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Degree of Diffraction for Monochromatic Light Beams
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Abstract: Enlightened by the degree of paraxiality that was recently introduced by Gawhary and Severini
in Opt. Lett. 33, 1360 (2008), a parameter, called the degree of diffraction, is defined to describe the
diffractive spreading of a monochromatic light beam. This is a parameter that is independent of the degree
of paraxiality. Nevertheless, the same as the degree of paraxiality, the degree of diffraction depends only
on the angular spectrum of a beam. With this definition, it is ready to compare quantitatively the
diffractive spreading of different beams.
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0 Introduction

Recently, Gawhary and Severini"'? defined a
the Degree Of
Paraxiality(DOP) , from the viewpoint of energy flow.
the definition of this
parameter from the viewpoint of energy. The same as
defined in Refs. [ 1-2 ], the DOP that we defined

depends only on the angular spectrum of a light beam.

universal beam parameter, called

Later on, we reexamined™’

It has nothing to do with the detail of the intensity
distribution at the cross section. In doing so, we realized
that the same idea can be generalized to define another

universal beam parameter, the Degree Of Diffraction

(DOD) , to describe the diffractive spreading of a light
beam. This amounts to the purpose of present paper.
To the best of our knowledge, this is the first time to
define such a universal parameter. With its help,it will
be easy to compare quantitatively the diffractive
spreading of different beams.

In Section 1,it is shown that there does not exist a
universal the

spreading of light beams. The DOD that meets the need

parameter to describe diffractive

is shown in Section 2 to be conceptually independent of
the DOP. The mechanism for the diffractive spreading
is also analyzed. The DOD is defined in Section 3. Its

=

applications are provided in Section 4. Section 5
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concludes the paper with remarks.

1 Rayleigh and diffraction-free ranges

One of propagation properties of light beams is
their diffraction behavior. It is well known that for a
fundamental Gaussian beam of field distribution

E;Cosp)oCexp (—p'/w)) [@))
at waist plane *=0,a propagation distance, Ly = ww} /A
,called the Rayleigh range™’ ,is used to characterize its
diffraction behavior, where A is the wavelength. For a

[5-12
beam™'?!,

truncated or pseudo diffraction-free a
propagation distance called the diffraction-free range is
advanced. As an example, for a Bessel-Gaussian ( BG)
beam'”"'*! of field distribution

Eu (oo ], (Bodexp (—p’/w)) 2)
at z=0,the diffraction-free range is™ L, =2nw, /(B ,
where condition

Bw, /2>1 (3)
should be satisfied” for the BG beam to behave like a
portion of the diffraction-free beam. The so-called

]

Rayleigh range for a truncated Bessel beam™*! is in fact
yleig g

the diffraction-free range”*'.

Although the diffraction-free range of the BG
beam is much shorter™" than the Rayleigh range of its
component Gaussian beams(according to Gori et al”™. ,
a BG beam is produced by the superposition of Gaussian
beams whose axes are uniformly distributed on a
_ Ly

B, /2
compare the diffractive spreading of the Gaussian beam
Eq. (1) with that of the BG beam Eq. (2). This is
because physically the Rayleigh range of the Gaussian

cone) , L < Ly, it is hard to quantitatively

beam is defined differently from the diffraction-free
range of the pseudo diffraction-free beam. The Rayleigh
range is defined™ as the distance along the propagation
direction of the Gaussian beam from its waist to the
point where the area of the cross section is doubled. On
the other hand, the diffraction-free range is defined”™™
as the propagation distance over which the profile of the
pseudo diffraction-free beam remains invariant. To the
best of our knowledge, there does not exist a universal
parameter to describe the diffractive spreading of light
beams. Even the commonly used M* factor, the beam-
quality factor, does not meet the need. As is well
known, Gaussian beams with different waist radii w,
have different Rayleigh ranges. But they all have the
same M’ factor,the unity. The purpose of this paper is

to introduce such a parameter.

