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Multistable Optical Response of a Ladder-type Atom-assisted Optomechanical System
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Abstract; The optical response of a hybrid system, where a Ladder-type three -level atomic ensemble was
confined in a optomechanical microcavity with an oscillating mirror in one end, was investigated by solving
the Heisenberg-Langevin equations analytically and numerically. The results show that the steady-state
behaviors of the oscillating mirror and the atomic ensemble relate to the elastic coefficient of the spring
and the Rabi frequency of the classical pump field. As the elastic coefficient decreases and pump Rabi
frequency increases,the atomic ensemble and entire optomechanical system will present multiple steady-
state solutions with different steady-state numbers in different frequency domains. Therefore, the steady-
state optical response of the system could be controlled by manipulating the Rabi frequency of the classical
pump field and the spring elastic coefficient. These results may have potential applications in the area of
quantum information processing and high-precision quantum measurement.
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from the mechanical effect of light, such as, optical

0 Introduction L]

force. Radiation pressure force""” is a typical category of

Recently, optomechanical systems has become an optical forces™ ,and has attracted extensive attention in
attractive area '*! exploring interactions between recent years. Atom-assisted optomechanical system'’ as
mechanical object and light. This interaction originates one of the most favorite hybrid optomechanical
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systems, has shown many interesting phenomena. For

example, optomechanical storage!™, strong

optomechanical coupling between a micron-sized
membrane and a single trapped atom™ ,and the optical
feedback cooling of mechanical motion based on active

feedback

investigated. It has also been found that the atomic

and precise measurement”'”’ has been
ensemble can enhance the radiation pressure effectively

to induce a cavity-atom-mirror entanglement"'".
Besides, bistable behavior of the steady-state position
has been studied for a two-level cold atomic ensemble
embedded in an optomechanical cavity'?. Recently, a
hybrid system filled with three-level atomic ensemble
has been widely investigated, say for example, the
multistability phenomena of a hybrid optomechanical
These

observations promote the development of the nonlinear

[13-14]

system with Lamda-type atoms

optical field, and can be used as optical bistable and
bistable and

multistable systems have information storage capacity

multistable flip-flops since optical

[15-16]

in optical computing and communications

Therefore, further researches on such nonlinear
phenomena are important in areas such as quantum
information and communication.

We investigate the optical responce of a hybrid
optomechanical system with a Ladder-type three-level
atomic ensemble. We find that the multiple steady-state
behaviors of the oscillating mirror and the confined
atoms relate to the elastic coefficient and the Rabi
frequency of the classical pump field. Compared with
the Lamda-type system, the Ladder-type configuration
has more advantage in meeting the weak-cavity-field

assumption condition.

1 Model and equations
A hybrid

ensemble of N identical ladder-type three-level atoms is

optomechanical system, where an
confined in a microcavity with an oscillating mirror in

one end , as shown in Fig. 1. Level | 1 ); corresponds to

Fig. 1 Schematic diagram for the atom-assisted

optomechanical system

the ground state, while levels |2), and |3), correspond
to the excited states of the ith atom. A quantum cavity
field probes the transition |1),—|2),,while a classical
pump field with Rabi frequency 2, (frequency wy)
couples |2); and | 3),. The movable mirror,on the other
hand, is described as a quantum harmonic oscillator
with frequency « and mass m.

The total Hamiltonian for the hybrid system is
given as

H=H,+H,+H,+H, ,+H,_ ,=
P
wa at—+—-mw 2"+
2m 2

2 (ws6sd T o8y )+ (D

=1

N, .

2 (Qpe “'ss) +gacy) T h.c.)—
i=1

%Iafa
where # = 1, H., H,, H,, H,_,, H,_. represent
Hamiltonian describe the Hamiltonian of free optical
cavity, free oscillating mirror, free atomic sample, the
atom-light  interaction, and the  mirror-cavity
interaction, respectively. «, is the effective cavity
frequency when the oscillating mirror is fixed;a' (a) is
the creation (annihilation) operator of the single-mode
cavity field; x is the displacement of the oscillating
mirror; p is the momentum of the oscillating mirror;ew,
(«a=2,3) is the transition frequency between level |a);
and level [1);;50” = |a); (a| (a=2,3) is the projection
operator of the ith three-level atom;/ is the effective
cavity length when the oscillating mirror stay at the
equilibrium position;e,; = la); (8| (asf=1,2,3) is the
transition operator of theith three-level atom;and (25 is

the Rabi frequency of the classical pump field.

g=p Vw,/2Ve, denotes the coupling constant of the
atoms and the cavity field, while x,e, ,and V denote the
dipole moment,the vacuum permittivity,and the cavity
volume, respectively. wy; is assumed to satisfy the
following condition

wp=w; —wy — Ay (2)
where A, is the frequency detuning of the pump field
from the transition | 2); <> | 3),. For convenience in
writing, we define Ay =w, —wy» Al =w, —w, and x=

— %wo denotes the effective

cavity frequency,mw’ denotes the elastic coefficient,and

272 —
ma’ I’ s where w, = w,

[ is a constant. So x is proportional to the elastic
coefficient maw’”.

