遥感技术能够同时获取地物的空间信息及 光谱信息,被应用于军事目标检测、农业作物分类、矿物 含量估算等领域^[1].然而,受空间分辨率及地物复杂 性、多样性的制约,真实高光谱数据中通常存在着大量 的混合像元,即当前像元的光谱特征由两种或两种以上 地物线性或非线性混合而成.混合像元的进一步解译 通常依赖于端元的获取.端元被定义为理想情况下仅 含有单一地物光谱特征的纯净像元^[2-3].端元的数目通 常被认为等于地物的类别数,其光谱特征具有较高的代 表意义并直接影响高光谱图像的进一步解译.

几何上,高光谱数据被视为高维光谱特征空间的凸面单形体.端元位于凸面单形体的顶点,混合像元位于该凸面单形体的内部.基于几何的端元提取法旨在提取凸面单形体的顶点.其中,具有代表性的端元提取法有:内部最大体积(N-findr, N-FINDR)法^[4]、迭代体积最大化(Alternating Volume Maximization, Avmax)法^[5]、像素纯度指数(Pure Pixels Analysis, PPI)法^[6]、迭代误差分析(Iterative Error Analysis, IEA)法^[7]、顶点成分分析(Vertex Component Analysis, VCA)法^[8]、正交子空间投影(Orthogonal Subspace Projection, OSP)法^[9]等.然而,现有的端元提取法均基于理想凸体几何假设,未考虑实际获取的遥感图像中端元幅值存在变异性的特点.

真实的高光谱图像受光照强度、地势高低、斜坡、阴 影、植被结构和水分含量等因素的影响,导致直接从高 光谱数据中提取出的端元光谱特征与实验室条件下测 量的光谱特征通常存在差异^[10].对同种地物类别而言, 这种由光照强度及阴影带来的差异一般表现为光谱特 征的幅值差异,而对光谱特征的形状(吸收特征的位置、 宽度及深度)影响并不明显.因而,挖掘不受光谱幅值 大小影响的端元提取法具有较高的实用价值.本文提 出了一种基于最大化 N 维立体光谱角的高光谱图像端 元提取法.该方法不受光谱幅值影响,仅对光谱特征形 状敏感,能够在一定程度上克服光照强度及阴影等对光 谱曲线的影响.该方法迭代计算当前输入光谱向量集 合的高维欧几里得空间夹角,旨在提取构成最大 N 维 立体光谱角的光谱向量集合并将其提取作为端元.

1 光谱角方法分析

1.1 传统光谱角方法

传统光谱角^[11] (Spectral Angle, SA)通过比较待测 光谱向量 *x* 和参考光谱向量 *y* 的欧几里得空间夹角定 量评价两个光谱向量的相似性,即

$$SA(x, y) = \arccos \frac{\langle x, y \rangle}{\parallel x \parallel \parallel y \parallel} =$$

$$\operatorname{rccos} \frac{\langle \alpha \boldsymbol{x}, \beta \boldsymbol{y} \rangle}{\| \boldsymbol{\alpha} \boldsymbol{x} \| \| \boldsymbol{\beta} \boldsymbol{y} \|}$$
(1)

式中,α与β为常量乘性因子. SA 值越小,两个光谱向 量的相似度越高.

当光谱向量 x = y分别受乘性因子 $\alpha(0 < \alpha \le 1) = \beta$ (0 < $\beta \le 1$)影响时,SA 的值并不发生改变.几何上,乘性 因子仅改变了光谱向量在欧几里得空间幅值大小并不 改变光谱向量的方向,因而 SA 法能够克服来自地形、 阴影等因素对实际获取的高光谱数据造成的影响^[11], 并被广泛应用于高光谱数据分析.

然而,SA 法仅提供了两个光谱向量的相似性定量 比较问题.当处理 N (N>2)个光谱向量时,SA 法需要 对光谱向量两两进行处理,处理过程变得繁琐,同时,缺 乏 N 个光谱向量之间光谱夹角的真实几何意义.