2 DOD is different from DOP

To this end,let us first make use of diffraction-free
beams to show that the diffraction behavior of a light
field is

conceptually independent of its another

propagation property, the paraxiality” ™. It is known
that the wavevector of all the plane wave that composes
a diffraction-free beam lies on a cone. In the scalar
case™ , the angular spectrum can be written as™'*!
fw) =A(p) 6k, — )

in circular cylindrical coordinates, where w=k/k is the
unit wavevector, ¢ is the Dirac delta function, § =
ksin J,, and 9, denotes the apex half-angle of the

wavevector cone. In the vectorial case """

, the angular
spectrum can be factorized into a polarization vector
e(w) and the above scalar angular spectrum,

fw) =ewmACp) 5k, — B,

where the polarization vector is a unit vector, | e| =1,
and is constrained by the transversality condition
e*w=0. In both cases the paraxiality of the

diffraction-free beam is completely determined™* by
the apex half-angle 9, of the wavevector cone. The
larger the DOP is.

Nevertheless,as the name suggests,all the diffraction-

smaller the angle o, is, the
free beams with different 9, should have the same
diffraction behavior. They are all free of diffraction.
This means that the diffraction behavior of a beam is
indeed conceptually independent of its paraxiality.
Therefore it is essential to introduce a parameter that is
different from the DOP to characterize the diffraction
behavior. Such a parameter will be referred to as the
DOD.

To introduce the DOD, it is instructive to analyze
the mechanism for the diffractive spreading of a light
beam. For this purpose, let us look at the difference
between a diffractive beam and a diffraction-free beam
in the angular spectrum. As mentioned before, the
wavevector in a diffraction-free beam is only distributed
on a cone, which means that a diffraction-free beam is
an eigen state of the longitudinal component of the

[12]

momentum-' . So the standard deviation of %, in this

case is equal to zero,

Ak =[(E)— (kD] =0 4)
where
[171'qaa [Ir1"qua
Q) = =

2dn 2dn

[1r J1s

is the expectation value'"* of quantity Q, f is the vector

angular spectrum,and dQ= sin 9dJydg is the solid-angle
element in wavevector space. For a diffractive beam, we
take the BG beam as an example, which can be regarded
as composing of Gaussian beams whose axes are
uniformly distributed on a cone'”. Because the angular
spectrum of a Gaussian beam also takes a Gaussian
form,it follows that the wavevector in a BG beam is
distributed around the axis cone. Consequently, the

standard deviation of %, does not vanish. This shows

0126004~ 2
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that whether a light beam is diffraction-free or not
depends on whether the standard deviation of its k.
vanishes or not. Considering that any coherent light
field can be expanded in terms of a particular complete
set of diffraction-free beams""'*, the diffractive
spreading of a light beam propagating in free space lies
between its diffraction-free

in the interference

components that have different wavevector cones.

3 Definition of DOD

The same as the DOP™™, a well-defined DOD
should also range from 0 to 1. To see how to define
such a DOD on the basis of the above analysis, we
consider two extreme light fields. One is the least
diffractive fields, the diffraction-free beams. Just as its
name implies, the DOD for such beams should be equal
to 0. In view of this, the expected DOD should be
proportional to Ak, in accordance with Eq. (4). The
other extreme light field is described by angular
spectrum of vector spherical harmonics,

Sw)y=ew)Y, (w),

vvhere
j, 2A 1 A 123 ! 1z o
A#l(w>7{ 47( E/\ ﬂ;' P;‘(COS g)e/l‘y

is the spherical harmonics satisfying normalization
condition J\YA#‘ZdQ:I. Due to the spherically

symmetric distribution of the wavevector, such a field is
the most “diffractive”. The DOD for this field should be
equal to 1. Because the expectation value of £, in this
field vanishes, (k> = 0, as can be easily checked, we
have Ak, = (k*)"*. Combining these two considerations
together,it seems reasonable to define the DOD for any
coherent light field as
Ak, 0 (kDN
R ( (k%) )
So defined DOD has the following properties:

D=

(5

1) The same as the DOP™ %, it does not necessarily
require the knowledge about the intensity distribution
of the electric field in spatial space. Besides, it does not
depend on the vector nature of the angular spectrum
and therefore applies to scalar as well as vector fields.

