文章编号:1004-4213(2010)03-0470-7

Ga_nN₃(n=1~8)团簇几何结构及光电子能谱的研究*

李恩玲1,朱红1,*,李莉莎2,祁伟1,李小平1,王进宇1

(1 西安理工大学 理学院,西安 710054)(2 西北大学 物理系,西安 710068)

摘 要:用密度泛函理论的 B3LYP 方法在 $6-31G * 6 \wedge r + L$,对 $Ga_n N_3 (n=1 \sim 8)$ 团簇的结构进行 优化,并对体系的成键特性、光电子能谱及稳定性进行了计算与分析,得到了 $Ga_n N_3 (n=1 \sim 8)$ 团簇 的最稳定结构.结果表明,当 $n \leq 5$ 时,其基态几何结构为平面结构,N-N 键在这些团簇的形成过程 中起着决定性的作用;当 $n \geq 6$ 时,其基态几何结构为立体结构,Ga-N 键起主导作用;在所研究的团 簇中,Ga_4 N_3、Ga_7 N_3 的基态结构最稳定;随着 n 值的增大,平均极化率逐渐增强;通过对光电子能 谱的分析,得到 Ga-N 键的振动频率与六方晶系纤锌矿结构 GaN 的光学声子峰值相近.

关键词:团簇;密度泛函理论;几何结构;光电子能谱;稳定性简体

中图分类号:O469 文献标识码:A

0 引言

氮化镓(GaN)作为第三代半导体材料的代表, 是一种重要的直接宽带隙半导体材料,它具有优良 的物理化学性质,如高饱和电子漂移速度,高击穿场 强,高热导率,优异的机械性质及热稳定性等,是当 前世界上最为先进的半导体材料之一. 它不仅广泛 地应用于蓝绿光发光二极管(LED)、激光器(LD)、 紫外波段的探测器以及高温、大功率集成电路等器 件,还可作为环保新材料应用于环境保护[1-4].氮化 镓材料在微电子和光电子等方面的广泛应用[5-6],激 起了大量关于 GaN 表面及固态相结构、电子和光学 性质等的研究.在实验室制备氮化镓薄膜的过程中, 会产生先驱中间化合物---团簇,这也就要求我们 对其团簇分子的物理和化学性质作深入的研究.团 簇的一些物理性质如能级结构、光学性质、磁学性 质,以及热力学性质都呈现从原子特性向块体材料 特性转变的趋势.

近年来,对 GaN 团簇的研究工作也得到很多人的关注.如 Costales 等人利用密度泛函理论研究了 $Ga_nN_2(n=4\sim6)^{[7\cdot8]}$ 中性及阴离子团簇的 N—N 键演变趋势. Song 等人利用 linear-muffin-tin-orbital 分子动力学的方法计算研究了 $Ga_nN_m(n+m \leq 8)^{[9]}$ 团簇的几何与电子结构. Kandalam 等在密度泛函理

[†]Tel:029-82066358 收稿日期:2009-01-01 doi:10.3788/gzxb20103903.0470

论(Densigy functional Theory, DFT)的基础上运用 非局域密度近似的方法计算了 $Ga_n N_m (n, m=1 \sim 2)^{[10]}$ 和 $Ga_n N_n (n = 3 \sim 6)^{[11-12]}$ 的团簇结构. BelBrtmo用DFT研究了 $Ga_n N_n^- (n=2 \sim 4)^{[13]}$ 的结构. 李恩玲等利用DFT 对 $Ga_n N^- (n=2 \sim 8)$ 和 $Ga_n N_2^- (n=1 \sim 7)^{[14]}$ 阴离子团簇的结构及稳定性进行了研究.

经查阅,目前还没有关于 Ga_nN₃(n=1~8)团簇 性质理论计算研究的报道.本文利用 B3LYP/6-31G *密度泛函方法对 Ga_nN₃(n=1~8)团簇进行了计 算,对 Ga_nN₃(n=1~8)团簇的结构进行优化,得到 了 Ga_nN₃(n=1~8)团簇的最稳定结构,同时对体系 的成键特性、热力学性质、光电子能谱及稳定性进行 了研究.