1.2 N 维立体光谱角方法

若 N 维欧几里得空间中存在 N 个独立的向量{ x_1 , x_2 ,…, x_i ,…, x_N },则数学上该 N 个向量在欧几里得空 间构成的 N 维立体角被定义为由{ x_1 , x_2 ,…, x_i ,…, x_N } 的所有可能的线性组合所构成的 N 维凸面锥 C_N 与相 应的 N-1 维单位超球面 S_{N-1} 的交集^[12],并可以通过多 重积分求解^[13].将该定义推广于高光谱图像光谱向量 间夹角计算,设 x_i 为 $L \times 1$ 的光谱列向量,L 为波段数 目. N 个光谱列向量构成的光谱矩阵为 $X = [x_1, x_2, ..., x_i, ..., x_N]$,则其光谱角 NSSA($\partial_N | X$) (N-dimensional Spectral Solid Angle, NSSA)计算公式为

NSSA($\vartheta_N | \mathbf{X}$) = $|\det(\mathbf{X}) | \int_s || \mathbf{X} \mathbf{V} ||^{-N} ds$ (2) 式中, $V = [v_1, v_2, v_3, \dots, v_i, \dots, v_N]^T$ 为笛卡尔极坐标系 中单位球面上的球面参量向量,表示为

$$\begin{cases} v_{1} = \cos \theta_{1} & 0 \leqslant \theta_{1} \leqslant \pi/2 \\ v_{2} = \sin \theta_{1} \cos \theta_{2} & 0 \leqslant \theta_{2} \leqslant \pi/2 \\ v_{3} = \sin \theta_{1} \sin \theta_{2} \cos \theta_{3} & 0 \leqslant \theta_{3} \leqslant \pi/2 \\ \cdots & \cdots \\ v_{N-1} = \sin \theta_{1} \sin \theta_{2} \cdots \sin \theta_{N-2} \cos \theta_{N-1} & 0 \leqslant \theta_{N-1} \leqslant \pi/2 \\ v_{N} = \sin \theta_{1} \sin \theta_{2} \cdots \sin \theta_{N-2} \sin \theta_{N-1} & 0 \leqslant \theta_{N-1} \leqslant \pi/2 \end{cases}$$

$$(3)$$

ds 为
$$N-1$$
 维单位超球 S_{N-1} 的面积微元,表示为
ds=sin^{N-2}(θ_1)sin^{N-3}(θ_2),...,sin (θ_{N-2})d θ_1 d θ_2 ...
d θ_{N-1} (4)
由于 $\|\mathbf{V}\|^2 = \sum_{i=1}^{N} v_i^2 = 1$,式(2)进一步推导为

NSSA
$$(\partial_N \mid \mathbf{X}) = |\det(X)| \int_s \|\mathbf{X}\mathbf{V}\|^{-N} ds =$$

 $\sqrt{\det(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})} \int_{s} (1+2\sum_{i< j} < x_i, x_j > v_i v_j)^{-N/2} \mathrm{d}s \quad (5)$

式(5)给出了计算 N个光谱向量在 N 维欧式空间立体 光谱角的方法.

可以看出,N 维欧式空间立体光谱角的计算不受 输入光谱数目及波段数目的限制.需要指出的是该计 算结果为一标量数值(以弧度为单位).几何上,该标量值描述了 N 个光谱向量在 N 维欧式空间的立体光 谱角;物理上,NSSA($\vartheta_N | \mathbf{X}$)描述了 N 个光谱向量的联 合相似度.

1.3 等分布序列的蒙特卡罗方法计算 N 维立体光谱 角

式(2)~(5)显示 N 维立体光谱角的计算本质属 于数学上的多重积分.等分布序列的蒙特卡罗法具有 良好的收敛性及可预测的理论误差^[14],故在实际计算 中本文采用等分布序列的蒙特卡罗法计算 NSSA 中的 多重积分.

设随机向量 $G = \{g_1, g_2, \dots, g_i, \dots, g_{N-1}\},$ 其中, $g_i(i=0,\dots,N-1)$ 为线性独立于有理数的无理数元 素,即满足对任意的有理数 α_i ,存在

$$\alpha_1 g_1 + \dots + \alpha_i g_i + \dots + \alpha_{N-1} g_{N-1} \neq 0 \tag{6}$$

则 N-1 维欧几里得空间的等分布序列集合可表 示为

 ${F_v} = \{(vg_1, \dots, vg_i, \dots, vg_{N-1})\}, v=0, \dots, M$ (7) 式中,参量 v 表示等分布序列集合中 N-1 维随机向 量的个数,总个数记为 M. 对于有界的雷曼可积函数 f(x)的多重积分,可以用该函数等分布序列的均值逼 近^[14]表示为

$$\lim_{v \to \infty} \frac{1}{M} \sum_{v}^{M} f(vg_1, \cdots, vg_i, \cdots, vg_{N-1}) = \int_{0}^{1} \cdots \int_{0}^{1} f(x) dx_1 dx_2 \cdots dx_{N-1}$$
(8)

