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Quantum Entanglement Properties in Multimode Degenerate
Multi-photon Tavis-Cummings Model
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Abstract: The evolution properties of quantum entanglement in a system of multimode coherent
field interacting with two identical two-level atoms through degenerating multi-photon process are
investigated using the Von Neumann quantum reduced entropy theory, and the analytical
expression of quantum entanglement and the numerical calculation results for two-mode field
interacting with the atoms are obtained. The results show that: the quantum entanglement will
strengthen with the enhancement of the photon degeneracy; the periodicity of the quantum entanglement
will become more and more apparent with the increasing of the average photon number; when the field
and the atoms are far from resonance, the quantum entanglement will decrease with the increase of the
frequency detuning; when the frequency detuning is large enough, the field and the atoms are nearly
always in entangled states. These results are useful for the preparation of the entangled states or pure
states and for quantum information in optics systems.
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0 Introduction

Quantum entanglement is one of the most
characteristic properties that make quantum theory
distinct from classical theory. It not only serves to
demonstrate theoretically fundamental quantum
properties far beyond the conceptual framework
defined by classical physics, but also forms a
fundamental resource for quantum information
processing and has promising practical applications
quantum dense

in quantum computation ",

coding', quantum cryptography and quantum
teleportation™ and so on. Most of the research in
quantum information processing is based on the
entanglement generation of quantum two-level
systems. Tavis-Cummings Model ( TCM)™ (or
Dicke modelt™) describes the simplest fundamental
interaction between a single mode quantized field
and a collection of N atoms under the usual two-
level and rotating wave approximations. The
quantum properties in TCM have been extensively
studied. Entanglement properties of two entangled
atoms without rotating wave approximation have

been studied by JIANG Dao-lai et al'®. The

entanglement between two atoms in an overdamped
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cavity injected with squeezed

investigated by LI Gao-xiang et al™*!. CAI Xun-

vacuum was

ming et al. studied the population inversion of two

cavity"!.  The
[10]

moving atoms in a quantum
entanglement of two-photon and  multi-
photon'! TCM also have been studied. We have
studied the quantum entanglement in the Bell state

[12

entangled atoms''? and the multi-mode (gq-mode)

coherent light field multi-photon Jaynes-Cummings
Model (JCM)™ and considered the influence of
frequency detuning on the quantum entanglement"'*),
However, up to now, less attention has been paid to
the study of the quantum entanglement of the multi-
mode field multi-photon TCM.,

In this paper, we investigate the properties of
quantum entanglement in the system of multi-mode
coherent light field interacting with two identical
two-level atoms through any N;-degree degenerate
multi-photon process by utilizing the quantum
entropy theory. Our attention focuses on the

discussion of the influences of the photon
degeneracy, the initial average photon number and
the frequency detuning on the evolution properties

of quantum entanglement.
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mainly focuses on quantum optics and quantum
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. . Here we have written the operators as
1 The model and its solution b
C=cos (An—i(% )3 A0
The system considered here consists of two 2 A

identical ~ two-level —atoms interacting with Szgﬁcﬁ‘\' sin (Ar)
multimode field through any N;-degenerate multi- I A
photon transition process, and the dipole-dipole D— rﬁ v sin (Bip)
. . . glla; B
interaction between the atoms is neglected and i= 0

there is the same coupling of the two atoms
interacting with the g-mode field. Under these
conditions, the Hamiltonian can be written in the
and the

rotating wave approximation ( RWA)
dipole approximation as (A=1)

H— ﬁ:lea;ra] +wS.+ g[St (]:[la\ )+

<1:Tlaf~‘\b>s,] 1

where S, =3S,S, =S +8 &,S =S +S e ¥,
i=1

a; Ca;) is the photon creation (annihilation)

operator of the jth field mode of frequency w, (=

1,2,

S.(i=1,2) is the atomic inversion operator for the

»q)» wo, is the atomic transition frequency,

ith atom, S’ are the atomic “spin-flip” operators
for the ith atom, & is the relative phase of the
atomic transition, N; is the degree of degenerate of
the jth field mode, and g is the coupling constant
between the atom and the g-mode light fields.