1 计算方法

本文采用 DFT 中的 B3LYP 方法,在 6-31G * 水平上,对 Ga_nN₃($n=1\sim8$)的各种可能构型进行了 几何优化.为了得到最稳定结构,在结构优化过程 中,选择了尽可能多的初始结构.选择初始结构时, 考虑具有一定对称性的结构,并且 Ga-Ga,Ga-N,N-N 的键长分别在 0.240 0~0.330 0 nm,0.200 0~ 0.235 0 nm,0.110 0~0.130 0 nm 内成键.

为了兼顾时间和准确度,首先在 HF/STO-3G 低基组上对所设计的团簇结构进行优化;然后将优 化后的结果作为 HF/6-31G * 基组的初始参量再进 行全构型优化;最后每一种团簇选取 8~10 种最低 能量结构,在 B3LYP/6-31G * 高基组的水平上,进 行频率计算,得到了其基态构型,频率分析表明这些

^{*}西安市应用材料创新基金(XA-AM-200812)、西安市应用 发展研究计划项目(YF07064)和西安理工大学博士启动 基金(108-210904)资助

Email:zhuhongghy@163.com 修回日期:2009-11-04

基态构型均为势能面上的稳定点.同时在相同的水 平上,对最稳定构型的零点能、热熔、熵、光电子能 谱、分裂能、团簇能量的二次差分值、能隙、平均极化 率进行了计算.所有的计算都是在 Dell 工作站上使 用 Gaussian03 程序完成的.

2 结果与讨论

2.1 几何结构

 $Ga_nN_3(n=1\sim8)$ 团簇的最低能量结构(基态结构)和亚稳态的几何结构如图 1,其中图 1(a)为基态 结构,图 1(b)为亚稳态结构,表 1 给出了基态结构 的几何参量.图 1 中灰色和黑色小球分别表示 Ga 原子和 N 原子.原子间距分别小于 0.330 0 nm(Ga-Ga),0.235 0 nm(Ga-N),0.130 0 nm(N-N)时成 键.Ga_nN₃(n=1~8)团簇的结构如图 1.

 GaN_3 : GaN₃ 的基态结构是具有 C_{∞v}对称的直 线型结构,如图 1(1a),N1-N2-N3 键角为 180°,N1-N2 与 Ga4-N3 之间的键长分别为 0.114 7 nm 与 0.192 1 nm, E_{gap} 为 4.164 eV.亚稳态为 C₈ 平面结 构,如图 1(1b),三个 N 原子构成一个三角形,另一 端与 Ga 原子相连. E_{gap} 为 3.022 eV,比基态低 1.142 eV,而总能量比基态高 2.887 eV.可以看出, 基态与亚稳态都含有一个 Ga-N 键,不同的是基态 比亚稳态多一个 N=N 双键,团簇的稳定性增强.并 且从结果可以看出,对称性高的结构不一定是最稳 定结构,其原因是由于 John Teller 效应^[14],降低结 构对称性使得简并能级分裂从而降低总能量.

 Ga_2N_3 : Ga_2N_3 的基态结构是具有 C_{2V} 对称性的平面结构, 如图 1(2a), 三个 N 原子位于同一直线上, 两个 Ga 原子与一个 N 原子构成等腰三角形, N1-N2-N3 键角为 180°, Ga5-N3-Ga4 键角为 86.018°, E_{gap} 为 1.802 eV. 亚稳态是具有 C_1 对称性

的平面结构,如图 1(2b),N₃ 单元还是呈直线结构, 两端分别与 Ga 原子相连,构成一个环状结构.其能 隙比基态低 0.242 eV, 而总能量仅比基态高 0.432 eV.

 Ga_3N_3 : Ga_3N_3 团簇的最低能量结构如图 1

(3a),该结构是一个平面,可以看成是一个 N₃ 单元 与三个镓原子的结合,N₃ 单元中 N3-N2-N4 的键长 分别为 0.129 5 nm 和 0.131 9 nm,其能隙为 3.012 eV. 这和 Song 等^[9]报道的 Ga₃N₃ 团簇的最低能量结构 以及 N₃ 单元中氮原子之间的键长 0.129 5 nm 和 0.131 4 nm 符合的很好. Ga₃N₃ 团簇的亚稳态结构 是具有 C_s 构型的平面结构,包含一个 N₃ 单元,与 其他三个 Ga 原子连接形成环状结构,其能隙比基 态低 2.070 eV,总能量比基态高 1.159 eV. 而 Kandalam 等^[11]认为其是最低能量结构.最稳定结 构与亚稳态结构与葛桂贤等人^[15]计算出的结果是 一致的.