2 N 维立体光谱角最大化的端元提取

2.1 高光谱数据线性混合模型

在线性混合模型假设中,混合像元 r_h 可表示为端 元光谱矩阵 $E = [e_1, e_2, \dots, e_i, \dots, e_p](e_i)$ 为第 i 个端元 列向量,端元数目为 P)与对应的丰度系数向量 $\omega_h = [\omega_{h1}, \omega_{h2}, \dots, \omega_{hi}, \dots, \omega_{hP}](\omega_{hi})$ 为端元 e_i 在混合像元 r_h 中 所占的比例,即丰度)的乘积形式为

 $\mathbf{r}_{h} = \kappa_{h} \mathbf{E} \boldsymbol{\omega}_{h}^{T} + \eta_{h}$ (9) 式中, κ_{h} 为混合像元 \mathbf{r}_{h} 的乘性阴影影响因子,该阴影 影响因子通常由光照不均匀、阴影遮蔽等因素引起, $0 < \kappa_{h} \leq 1$. 若 $\kappa_{h} = 1$ 时, \mathbf{r}_{h} 为理想情况中不受阴影影响 的光谱反射特征向量. 若 $0 < \kappa_{h} < 1$ 时, \mathbf{r}_{h} 的光谱反射 特征幅值被抑制,光谱特征形状保持不变. η_{h} 为误差 项. 丰度系数向量 $\boldsymbol{\omega}_{h}$ 满足"和为 1"(Abundance Sumto-one Constraint, ASC)与"非负性"(Abundance Nonnegativity Constraint, ANC)约束^[15]表示为

$$\sum_{i=1}^{r} \boldsymbol{\omega}_{hi} = 1, \boldsymbol{\omega}_{hi} \ge 0 \tag{10}$$

2.2 基于最大化 N 维立体光谱角的高光谱图像端元 提取

设从高光谱图像数据中随机选取 P 个像元构成光

谱矩阵 R,且 $R = [r_1, r_2, \dots, r_h, \dots, r_P]$ 并假设该光谱矩 阵张成的光谱角达到 N 维立体光谱角的极大值.由式 (5)知,其 N 维立体光谱角为

$$\{\text{NSSA}\left(\vartheta_{N} \mid \boldsymbol{R}\right)\}_{\max} = \max\{\sqrt{\det\left(\boldsymbol{R}^{\mathsf{T}}\boldsymbol{R}\right)} \cdot \int_{s} (1+2\sum_{i < j} \langle \boldsymbol{r}_{i}, \boldsymbol{r}_{j} \rangle v_{i} v_{j})^{-P/2} \mathrm{d}s\} = \max\{\sqrt{\boldsymbol{\Theta}} \int_{s} (1+2\sum_{i < j} \langle \boldsymbol{r}_{i}, \boldsymbol{r}_{j} \rangle v_{i} v_{j})^{-P/2} \mathrm{d}s\} \quad (11)$$

式中

$$\boldsymbol{\Theta} = \det \begin{vmatrix} \langle \boldsymbol{r}_1, \boldsymbol{r}_1 \rangle & \langle \boldsymbol{r}_1, \boldsymbol{r}_2 \rangle & \cdots & \langle \boldsymbol{r}_1, \boldsymbol{r}_P \rangle \\ \langle \boldsymbol{r}_2, \boldsymbol{r}_1 \rangle & \langle \boldsymbol{r}_2, \boldsymbol{r}_2 \rangle & \cdots & \langle \boldsymbol{r}_2, \boldsymbol{r}_P \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \boldsymbol{r}_P, \boldsymbol{r}_1 \rangle & \langle \boldsymbol{r}_P, \boldsymbol{r}_2 \rangle & \cdots & \langle \boldsymbol{r}_P, \boldsymbol{r}_P \rangle \end{vmatrix}$$

由于

端

 $\langle \boldsymbol{r}_i, \boldsymbol{r}_j \rangle = \langle \kappa_i \boldsymbol{E} \boldsymbol{\omega}_i^{\mathrm{T}}, \kappa_j \boldsymbol{E} \boldsymbol{\omega}_j^{\mathrm{T}} \rangle =$

$$\kappa_{i}\kappa_{j}\sum_{m=1}^{j}\omega_{mi}\omega_{mj}\langle \boldsymbol{e}_{m},\boldsymbol{e}_{m}\rangle + \kappa_{i}\kappa_{j}\sum_{\substack{f\neq m}}\omega_{fi}\omega_{mj}\langle \boldsymbol{e}_{f},\boldsymbol{e}_{m}\rangle (12)$$

元矩阵 $\boldsymbol{E} = [\boldsymbol{e}_{1},\boldsymbol{e}_{2},\cdots,\boldsymbol{e}_{i},\cdots,\boldsymbol{e}_{P}]$ 为可测得的常量矩