The couplings between the light fields and the
atoms can be homogeneous when linear size of the
atomic ensemble is much smaller than the wavelengths
of the light fields. Then we can define the following

collective operators
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Assume the atomic system is in very low excitation
and the atom number N is large enough,we can obtain
the following dynamic equations according to the
Heisenberg-Langevin equations
Qxr= %

Y

alp:—;nw21‘+%a a 717_ %,,Sm(t)

€Y
da=—ima(l—)—ig /NB—2at /7, a.(0
9,B=—(iw, +7)B—iQue“'E—ig VNa +
alE:_(iw:;+y2)E_i-leeﬂw"/B+fZ([)
where the mirror damping rate 7,.7 (7.),7, denoting

respectively the cavity decay rate, the coherence
dephasing rate between level |1), and |2),(|3),),and
the mirror damping rate. Here we have also introduced
the quantum fluctuation terms of the dressed atoms, the
oscillating mirror,and the cavity field meantime, which
satisfy the following conditions

(e () =(f1(D)=(fr, (1))=0

{a, (D) =a;, (D
where a;, (1) 70,and a;, (¢) have been considered as the

(5

external driving field. In addition, we have implicitly set
the frequency of a, (z) as w,. Therefore, it can be
rewritten as the following structure

ai, (1) = a;, (1) +8a;, (D

(da, ())=0.

In order to get the steady-state solutions, we need

(6)

to simplify the Heisenberg-Langevin equations by the
following rotating transformations

—w, ¢

a—ae

~
B=DBe “

~
E:Ee‘(ﬂ‘+d‘7w )t

~ . )
fH=fe >

f2 (0 :]N‘Z (1) & Fa et

a, () =a, (e '

Replacing (xa), and<a’ a), with (x).(a), and (a' ),
(ay,

approximation valid , when the quantum-fluctuation

indicates the adoption of a quasiclassical
correlation is much smaller than the mean-value
product.

Then, we can get mean values in the steady state
74()0<aJr >‘\<a>\

2
maw” L

(a7, (8

:_ig \/NT(;m(yz +151)

(B, = S (9
(v, +i, >G+70(zz
s [ &NGHiQD
= - X - 0 2 10
(@ Sy <yz+lol>(;+%m (10

where 51 =A,.1TA, and G:gZN+%(iA1_\ + 7). The

parameter A, , denotes detuning between w, and w; in
the steady state. We also know that the probe cavity
field can be written as following

YL ge ' +H. e, =ee ™ +H.c. (11)

E(H= Ve,

N
From the macroscopic polarization{ P) = %Z (o1d)
i=1

= yeo (e s we can further get the atomic susceptibility,

4N RE—00, 4N DEF7.0
X" Ve,  EA& Ve, H+6&

where 0= Y1 7Ye _Al_\\Ql +\Q7)5 Y 5= Y2 Al_\Jf'yl Ql.

12>

2 Numerical results and discussion

With Egs. (8) and(10), we can get the following

nonlinear equation
NGO, +Hin) |
o+ QOGH2 0

1— _k% (A, —A)

(13)

2 2
4 anaw;

Since it is a quintic equation of A, ,it may have
five steady-state solutions at most, which means that
hybrid exhibits

However, as the radiation pressure on the mirror is

the whole system multistability.
small, the stable positions of the mirror (x), can’t
deviate from equilibrium position far away. This means
that it is just significant to study the solution near the
atom-cavity detuning A, ,and the solution far beyong A,

( corresponding a large displacement of the mirror
1]

(x),) is unstable"”. The underlying physics of the
multistable phenomenon 1is the effective feedback
formed by the hybrid optomechanical system. The
oscillating mirror is driven by the radiation pressure,
while the motion of the mirror may change the
eigenfrequency of the cavity, and its variation will
change the radiation pressure in return.