	表 1 $Ga_n N_3(n=1\sim 8)$ 团簇基态结构的几何参量
Table 1	Optimized geometric parameters for ground-state structures of Ga, N ₃ ($n=1\sim8$) clusters

	rubic r	optimized geometri	ie parame	iers for gr	ound state structure	5 of Ounit	3 (7 1	ofelasters
Clusters	Bond	Bond lengths/nm	Clusters	Bond	Bond lengths /nm	Clusters	Bond	Bond lengths /nm
GaN ₃	N1-N2	0.114 7		N1-Ga5	0.181 9		N2-Ga5	0.206 4
	N2-N3	0.120 8		Ga2-N3	0.184 9		N2-Ga4	0.206 5
	N3-Ga4	0.192 0		N3-Ga8	0.192 1		N6-Ga4	0.200 0
				N3-Ga6	0.194 7		N6-Ga5	0.200 0
Ga_2N_3	N1-N2	0.114 3		N4-Ga6	0.194 7		N6-Ga7	0.191 8
	N2-N3	0.122 7		N4-Ga7	0.192 1		N6-Ga8	0.210 3
	N3-Ga4	0.213 3		N4-Ga5	0.184 9		N3-Ga9	0.191 8
	N3-Ga5	0.213 4					N6-Ga7	0.191 8
	Ga4-Ga5	0.291 0	Ga_6N_3	N1-Ga5	0.188 3		N2-Ga10	0.195 3
				N1-Ga3	0.192 1			
$Ga_{3}N_{3}$	Ga1-N3	0.2015		N1-Ga4	0.192 0	Ga_8N_3	Ga1-N2	0.191 6
	N2-N3	0.129 5		N2-Ga9	0.192 8		Ga3-N2	0.216 8
	N2-N4	0.131 9		N6-Ga8	0.192 8		Ga4-N2	0.216 9
	N4-Ga5	0.195 3		N2-Ga7	0.194 9		Ga10-N2	0.209 3
	N3-Ga6	0.218 9		N6-Ga7	0.194 9		Ga11-N2	0.209 5
	N4-Ga6	0.218 4		Ga3-Ga4	0.250 5		Ga3-N5	0.216 7
				N2-Ga4	0.208 4		Ga8-N5	0.195 0
Ga_4N_3	Gal-N6	0.190 5		N2-Ga3	0.208 6		Ga7-N5	0.217 7
	Ga2-N6	0.190 5		N6-Ga4	0.208 5		Ga11-N5	0.209 3
	Ga1-N3	0.229 8		N6-Ga3	0.208 5		Ga10-N5	0.209 0
	Ga2-N3	0.229 0					Ga4-N6	0.216 3
	N3-N4	0.117 5	Ga_7N_3	Ga1-N2	0.222 6		Ga7-N6	0.216 4
	N4- Ga5	0.202 1		Ga1-N3	0.210 4		Ga9-N6	0.195 3
	N6- Ga7	0.189 7		Ga4-N3	0.200 0		Ga10-N6	0.209 5
				Ga5-N3	0.200 0		Ga11-N6	0.209 9
$Ga_5 N_3$	N1-Ga2	0.181 9		N2-Ga8	0.222 8			

 $Ga_4 N_3 : Ga_4 N_3$ 团簇的最稳定结构是 C_s 构型 的平面结构,包含一个 N-N 键与六个 Ga-N 键, N-N 键长为 0.117 5 nm, Ga-N键长在 0.189 7~0.229 0 nm 之间, E_{gap} 为 1.653 eV. 亚稳态是具有 C₁ 对称的立 体结构,该结构可以看作是一个 N₃ 单元和一个 Ga₄ 单元相结合, N₃ 为线性结构, 其末端 N 原子作为顶 点与 Ga₄ 构成四角锥体, 其能隙比基态低 0.371 eV,总能量比基态高 1.223 eV.

 $Ga_5 N_3$: $Ga_5 N_3$ 团簇的最稳定结构为 C_5 的平面结构,如图 1(5a),三个 Ga 原子与三个 N 原子先 形成环状,两个 Ga 原子在环外分别与两个 N 原子 相连,该结构中仅仅具有八个 Ga-N 键,不存在 N-N 键,Ga-N 键长在 0.181 9~0.194 7 nm 之间, E_{gap} 为 2.617 eV. 亚稳态是 C_1 构型的立体结构,如图 1 (5a). 该结构由 Ga₅ 单元和 N₃ 单元构成,五个 Ga 原子构成四角锥体,锥体的一条侧棱与直线形 N₃ 单元相连. 亚稳态的 E_{gap} 为 1. 555 eV,比基态低 1.062 eV,而总能量比基态仅仅高 0.591 eV.