阵,当 $\boldsymbol{\omega}_{i}\boldsymbol{\omega}_{j}^{\mathrm{T}}|_{i\neq j}=0$ 时

$$\sum_{m=1}^{P} \boldsymbol{\omega}_{mi} \boldsymbol{\omega}_{mj} \langle \boldsymbol{e}_{m}, \boldsymbol{e}_{m} \rangle = 0$$
(13)

故有

$$\{\text{NSSA}(\vartheta_{N} \mid \boldsymbol{R})\}_{\max} = \kappa_{1}\kappa_{2}\cdots\kappa_{P}\sqrt{\boldsymbol{\Theta}}\int_{s}^{\kappa_{1}^{-1}}\kappa_{2}^{-1}\cdots$$
$$\kappa_{P}^{-1}(1+2\sum_{i< j}\langle\boldsymbol{e}_{i},\boldsymbol{e}_{j}\rangle v_{i}v_{j})^{-P/2} ds =$$
$$\text{NSSA}(\vartheta_{N} \mid \boldsymbol{E})$$
(14)

在线性混合模型(设理想情况中,误差项 $\eta_{\epsilon} = 0$) 中,由端元向量集合张成的光谱角大于混合像元张成 的光谱角,且光谱角大小不受幅值乘性因子(阴影影响 因子 κ)影响.

2.3 MNSSA 端元提取算法步骤

基于最大化 N 维立体光谱角(Maximum n-dimensional Solid Spectral Angle, MNSSA)端元提取 方法的步骤为:

输入:高光谱数据集矩阵 X_{L×Q}.其中,总波段数目 记为L,总像元数记为 Q.

输出:端元集合矩阵 $R = [r_1, r_2, \dots, r_i, \dots, r_p]$. 其 中, r_i 表示第 $i(1 \le i \le P)$ 个端元向量,大小为 $L \times 1$. *P* 为端元总数目.

步骤一,估计端元数目 P. 对输入高光谱数据集 矩阵 $X_{L\times Q}$ 进行端元数目估计.本文采用虚拟维数法估 计端元数目 P;

步骤二,初始化端元集合 $R = [r_1, r_2, \dots, r_i, \dots, r_p]$ 并设置参量 k=1, h=1.本文采用随机初始化方法;

步骤三,采用逐像元替换法搜索候选端元.具体 实施方法为:选取 $X_{L\times Q}$ 中第k列像元作为测试像元,记 为 t_k .使用 t_k 替换端元集合R中的第h个端元 r_k .替 换前后的端元集合分别记为 R_{ort} 和 R_{new} .计算并存储以 上两个端元集合的 P 维立体光谱角,分别记为 NSSA $(\partial_P | \mathbf{R}_{ori})$ 和 NSSA $(\partial_P | \mathbf{R}_{new})$;

步骤四,判断测试像元 t_k 是否为候选端元.判断 是否满足 NSSA($\vartheta_P | \mathbf{R}_{new}$) - NSSA($\vartheta_P | \mathbf{R}_{ori}$) > 0.若 "是",则用测试像元 t_k 更新端元 r_h ,参量 k 以步长为 "1"完成自更新,即更新为 k+1,转到步骤六;若"否", 则参量 h 以步长为"1"完成自更新,即更新为 h+1;

步骤五,判断是否完成当前端元集合搜索.判断 是否满足*h*≪*P*.若"是",则转到步骤三;若"否",则参 量*k*更新为*k*+1;

步骤六,判断是否完成数据集矩阵搜索.判断是 否满足 *k*≪Q.若"是",则转到步骤三,*h* 重置为数值 "1";若"否",则结束搜索,输出端元集合 *R*.

extraction method

2.4 误差分析

MNSSA 端元提取算法的误差主要来源于两个方面:1)线性混合模型假设引起的理论误差;2)等分布 序列的蒙特卡罗法逼近多重积分时引起的估计误差.

线性混合模型忽略微观尺度下物质之间的多次散 射,即假设式(9)中对应于混合像元 r_h 的误差项 η_h 为 零. 然而,非线性混合模型通常认为 η_h 与端元矩阵 E和新的系数项 φ 的非线性形式有关,即 $\eta_h = f(E, \varphi)$. 由式(9)和式(11)知, NSSA 方法的误差阶数为 $O((rE)^p)^{[16]}$. 等分布序列的蒙特卡罗法逼近多重积分的误差^[14]与式(7)中等分布序列集合中随机向量的总个数 有关,即 $O(1/\sqrt{M})$.显然,较大的M值能够得到较高 的逼近准确度.然而,参量M可以根据需求适当降低 以提高计算效率.