The Hamiltonian (1) can be decomposed as

H=H,+H, (za)
Ho:_gl(a)ju;raj>+,ﬁ:l(w/Nj)SZ (Zb)

Hy =L~ (Za,N IS AglS (i) +
(a5 ] (20)
=1

g
set A, =w, — 2 w;N; denotes the detuning of the
i=1

field mode from the two-level atom. Using the

T=cos (Bz>+i(Av)M

2 B

A= (3) e tiay o

We chose the atoms be prepared in coherent
superposition state of the excited state and the
ground state and the g-mode field be prepared in

coherent state at the initial time, that is

[ ¢, (0))=rcos %\e,e)-’-e*“*sin %lg,g) (5

| (0)) =

n

> PP

1oty

(6)

P(n) [n)ong s in,)

% aji
and a stand for field and atom respectively, 0<9<C
n denotes the atomic distribution, 0<¢<2x is the

where P (n;) = exp <— , the subscript

phase of the atom dipole,a; = «/Zexp (ig;) s n; and
¢; (0<{¢,<2m) represent the initial average photon
number and the direction angle of the excitation for
Then the
combined density operator of the system is
pC0) =1, (0)) (g, (0) | @] ¢ (0)) (g (0) |
the
density operator of the system at any time >0 is

j mode field , respectively. initial

0

along with the time evolution, combined

standard techniques in Ref. [ 157, we can obtain given by
the following time-evolution operator in the |CYCC| |CYy(S]  |O<D| |C(T|
interaction picture (= [SY}CC| |SY(S| |SY{D| [S}<T| 8
c —iD 0 0 e IDYC| |D)S| |D)(D| |D)T]
U, ()= —is T 0 .O @ | THC| |TH(S| | THO<(D| |TH){T|
0 0 C v —iDe The corresponding coefficients are given by
0 0 —iSe ¥ T
“ 0 ¢ Ll e (A\sin (QTD T
|C)=cos 2, ..Zuj’”q:o[‘]glq(nj ) Jexp [1(2}171/-90,- )] [cos €Oy 1( 5 )7QA } |7y my e amy)
. g L ” esin (Q7 D)
| S)=—1igcos > 2 :Of_l:llq(nj)]exp [1(_27@@)]l:llf(nj+l)(7zj+2)..-(nj—H\]j)] —

|, + Ny .y + Ny oo sn, TN

= q q,

> [H}q(m)]e“l%l”z
—oj=

ORI R

C ey - 0
|D)=—ige™ #sin +

0

| TY)=¢ *sin

nl_Nl 77’12_N27"'971,1_N,1>

2 Ny sty st

q

('ﬂ’)1:1][(”1'7]\[/4—1)(njiNj—Q_Z)"‘(nj*1)nj:|l"2 .

:O[l:l]q(nj)]exp [i(_énjgoj )1 cos (Q7 1) +i<

(9

[ 7, 0my 50 sm,)

AL,>sin Qv
2 (o
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With CZfS@T +6§627616g+6
SN CIEY A2 256 16 4 !
(n)=exp [ — 1|2 O ={(=) + —
qin; p 2 \/717’ 2 61*_(P11+P22+P33+P44)

ST Gy 41 G 42) Gy +3) (i, =N T} 72
=1

0 = { (Azq)2+g‘2[]f[l(nj—Nj+l) .

1/2
(n,— N, +2)+(n;— D, ] }

So we can get the reduced density matrix of the
coherent field
o (D=[C){CIF+[S(S|F+DXD|+[T)>{T| (10)

In order to derive a calculation formalism of
the field entropy, we must obtain the eigenvalues
of the reduced density matrix given by Eqgs. (10).
Knight and his co-workers (see Ref. [ 15]) have
developed a general method to calculate the various
field eigenstates and eigenvalues in a simple way;
here we will use their method to calculate the
eigenvalues. Assume the eigenstate of the reduced
density operator can be written in the following
form

(D) =1 O+ 2. [ S+, ID)Y+a, [T (D
and we write the eigen equation as

o (O |7 () = () [ 7 (1)) 12)
where 7;(¢) is an eigenvalue of the reduced density
operator.

Applying the density matrix given by Eq. (10)
to the eigenstate Eq. (12), we get the eigenvalues
of the reduced density matrix of the field

n}<t>:—%+%<kl+@+k3>

, 0, 1
n;u):—th?(kl—kz—ks)

o1 (13)
ch(Z)Z—Z]Jr?(—lir/zg—/zg)

n;<z>=—%‘+%<—kl—k2+kg>

where the coefficients are given by
b= 2/a T TZecos g— 227"
2/ 21, 2a-1,,
k; *[WCOS (gt 30 —F T
_r2 4 2a,
ky —[Wcos (Sp—ﬁ—?)—?]