 Ga_6N_3 : Ga_6N_3 的最稳定结构是 C_1 构型的立体结构,如图 1(6a). 该结构中除了一个 Ga-Ga 键外,其余都是 Ga-N 键, Ga-N 键长在 0. 188 2~0.194 8 nm之间, E_{gap} 为 2. 397 eV. 亚稳态为 C_s 构型的平面结构,三个 Ga 原子与三个 N 原子交替形成环状结构,剩余的三个 Ga 原子在环外分别与两个 N 原子和一个 Ga 原子相连,其能隙比基态低 0.725 eV. 基态能量比亚稳态能量低 1.252 eV.

Ga₇N₃:Ga₇N₃的最稳定结构是 C₁ 构型的立体 结构,如图 1(7a).该结构也是仅仅具有一个 Ga-Ga

键,剩余都是 Ga-N 键,Ga-N 键长在 0.191 8~ 0.210 4 nm之间, E_{gap} 为 2.044 eV. 亚稳态结构为 Cs 构型的平面构型,如图 1(7b),中间两个 Ga 原子 与两个 N 原子构成一个等腰三角形,两端分别与两 个 Ga₂ N 单元相连.总能量比基态仅仅高 0.447 eV.

 $Ga_{8}N_{3}$: $Ga_{8}N_{3}$ 的最稳定结构是 C_{1} 构型的立体结构,如图 1(8a),它是在 $Ga_{6}N_{3}$ 基态结构的基础上在两侧再加上两个 Ga 原子,该结构中也是仅仅具有 Ga-N键,Ga-N键长在 0.191 8~0.210 4 nm之间, E_{gap} 为 2.487 eV. 亚稳态结构为 C_{1} 构型的平面结构,如图 1(8b),它是在 $Ga_{7}N_{3}$ 亚稳态的基础上

再增加一个 Ga 原子. 亚稳态的能隙为 1.462 eV,比 基态低 1.025 eV,总能量比基态高 0.661 eV.

2.2 热力学性质与光电子能谱

在表 2 中,列出 Ga_nN₃($n=1\sim8$)团簇基态的总 能量、对称性、零点能、热容、熵. 从表 2 中可以看出, 随着 n 值的增大,总能量在逐渐减小. 零点能、热容 和熵的数值均逐渐增大,当 n 每增大一个单位,零点 能平均增加幅度约为 1.92 kJ • mol⁻¹,热容平均增 加 23.06 J • mol⁻¹ • K⁻¹,而熵平均增加 50.53 J • mol⁻¹ • K⁻¹.

	表 2 $Ga_nN_3(n=1\sim8)$ 团簇的总能量、零点能、热容与熵
Table 2	Total energies, zero-point energies, thermal capacity and entropy of $Ga_n N_3$ ($n=1 \sim 8$) clusters

Cluster	Symmetry	Total energies/eV	Zero energies/	Thermal capacity/	Standard Entropy/
			$(kJ \cdot mol^{-1})$	$(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$	$(J \cdot mol^{-1} \cdot K^{-1})$
GaN_3	Cs	-56794.80	25.60	50.71	272.85
Ga_2N_3	Cs	-109 120.76	27.77	72.89	363.70
$Ga_{3}N_{3}$	C_1	-161 447.72	30.91	94.12	403.84
Ga_4N_3	Cs	-213775.33	31.82	123.42	478.76
$Ga_{5}N_{3}$	Cs	-266 102.14	33.92	142.72	499.10
Ga_6N_3	C_1	-318 429.90	37.17	166.43	550.82
Ga_7N_3	C_1	-370757.97	38.90	191.07	585.07
Ga_8N_3	C_1	-423 084.97	39.01	211.61	626.56

表 3 给出了 Ga_nN₃ (n=1~8) 团簇基态结构的 光电子谐振频率,小括号内是相应的振动模式,中括 号内是相应的红外强度.v值最小的振动频率反映 所得结构是否为虚频,从表 3 中可知所有谐振频率 均为正值,表明各结构均为势能面上的极小点,保证 其能量的二阶导数矩阵的本征值为正值,相应的结 构可能为基态平衡结构.