3 仿真实验与结果分析

3.1 模拟数据实验结果与分析

模拟数据能够提供端元及其对应丰度的先验信息,从而能够准确地评价端元提取法的有效性.本质上,MNSSA法是一种基于几何的端元提取法.因此本 文首先采用一组模拟数据,将 MNSSA法与当前已发 表的且具有代表性的基于几何的端元提取法(VCA、 N-FINDR、Avmax、PPI和 OSP法)的端元提取性能进 行比较.

本文采用一种较为常用的遥感模拟数据制作方法^[17-18].图2表示了本文采用的模拟数据第114波段及端元光谱特征曲线.5个端元的光谱名称分别为: Dolomite COD2005,Gibbsite WS214,Kaolinite CM5, Clinoptilolite GDS2和Calcite CO2004.该5个端元为 随机从美国地质勘探局(United States Geological

Survey, USGS)光谱库^[19] 抽取的 5 种不同类别物质,光 谱反射特征互不相同. 波段数目为 224,波长范围为 0.38 μ m~2.51 μ m.图 2(b)中显示了 USGS 光谱库中 抽取的理想情况下 5 种端元的标准光谱反射特征,及 Dolomite COD2005 物质在阴影影响因子 κ 值为 0.6 时 的光谱反射特征.可以看出,受阴影影响的 Dolomite COD2005 幅值发生了改变,光谱形状特征不发生变化.

模拟数据空间大小为 75×75 像素. 如图 2(a),每 行均有5个大小为5×5的矩形方块.5×5的矩形方 块内嵌在 75×75 大小的数据内部,其余像素为背景像 素. 如图 2(a)中箭头:第一行的 5 个矩形块分别为 5 个端元对应的纯像元区域,大小为5×5像素并分别记 为 B_{11} , B_{12} , B_{13} , B_{14} 及 B_{15} . 其中, B_{ii} 表示该矩形区域为 由 i 个端元混合而成的第 i 个矩形块, 类似地, 第 2 至 5行每行各有5个小矩形块区域,分别为2个端元至5 个端元混合而成的混合像元区域. 在矩形混合区域 B_a (*i*=1,2,...,5,*j*=1,2,...,5)内,端元类型随机抽取且 各端元的丰度随机生成,丰度满足式(10)所述的 "ASC"、"ANC"的约束. 例如,2 端元第一个矩形混合 区域 Bai 为随机从 5 个端元中抽取 2 个光谱类别作为 合成端元,相应的丰度随机生成,且满足式(10)所述的 "ASC"与"ANC"约束. 依次地,2端元第二个矩形混合 区域 B22 仿照第一个矩形区域生成步骤. 类似地,可得 到3端元、4端元及5端元混合矩形区域.背景部分 (如图2中箭头表示的浅绿色区域)由5个端元同时混 合而成,且丰度满足式(10)所述的约束条件,5个端元 对应的丰度分别为0.1882、0.2445、0.1120、0.2387和 0.2166.5个端元的真实丰度分布如图 3.

(d) Abundance map of EM3

Fig. 3 True abundance maps of the endmembers

在该模拟数据中,分别设定纯像元受不同程度的 阴影影响,其阴影影响因子 κ 分别为1.0、0.8、0.6、0.4 和 0.2,并对数据进行无噪声,以及添加信噪比(Signal Noise Ratio, SNR)大小为 50dB、30dB、15dB 的加性高 斯噪声情况下进行测试. 信噪比的计算为

$$SNR = 10\log_{10} \frac{E[s^{T}s]}{E[n^{T}n]}$$
(15)

式中,s为信号矩阵:n为噪声矩阵.

图 4 显示了 MNSSA 法及 VCA 等方法的端元提 取结果. 在实验中,若纯像元区域(如图 2(a)中箭头所 示第一行)中的像素被提取,则认定该像元为端元,记 为准确提取到的端元.反之,若背景或混合像元区域 的像素被提取则视该像元为误提取像元.图4统计了 MNSSA 法及 VCA 等方法的端元提取结果.