2) As is required, it ranges from 0 to 1. For the
least diffractive fields, the diffraction-free beams, it is
equal to 0; for the most diffractive fields such as the
spherical waves,it is equal to 1.

3) It describes the diffractive spreading of a beam
in such a way that the more diffractive a beam is, the
larger its value is.

It is noted that D’ is proportional to the standard
deviation of cos &, 6p = ({cos® ¥ —<{cos »H*)"?, that
was discussed in Ref. [2]. Indeed, with the help of k.=
kcos 9,Eq. (5) can be written as

D' =g,/ {cos” V7.
Because the DOP introduced in Ref. [2] is (cos &),
which is different from the denominator (cos’ 9" ,the
ratio gp/{cos ¥) discussed there is something like, but
different from,D’. Let us examine the above mentioned
third property of D’ in the following by applying it to a
uniformly distributed angular spectrum with respect to

the polar angle.

A k

Fig. 1 Schematic illustration of the cone within which the
wavevector is uniformly distributed
Since D" in Eq. (5) does not depend on the vector
nature of the angular spectrum, the angular spectrum
that we consider assumes the form,
[2n(1—cos 9,) ] ", 0<<9<CY,

— 6
Je W =10 9, <9<, ©

do=1.

which satisfies normalization conditionj | .

It describes a beam the wavevector of which is
uniformly distributed within a cone of apex half-angle
9y »as is illustrated graphically in Fig. 1. When 9, =0, it
describes a plane wave propagating in the z direction.
The DOD in this case should be equal to 0. With the
increase of o, , the DOD should increase monotonously.
When ¢, approaches n, we will arrive at a beam the
wavevector of which is uniformly distributed in the
whole solid angle of 4x. This is one of the most
diffractive beams and should have a DOD of unity. Such
a feature is well reflected by the DOD(5). In fact,
straightforward calculations with Eq. (5) give

1 ( 3cos I, )1”2

bD.=% 1_lJrcos 9, Fcos’ I, D

2
The dependence of D, on ¢, is shown in Fig. 2. It

properly reveals the above expectation.

As can be seen from Eq. (7), when 9, = =/2, that
is to say,when no component plane waves propagate in
the negative z direction, one has D', = 1/2. If we
further require that the DOD be applied only to beam-
like light fields,that is to say,only to those light fields
no component plane waves of which propagate in the
backward direction, and that the DOD of the most
diffractive beam in this case be still equal to unity,
definition(5) should be replaced with

0126004~ 3



ot T

EE ¢

(8

2 1/2
D:2D’:2(1—<k:> )

(k2
Eq. (8) is the primary result of this paper. It should be
emphasized that so defined DOD is a beam parameter,
having nothing to do with the propagation distance. Let
us make use of it to discuss two examples below.
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Fig. 2 Dependence of D, on beam parameter o,

4 Applications

4.1 Gaussian-like beams
In the first example, we consider a Gaussian-like

beam"’ that has the following angular spectrum,

kZ ‘2 o
ful‘:AoCXp(* ZLO sin’ &)’0<0<% 9
It is normalized in accordance with
J | for | 2dQ = 2xA? @ (10)

where s=kw, /2 and
F(x) = exp (— xz)Jblexp (") de

is the Dawson function. With the help of Eq. (10),0ne

easily obtains

_1—exp (=5
(kr= 2sF(s) k
and
oo s—F(s) ,
<k:>7252F(s)

Substituting them into Eq. (8) gives

_[liexp(iﬁz)]z 1/2
2F(s) [s—F(9 ]
When s— 0, angular spectrum Eq. (9) reduces to the

D;, =21

(1D

uniformly distributed angular spectrum Eq. (6) with
9, ==/2. In this case, we have D; — 1, which is just
what we expect. In obtaining this result, we have made
use of the following Taylor series of the Dawson
function,

o (—Dre
Fo=2001 e

To the opposite, when s—co, we find D; — 0, where

il = — %Arg +--

the asymptotic behavior, F(x) ~1/(2x) ,0of the Dawson
function at large |x| is used. This is also what we

expect, because the beam in this case approaches a

plane wave, a diffraction-free beam. With the increase
of s,the DOD decreases monotonously from 1 to 0. The
dependence of Dg on the beam parameter s is
schematically shown in Fig. 3.