表 3 Ga_n N₃ (n=1~8) 团簇基态结构的振动频率和红外谱强度

Table 3 Vibrational frequencies and IR intensities of possible ground states of $Ga_n N_3$ ($n=1 \sim 8$)

Cluster	$Frequencies/cm^{-1}[IR intensities/(km \cdot mol^{-1})]$
${\rm GaN}_3$	157.7(PI)[1.0],157.8(PI)[1.1],374.6(SG)[116.9],679.2(PI)[23.0],
	679.279.2(PI)[23.0],1455.0(SG)[254.6],2280.53(SG)[876.8]
Ga_2N_3	55.5(A')[1.9],110.2(A)[2.5],274.8(A')[53.4],288.3(A')[9.8],
	584.8(A)[0.5],620.0(A)[11.7],1339.5(A')[245.9],2246.7(A')[989.2]
Ga_3N_3	50.7(A)[0.9],85.9(A)[0.1],151.6(A)[0.7],163.8(A)[6.2],219.7(A)[4.2],307.5(A)[6.0],
	542.8(A)[343.9],953.8(A)[132.3],1215.9(A)[388.4],1308.1(A)[120.1]
Ga_4N_3	25.9(A)[0.1],32.4(A)[1.4],61.0(A)[0.3],72.1(A)[0.7],99.8(A)[1.1],159.5(A)[1.4],190.6(A)[3.9],
	277.6[A](5.5),375.7(A)[0.9],377.2(A)[0.1],395.5(A)[167.3],586.8(A')[43.5],794.7(A')[775.2]
	29.8(A)[0.1],42.9(A)[0.1],81.0(A)[6.0],115.7(A)[10.5],161.1(A)[5.0],207.9(A)[0.9],
Ga_5N_3	229.6(A)[29.7],244.5(A)[0.6],267.3(A)[5.5],515.6(A)[88.9],561.8(A)[57.8],
	657.6(A)[7.6],689.4(A)[23.6],771.0(A)[630.0],800.5(A)[103.1]
	25.2(A)[0.3],69.7(A)[0.7],139.9(A)[0.7],169.8(A)[2.7],190.6(A)[37.3],
Ga_6N_3	198.9(A)[2.6],220.2(A)[21.2],281.4(A)[1.1],307.1(A)[0.9],435.0(A)[13.4],460.9(A)[10.9],
	504.0(A)[60.0],744.6(A)[944.1],877.2(A)[228.6],900.6(A)[219.0]
	33.1(A)[0.1],38.2(A)[0.2],59.1(A)[3.8],59.7(A)[0.2],111.0(A)[1.68],157.3(A)[1.9],
Ga_7N_3	225.5(A)[14.4],227.1(A)(53.6),251.9(A)[9.9],312.6(A)[0.3],313.6(A)[133.9],341.2(A)[17.9],
	477.6(A)[405.9],498.0(A)[126.6],699.5(A)[850.3],784.8(A)[147.1],862.4(A)[129.5]
	28.5(A)[1.5],34.5(A)[0.1],92.2(A)[7.4],148.4(A)[47.0],169.3(A)[7.9],172.2(A)[0.3],
Ga_8N_3	172.7(A)[1.6],177.0(A)[1.6],221.4(A)[1.2],228.7(A)[11.1],229.3(A)[9.6],305.7(A)[0.7],
	302.0(A)[0.8],659.1(A)[400.1],487.7(A)[393.5],654.5(A)[356.4],476.0(A)[378.6],769.4(A)[0.1]

39 卷

振动强度I最大的振动频率可以反映最强吸收 峰的位置,从表3中得到 GaN₃ 与 Ga₂N₃ 振动强度 I最大的振动频率分别为 2 280.53 cm⁻¹(SG)与 2 246.7 cm⁻¹(A'),由于当 n≤5 时,N-N 键起决定性 作用,而后面的较大团簇结构中没有 N-N 键,其振 动频率中也没有这个频率,所以我们推测这两个振 动频率为-双键(一N=N)的伸缩振动吸收峰.而 Ga₃N₃的振动强度 I 最大的振动频率为 1215.9 (A),从图 1(3a)中可以看出,基态结构中没有双键 (-N=N),有一个不饱和双键与一个单键(N-N), 所以推测这个振动频率是-不饱和双键(-N=N)的 伸缩振动吸收峰.同时从表中还可以得到 Ga₄N₃, Ga₅N₃,Ga₆N₃,Ga₇N₃,Ga₈N₃振动强度 I 最大的振 动频率分别为 794.7(A'),771.0(A),744.6(A), 699.5(A),659.1(A),由于随着原子数的增多,Ga-N 键更容易成键,所以我们推测这五个振动频率为 Ga-N 键的伸缩振动吸收峰.