如图 4(a),在无噪声情况下,VCA 法与 MNSSA 法均能准确提取 5 种端元且不受阴影影响因子 κ 的影 响. N-FINDR、Avmax、PPI和OSP方法仅在阴影影响 因子 $\kappa = 1.0$ 时,即无阴影影响,能够准确提取 5 类端 元光谱. 随着 κ 值从 0.8 变化到 0.2,其端元提取数目 逐渐减少. 当 $\kappa = 0.6$ 时, N-FINDR, Avmax 和 OSP 方 法提取的端元数目为零,即 N-FINDR、Avmax 和 OSP 方法在端元受阴影影响因子 $\kappa = 0.6$ 时,已不能准确识 别端元. 当信噪比为 50 dB 时, 如图 4(b), MNSSA 与 VCA法的端元提取性能保持一致,且优于其它方法, 始终能够准确提取5种类别端元. N-FINDR 等方法的 端元提取数目随着κ值减小而减小.当信噪比下降到 30dB时,如图4(c),MNSSA法与实验中测试的对比方 法的端元提取效果均随阴影影响因子的降低而下降. 然而, MNSSA法的端元提取数目多于其它方法的端 元提取数目且在此时, MNSSA 的端元提取效果优于 VCA法. 类似地,当信噪比为 15 dB 时,如图 4(d), MNSSA 法仍然是测试端元提取方法中提取端元数目 最多的.

Fig. 4 Comparison results of different endmember extraction methods with various SNR

可以看出,在本文对比的基于几何的端元提取法 中,PPI 端元提取法的抗噪性能及抗阴影影响效果较 差.这是由于 PPI 端元提取法的原理为将混合像元投 影到大量随机生成的指针向量中,通过提取极值投影 指数较高的像元作为端元.该极值投影本质上与光谱 幅值大小相关.因而 PPI 法的端元提取效果较易受噪 声及阴影影响.

VCA 端元提取法与 MNSSA 端元提取法在无噪 声和信噪比较高的情况下,端元提取效果基本一致. 仅当信噪比较低(SNR=30 dB 或 SNR=15 dB)时, VCA 法的端元提取效果较差于 MNSSA 法. 在较高信 噪比及实时性要求较高的条件下,VCA 法仍然是一种 优秀的可供选取的端元提取法. 这是因为,VCA 法引 入了尺度因子^[8],该尺度因子在一定程度上反映了由 地表起伏、光照不均匀等因素引起的端元变异性,因而 VCA 法具有一定的抗噪声和阴影影响能力.

表1给出了6种端元提取方法的处理时间. 该数 值为统计信噪比为15 dB, *κ*=1.0时,5次运行的均值 时间. 其中, MNSSA 法中使用的等分布序列的蒙特卡 罗随机向量 *M*=200.可以看出, VCA 等方法的处理 时间均在2s左右或小于2s. 然而, MNSSA 法的处理 时间远远长于其他方法. 这是由于, 一方面 MNSSA 法在使用等分布序列的蒙特卡罗逼近多重积分时需要 执行大量随机数运算; 另一方面, MNSSA 法需要不断 迭代计算当前端元集合的光谱角并搜索整个高光谱数 据集, 因而处理时间较长.

	表 1	端元提取方法处理时间比较
--	-----	--------------

Table 1	Time consumin	g of test	t endmember	extraction	methods
---------	---------------	-----------	-------------	------------	---------

Endmember Extraction Methods	VCA	N-FINDR	Avmax	PPI	OSP	MNSSA
Time Consuming/s	2.05	2.25	0.30	1.24	1.29	8 516.12

该模拟数据实验表明,在线性混合模型假设下, MNSSA 端元提取法在一定程度上能够克服阴影对端 元幅值的影响,其端元提取结果优于 VCA 等基于几何 的端元提取方法,且 MNSSA 法具有良好的抗噪声性 能. 然而 MNSSA 法的处理时间远远长于对比方法的 端元提取处理时间. 3.2 真实数据实验结果与分析

实验采用的真实数据为 1997 年由 AVIRIS 获取的美国内华达州 Cuprite 矿物区数据^[20].

图 5 为 Cuprite 数据的伪彩色图像. 该数据包含 东部与西部两个主要矿物区,数据大小为 350×350 像 素. 空间分辨率为 18 m,光谱分辨率为 10 nm,波长范 围 0.37 μm~2.51 μm. 本实验截取东部矿物区,子图 像大小为 210×160 像素,低信噪比波段 1~2,105~115,150~170,223~224 被移除,本实验中总计使用 188 个波段.