It is worth noting"™'™ that when s is large enough
(taking into account the difference between our Eq. (9)
for the angular spectrum and Eq. (8) in [17],the beam
parameter s here is exactly the reciprocal of the beam
parameter f in [17]) ,for instance,when

s>2n 12
angular spectrum Eq. (9) describes a beam that has a
negligible longitudinal component(only about 1% of the
transverse component in intensity ) and can be
approximated by the scalar Gaussian beam Eq. (1).
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Fig. 3
4.2 BG beams

In the second example, we compare quantitatively
the diffractive spreading of the BG beam with that of its

Dependence of Dg; on the beam parameter s

component Gaussian beams. The angular spectrum of
the BG beam Eq. (2) is given by"'*

foo=1, <ﬁ%ﬁkp>exp [—%(ﬁ%k,ﬁ)}

in circular cylindrical coordinates, where I, is the
modified Bessel function of the first kind and zeroth
the that

correspond to k, > k do not contribute to the

order. Because evanescent components

2

kB,
2

diffraction, we convert this angular spectrum into
w

Sre =1, ( 4

in spherical coordinates, where 0<9< /2.
Although it is hard to obtain an analytical
expression for the DOD, Dy, of the BG beam in Eq.

(13) ,we can still calculate numerically the dependence

sin &)exp [* (§ + & sin’ &)J (13

of Dy; on the beam parameter s. Furthermore, when
B=0,Eq. (13) reduces to Eq. (9). In this case, we
arrive at the Gaussian beam at large s. This shows that
definition Eq. (8) for the DOD allows us to compare
quantitatively the diffractive spreading of the BG beam
with that of its component Gaussian beams. In Fig. 4 is
shown such a comparison, where the up curve is for the

DOD of the BG beam, and the down curve is for the

0126004~ 4
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DOD of the The

parameters for the BG beam are chosen as follows.

component Gaussian beams.

Letting the radius p, of the central spot of the Bessel
factor be about the wavelength, p, = A, we have!

f=1/p, = k/2x. Moreover, in order that condition Eq.

(3) be satisfied,we choose s>>2./2 x, which also meets
the requirement Eq. (12). Clearly, the BG beam is more
diffractive than its component Gaussian beams. It
should be pointed out that the comparison made here is
not to be confused with the comparison that was made
in the literature [ 5-6,13] between a truncated Bessel
beam and a Gaussian beam. After all,a truncated Bessel

beam cannot be viewed as composing of Gaussian

beams.
0.020
0.015
~F 0.010
0.005
0l : i :
3n 4t Sn 6m n
S
Fig.4 Comparison of the DOD of the BG beam(g=*%/27)

with that of its component Gaussian beams(=0)

5 Conclusions

In conclusion, we introduced a parameter called the
DOD to describe the diffractive spreading of light
beams. The same as the DOP™*', the DOD depends
only on the angular spectrum of light beams. It ranges
from O to 1. It describes the diffractive spreading of a
light beam in such a way that the more diffractive a
light beam is, the larger its value is. Specifically, it is
equal to zero for the diffraction-free beams. Besides, we
pointed out the relation of the DOD with the standard
that the
wavevector makes with the beam axis. The parameter
of DOD should be useful in which the

assessment of beam quality, especially its diffraction

deviation” of the cosine of the angle

in areas

spreading, is of importance, such as in laser
[18]

and in free

communication""?.

processing space optical
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