Without loss of generality, we can choose the

following parameters on the basis of Ref. [13] as

w /N =10"7/7n=10",g \/W/YI =10, /7 =10,
and we set ¥, /7, =1,A,/y, =0.

Now using Egs. (13) and (12) we numerically
study how parameters x and 2, affect the steady-state
characters of the ladder-type three-level atom-assisted
optomechanical system. In Fig. 2 (a) we show the
mirror’ s steady-state position (z), as a function of
A,/v, under the condition of &/y, = 2 X 10° and
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Q;/7, =8. There are two steady-state solutions (x){",
(i=1,2). However, (x)!"” corresponds to a very large
displacement of the mirror (see inset of Fig. 2 (a)).
Thus,it’'s an unstable solution,and the movable mirror
is monostable. Besides, (x> is very small and nearly
approximates to zero. This means that when the elastic
coefficient is large enough compared with cavity length
given,it is difficult to make the mirror move. Fig. 2(b)
and (c)
susceptibility of the

show the imaginary and real part of the
ladder-type three-level atomic
ensemble with and without the cavity. These imply
that,in the limit x—co, the oscillating mirror doesn’t
affect the optomechanical system, and all physical

characters revert to those of the orignal EIT system.
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Fig. 2 (&), of the oscillating mirror and the susceptibility

of the atomic ensemble versus A, /7,
In Fig. 3, we show the mirror' s steady-state
position (x), as a function of A,/y, with /7, =2X 10"

(dotted) ,2X10* (solid) ,2 X 10° (dashed) ,and Q/y, =
8. As we can see,as the value k¢ decreases, the number
of steady-state solutions increases, the mirror's steady-
state displacement increases,and there are at most four
solutions (), (i=1,2,3,4). We also investigate
effects of the pump Rabi frequency Q5 on the mirror’s
steady-state solutions (), in Fig. 4 with Qz/y, =8
(solid) ,5 (dotted) ,1(dashed),and «/y, =2 X 10%. As
we can see in Fig. 4, when the value (2, increases, the
number of steady-state solutions increases, and there
are at most four solutions (x>, (i =1,2,3,4).
However, since stable positions of the mirror can’ t
deviate from equilibrium position far away, there exists at
most three steady-state solutions (x)” ,(i=2,3,4).
60|

-20 -10 0 10 20

Fig. 3 Steady-state solutions (&), of the oscillating mirror

versus A, /7
20
240
N 220 (xy®

Fig. 4 Steady-state solutions (x), of the oscillating mirror
versus A, /7

Here,in Fig. 5,as an example of multistable probe
response, we plot the imaginary and real part of the
probe susceptibility in two situations plotted in Fig. 4.
For the case of 2;/y, = 8 (solid), due to the steady
position (x)* is ready similar to (x)’, we only need
to plot the susceptibilities corresponding to (x){* and
(x> (solid) , which are according to two steady-state
solutions, respectively. For another case of Qy/y =1
(dashed) , the probe susceptibility is according to a one
steady-state solution.

In addition, the model could be implemented in
practical system of cold atoms. For instance, we could
with a ladder-type

consider cold rubidium atoms
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transition 5S,, >5P;,, >5D;,, as the medium, where
levels |1),.12),,|3), correspond to state 5S,,,,5P;,, .
5D;,, srespectively. In particular, compared with the A-
type system, the Ladder-type configuration has more
advantage in meeting the weak-cavity-field assumption
condition. This is because in A configuration there are
two lower levels, between which the dephasing is none
zero, while in the ladder-type configuration there is only
one ground state and all the atoms are populated on it.
Thus the model is more suitable for practical realization

with cold atoms.
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Fig. 5 The susceptibility of the atomic ensemble confined

in the cavity versus A, /7,

3 Conclusion

Steady-state displacement of the oscillating mirror
and the probe susceptibility have been investigated. We
have found that the optomechanical system could have
multistable phenomenon for the oscillating mirror, and
the number of steady-state solutions varied at different
frequency domains. We have also studied the effects of
the elastic coefficient and pump Rabi frequency on the
steady-state  properties of  the  atom-assisted
optomechanical system. Numerical results showed that
the number of steady-state solutions increased, as the
elastic coefficient decreased, or as the pump Rabi
frequency increased. If the elastic coefficient was large

enough, the oscillating mirror would not affect the

optomechanical system, and all physical characters

reverted to those of the orignal EIT system. These

results may have potential applications in the area of
high-precision quantum measurement and quantum
information processing.
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