- 图 5 Cuprite 数据伪彩色图像(R: 2.10 μm, G: 2.20 μm, B: 2.34 μm)
 - Fig. 5 Pseudo-color image of Cuprite data set with R: 2.10 $\mu m,~G;~2.20~\mu m,~B;~2.34~\mu m$

图 6 为 1995 年获取的 Cuprite 地区主要矿物分布 图.相比于模拟高光谱数据实验,真实遥感数据实验

- 图 6 Cuprite 数据 1995 年矿物分布图(由 Tricoder 3.3 软件制图得到)
 - Fig. 6 The Cuprite mineral map in 1995 produced by Tricoder 3.3

(a) Buddingtonite

(b) Alunite

(c) Montmorillonite

难以提供精确定量评价的真实地物丰度图,故在定量 评价方面存在较大难度.值得指出的是,USGS提供的 Cuprite地区于1995年的大致矿物分布图^[21](图6)为 使用 Tricoder 3.3 通过分类方法成图.由于分类方法 仅完成对像元所属类别标定,不同于解混方法对像元 中各物质的含量进行估计,故难以直接将解混结果丰 度图与图6进行对比.然而,图6仍然能够提供定性的 矿物分布参考.

对 Cuprite 数据分别用 MNSSA 及 VCA 等对比算 法进行端元提取并进行全约束解混.图7显示了 MNSSA 法提取的端元丰度反演图像,其中包括(a)水 铵长石,(b)明矾石,(c)蒙脱土,(d)白云母,(e)蓝 线石,(f)玉髓,(g)榍石,(h)二重高岭土,(i)水铵 长石+白云母/高岭石,(j)绿脱石,(k)纤维钾明矾, (1)镁铝榴石.对比图 6 与图 7,可以看出,经 MNSSA 法提取出的端元对应的主要的矿物分布如:玉髓 (Chalcedony)、水铵长石(Buddingtunite)、水铵长石+ 白云母/高岭石(Alumite+Muscovite/Kaolimite)、明矾 石(Alunite)与图 6 相应类别的矿物分布基本相似.

为了进一步定量评价 MNSSA 端元提取法的有效 性,本文计算了 Cuprite 数据的重构误差.图 8显示了 MNSSA 法及对比方法的重构误差图像,重构误差的 计算公式为

$$\varphi_{\mathbf{r}_{a,q}} = \sqrt{\frac{1}{L} \sum_{l=1}^{L} (\mathbf{r}_{m,q}^{l} - \mathbf{r}_{m,q}^{'l})^{2}}$$
(16)

式中, $\varphi_{r_{m,q}}$ 为像素 $r_{m,q}$ 的重构误差;m,q分别为像素 $r_{m,q}$ 的行位置和列位置; $r_{m,q}^{l}$ 及 $r_{m,q}^{'l}$ 分别为光谱像元 $r_{m,q}$ 第 l波段的光谱反射率的测量值和重构值.可以看出,重 构误差较高的是 PPI 方法,其重构误差分布图中存在 大面积的橘色和红色区域,该部分区域误差数量级在 2000 左右;重构误差较低的是 VCA、N-FINDR 及 MNSSA 方法.

对应于图 8,图 9 显示了其相应的重构断自助误差的直方图,红线标识为重构误差图像的均方根误差 (Root Mean Square Error, RMSE)为

$$RMSE = \frac{1}{Q}\varphi_{r_{ac}}$$
(17)

(d) Muscovite

(e) Dumortierite

(f) Chalcedony

图 9 重构误差分布直方图 Fig. 9 Histogram maps of reconstruction errors

0110001-8

式中,Q为遥感数据集的光谱向量总个数.

从图 9 可以看出,重构图像的均方根误差 RMSE 最小的是 MNSSA 法,其 RMSE = 59.07 ± 44.36. VCA 法是所测试的对比算法中重构效果较好的,其 RMSE = 69.19 ± 36.37.相比于 VCA 法, MNSSA 的 重构均方根误差 RMSE 降低了 14.63%. PPI 方法的 重构均方根误差较大,即 RMSE = 1204.51 ± 456.43.

这一实验结果与 3.1 节中模拟数据实验结果一 致.可以看出,VCA 法由于在一定程度上考虑了端元 变异性,该方法是目前基于几何的端元提取法中端元 提取效果较好的端元提取方法. PPI 法通过计算高光 谱像元在大量随机向量上的投影值并统计投影极值指 数进行端元提取,该方法难以提取光谱幅值发生变化 的端元,重构误差较大.该实验表明,运用 MNSSA 法 能够有效降低真实数据的重构均方根误差.