_1 £
= 3 arccos (17 )

£=2a*—T72ac+ 270
n=2(a*+120)7

3 2
a— 801+62
6 0.0
[):gli 122+03

G, =Py (Py+ Py +P,)+ Py (Pyy+ P+
P33P44_(‘P12 2+‘P13‘2+‘P14‘2+
| Poy |"+ [ Poy |*+ | Poy |

(93:*[P11P22(P33+P44)+(P11+P22)P33P44+
Py, Pys Py + P13 Py, Py + Py Py Py, P, Py
P+ PPy Py PPy Py + Py Py Py 4
P23P3'1P12*P11(‘P23‘2_._“')31‘2—’_‘})42 2)*
Pzz(‘P13‘2+‘P34‘2+‘P41‘2)*P33'
(|Py |24 | Py | P+ | Py | — Py (| Py |2+
| Pos [P+ [ Psy [)]

0, =P\ Py, Py Py — Py Pyy Py Py — P13 Py Py
Py —Py PPy Py — Py, Py Py Py — Py Py
P/12P21*P1/1P12P23P31*Pnpzz‘P:ﬂ‘2*
Pllps:s‘P24‘2_P11P44‘P23‘Z_Pzzpsa’
‘PH‘2_P22P41‘PIS‘Z_PSBPH‘PIZ 2+
| P |7 [Py | "+ | Pis |7 [ Poy |*+ | Pu | * -
‘st ‘2+P11(P23P34P42+P24P43P32)+P22 *
(P3P Py;+Py Py Piy)+ Py (P Py Py
Py Py, Pyy) 4Py (P, Py Pyy + Py Pyy Pyy)

Where

Py, Py, Pyy Py
Py Py, Py Py
PI’»I PSZ P33 Pf%'l
P, P, P, P,

(CIC) (CI|S) (CID) <C|T»
(SIC) (SIS) (SID) (S| T
(D[C) (D[S) <D|D) (D[ T»
(T|C) (T[S (T|D) <T|T»

2 The quantum entanglement between
the g-mode coherent field and two
identical atoms
Following the work done by P-K in Ref. [15],

we can express the g-mode coherent field quantum
entropy in terms of the eigenvalues of the field
reduced density matrix as
St =—{xt (Olnlxf (O] +=i (Olnlxf () ]+
7t (On[xf () ]+ rf (D Inlxi ()]} a4
It seems to be impossible to express the sums in

Eq. (14) in a closed form, but for a not too large

n;, the direct numerical temporal evolution of the
entropy can take place based on the analytical
solution presented by Eq. (14). In what follows we
shall consider the behaviors of the quantum
entanglement of the system. For simplicity, here
we have bimodal field as an example.

Firstly, we examine the influence of the
photon degeneracy on the evolution of the quantum
entanglement. There are two cases. One situation
is the two modes have the same photon
degeneracy, the other is the two modes have

different photon degeneracy. Fig. 1 and Fig. 2 give
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Fig. 1 The evolution curves of the field quantum entropy as a function of the scaled time gt/x for different values
of photon degeneracy with the two modes have the same degeneracy
0A4 T T T T 045 T T T T OAS T T T T
S s S
02 o 0.3 03[ .
01 1 1 1 1 0 2 1 1 1 1 O 2 1 1 1 1
0 1 2 3 4 5 0 1 2 3 4 0 1 2 3 4 5
gtin gtin gtin
(a) N=1,N,=2 (b) N=1,N,=3 (c) Ny=1,N,=4
Fig. 2 The evolution curves of the field quantum entropy as a function of the scaled time gt/= for different
values of photon degeneracy with the two modes have different degeneracy
the numerical results for the time evolution of the The larger the difference is, the bigger the

reduced field quantum entropy under the two

conditions, where we have taken n, =n,=5, §=n/
2, =0, ¢ =¢, =0 and A, =2g.
According to the plots in Fig. 1 , one can see

the double

process is distinct completely with the degenerate

non-degenerate photon transition

multi-photon process, the maximum value of the
the
that of

multi-photon
the

degenerate biphoton process, and the mean value

quantum entanglement of

transition less clearly than non-
of the quantum entanglement increasing with the
increase of the photon degeneracy, which indicates
that the more strengthen the photon degeneracy is,
the stronger the quantum entanglement between
the field and the two atoms is.

Comparing the plots in Fig. 2, one can find the
quantum entanglement is strongly dependent on

the degeneracy difference of the double mode field.

maximum value and the mean value of the quantum
entanglement are, which means that under these
circumstances the quantum entanglement between
the field and the atoms is stronger.

the

properties of the quantum entanglement with the

Secondly, we investigate evolution
variation of the initial average photon number
under the condition that N, =N, =1, 0=n/2, ¢=
0, ¢ =¢.=0 and A, =10g.

From plots (a) ~ (¢) in Fig. 3 one can see that
when the two modes have the same initial average
photon number, with the increasing of the average
photon number, the periodicity of the quantum
entanglement get more and more apparent and the
periodicity is w approximatively, the mean value of
it becomes smaller and smaller till drives to value
zero, the oscillation amplitude of it changes also

weaker and weaker until almost becomes a straight
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line (see Fig.3(c)). Based on the plots (d)~ ()
in Fig. 3, one can find when the two modes have

different initial average photon number, the bigger

the difference of the average photon number, the
weaker the quantum entanglement between the

multi-mode coherent field and the two-level atoms.

0.4
Lo} ] Loy ]
— = L | Si 021 1
= 08 = =
%) 0.6 1 I e e ]
0.6 — 0.4 : — 0 — :
0 1 2 3 4 5 0 1 3 4 5 0 1 2 3 4 5
gtin gtin gtin
(a) n=ny=5 (b) n=n,=10 (c) n=n,=15
0.8 g T 0.8 T T 0.4 v
% 0.6 1 5 06F 1 % 0.2 .
0.4 1 1 1 1 0.4 1 1 1 0 1 1 1
0 1 2 3 4 5 0 1 3 4 5 0 1 2 3 4 5
gt/n gt/n gt/n
(d) n,=5,n,=10 (e) n=5,n,=15 () n,=5.n,=20
Fig. 3 The evolution curves of the field quantum entropy as a function of the scaled time gt/

for different values of initial average photon number

Finally, we see the influence of the frequency

detuning on the evolution of the quantum

entanglement with Ny =N, =1, 0==n/2, ¢4=0,
o =¢, =0 and n; =n, =5.

From the plots in Fig. 4, one can find the
variation of the field quantum entanglement is less
obvious when the frequency detuning is small, that
is to say, when the field and the two atoms are
near resonance, the frequency detuning has little
effect on the quantum entanglement between the
two-mode field and the two non-coupled two-level
With the
detuning, the

atoms. increasing of the frequency

evolution of the quantum
entanglement has no longer periodic property and

the mean value of it decreasing gradually, the

oscillation amplitude of it is further weaker, which
means that when the field and the atoms are far
from resonance, the bigger the {frequency
detuning, the weaker the quantum entanglement
between the multi-mode coherent field and the two-
level atoms. More examination finds that the
larger the frequency detuning, the shorter of the
time for the quantum entanglement to reaches its
mean value and then the quantum entanglement
almost remains in that sustained mean value.
Especially, when the frequency detuning is large
enough (see plot (f)), the quantum entanglement
almost remains in its mean value all the time,
namely under that condition the field and the atoms

are nearly always in entangled states.

1.0 ] 1.0 : 1.0 MMM
= 0.8 = 0.8 1 = 0.8 1
0.6 0.6 0.6
0 1 2 3 4 5 0 1 3 4 5 0 1 2 3 4 5
gtin gtin gtin
(a) 4,=0 (b) 4,=2¢ (¢) 4,=5¢
1.0 . 1.0 1.0}
0.6 0.6 0.6
0 1 2 3 4 5 0 1 3 4 5 0 1 2 3 4 5
gtin gt/n gt/n
(d) 4,=20g (e) 4,=30g (H) 4,=70g

Fig. 4 The evolution curves of the quantum entanglement as a function of the scaled time gz/=n

with different values of frequency detuning
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EXE 57
(PG Tolk K% S TR 2B, P44 710032)
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