4 结论

本文提出了一种基于最大化 N 维立体光谱角 (MNSSA)的高光谱端元提取方法,该方法通过计算高 维欧几里得空间多元光谱向量的夹角,定量地评价该 多元光谱向量的联合相似度.在线性混合模型假设条 件下,由端元构成的 N 维立体光谱角大于混合像元构 成的 N 维立体光谱角. MNSSA 法通过不断迭代计算 光谱向量集合的光谱夹角,挖掘光谱夹角达到极值时 的光谱向量集合. 该方法不受输入端元数目及波段数 目的限制.实验仿真结果表明,MNSSA法对光谱幅值 变化不敏感,能够有效克服来自阴影、光照不均匀等因 素对光谱反射特征的影响,在信噪比为 50 dB、30 dB、 15 dB的条件下,端元提取性能均优于当前经典并被广 泛使用的 VCA、N-FINDR 等方法 对真实 AVIRIS 数 据的测试结果显示, MNSSA 法提取到的端元使重构 误差大大降低. MNSSA 法作为一种能够克服阴影及 光照强度影响的端元提取方法具有潜在的应用价值. 然而, MNSSA 法的计算核心是数学上的多重积分,算 法复杂度较高,时间损耗较大.因而,寻找该方法的加 速算法或缩小端元搜索空间是下一步研究的内容.

参考文献

- [1] BIOUCAS-DIAS J M, PLAZA A, DOBIGEON N, et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379.
- [2] CHANG C I. Hyperspectral data processing: algorithm design and analysis[M]. US: Jonhn Wiley and Sons, 2013.
- [3] 张兵,高连如.高光谱图像分类与目标探测[M].北京:科学 出版社,2011.
- [4] WINTER M E. N-FINDR: an algorithm for fast autonomous

spectral end-member determination in hyperspectral data[C]. SPIE, 1999, **3753**: 266-275.

- [5] AMBIKAPATHI A M, CHAN T-H, MA W-K, et al. A robust alternating volume maximization algorithm for endmember extraction in hyperspectral images [C]. WHISPERS, 2010, 4244: 1-4.
- [6] BOARDMAN J W, KRUSE F A, GREEN R O. Mapping target signatures via partial unmixing of AVIRIS data [C]. JPL-AESWH, 1995, 95: 23-26
- [7] NEVILLE R A, STAENZ K, SZEREDI T, et al. Automatic endmember extraction from hyperspectral data for mineral exploration[C]. IARSC, 1999, 2593: 21 - 24.
- [8] NASCIMENTO J M P, DIAS J M B. Vertex component analysis: a fast algorithm to unmix hyperspectral data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 898-910.
- [9] HARSANYI J C, CHANG C I. Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection[J]. *IEEE Transactions on Geoscience and Remote Sensing*, 1994, **32**(4): 799-785.
- [10] BATESON C A, ASNER G P, WESSMAN C A. Endmember bundles: a new approach to incorporating endmember variability into spectral mixture analysis [J]. *IEEE Transactions on Geoscience and Remote Sensing*, 2002, 38(2): 1083-1094.
- [11] SOHN Y, REBELLO N S. Supervised and unsupervised spectral angle classifiers [J]. *Photogrammetric Engineering* and Remote Sensing, 2002, 68(12): 1271-1282.
- [12] ROCKAFELLAR R T. Convex analysis[M]. US: Princeton university press, 1997.
- [13] HAJJA M, WALKER P. The measure of solid angles in ndimensional Euclidean space [J]. International Journal of Mathematical Education in Science and Technology, 2002, 33(5): 725-729.
- [14] DAVIS P J, RABINOWITZ P. Numerical integration [M].UK: Blaisdell Publishing Company London, 1967.
- [15] KESHAVA N, MUSTARD J F. Spectral unmixing [J].
 IEEE Signal Processing Magazine, 2002, 19(1): 44-57.
- [16] LICK, MATHIAS R. The determinant of the sum of two matrices [J]. Bulletin of the Australian Mathematical Society, 1995, 52: 425-429.
- [17] IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A. Total variation spatial regularization for sparse hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4484-4502.
- [18] IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A. Sparse unmixing of hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2014-2039.
- [19] CLARK R N, SWAYZE G A, WISE R, et al. USGS digital spectral library splib06a[J/OL]. U. S. Geological Survey Digital Data Series, 2013. http://speclab. cr. usgs. gov/ spectral.lib06.
- [20] CLARK R N, SWAYZE G A. Imaging spectroscopy material maps: cuprite introduction [J/OL]. Summaries of the 6th Annual JPL Airborne Earth Science Workshop, 1996: http://speclab.cr.usgs.gov/map.intro.html
- [21] CLARK R N, SWAYZE G A, GALLAGHER A. Mapping minerals with imaging spectroscopy[J/OL]. U. S. Geological Survey Digital Data Series, 1998. http://speclab.cr.usgs. gov/cuprite95.tgif. 2. 2um_map.gif.

Foundation item: The National Natural Science Foundation of China (Nos. 61571145, 61405041), the China Postdoctoral Science Foundation (2014M551221) and the Heilongjiang Postdoctoral Science Found (LBH-Z13057).