六方晶系纤锌矿结构 GaN 的光学声子模式包括 A_1 模式、 E_1 模式和 E_2 模式.峰值分别为 A_1 (TO)=533 cm⁻¹、 E_1 (TO)=559 cm⁻¹、 A_1 (LO)= 736 cm⁻¹、 E_1 (LO)=743 cm⁻¹、 E_2 =569 cm⁻¹或 E_2 =145 cm⁻¹.把计算结果与上述峰值数据作对 比,发现计算的结果与其相近,说明计算得到的团簇 Ga-N 键与六方晶系纤锌矿结构 GaN 的 Ga-N 键接 近,也进一步表明计算结果的正确性及所用理论的 合理性.同时在实验室制备氮化镓薄膜的过程中,都 可能产生先驱中间化合物一团簇,因此本文计算的 振动频率可以作为未来在实验上表征相应分子的 依据.

2.3 基态结构的稳定性

为了进一步验证 $Ga_nN_3(n=1\sim8)$ 团簇基态的 稳定性,我们给出了 $Ga_nN_3(n=1\sim8)$ 团簇的分裂 能^[16],相邻团簇的能量二次差分值.所用公式分 别为

D(n, n-1) = E(n-1) + E(Ga) - E(n) $\Delta^{2} E_{n} = E_{(Ga_{n+1}N_{3})} + E_{(Ga_{n-1}N_{3})} - 2E_{(Ga_{n}N_{3})}$

定义 D(n,n-1)为团簇的分裂能, $\Delta^2 E_n$ 为团簇 能量二次差分值,各能量数值均为该团簇基态构型 的总能量.在团簇物理学中,寻找团簇的幻数主要借 助的工具就是团簇基态结构的分裂能和能量二次差 分值.能量二次差分值 $\Delta^2 E_n$ 是一个体现团簇相对 稳定性的物理量.对 $Ga_n N_3$ ($n=1 \sim 8$)团簇来说, $\Delta^2 E_n$ 的值越大,则团簇稳定性越高.因此,从图 2 中 可以看出,n=4、7 时,团簇的分裂能和能量二次差 分值均获得局域的最大值,从而说明 n=4、7 是可靠 的幻数,最终得出 $Ga_4 N_3$, $Ga_7 N_3$ 最稳定.

图 2 Ga_nN₃ (n=1~8) 团簇的分裂能和能量二次差分 Fig. 2 The fragmentation energy and the second difference in energy of Ga_nN₃ (n=1~8) cluster

为了分析材料特性,计算了 Ga_nN₃(n=1~8)系 列团簇的 HOMO 能级、LUMO 能级、能隙差 E_{gap}以 及平均极化率〈α〉.其中能隙差 E_{gap}的大小反映了电 子从占据轨道向未占据轨道发生跃迁的能力,在一 定的程度上代表分子参与化学反应的能力.从图 3 中可得,随着团簇尺寸的增加,能隙差 E_{gap}的大小大 体呈现奇偶交替变化规律.从平均极化率〈α〉随 Ga 原子数的变化规律曲线可以看出,随着 Ga 原子数 的增加,平均极化率逐渐增强.

3 结论

本文用密度泛函理论对 Ga,N₃(n=1~8)团簇 的几何构型、体系的成键特性、热力学性质、光电子 能谱及稳定性进行了研究,最终得到了 Ga,N₃(n= 1~8)团簇的基态和亚稳态结构.结果表明:

1)当 n≤5 时,其基态几何结构为平面结构,在
 稳定结构中,都存在着 N₂ 和 N₃ 单元(除 Ga₅N₃);

当 *n*≥6 时,其基态几何结构为立体结构,并且存在 大量 Ga-N 键,说明随着原子数的增多,Ga-N 键更 容易成键.

2)通过分析光电子能谱得到了振动强度 I 最大的振动频率,以及 Ga-N 键和 N=N 双键的伸缩振动吸收峰值,氮化镓团簇中 Ga-N 键的振动频率与 六方晶系纤锌矿结构 GaN 的光学声子峰值相近, N=N 双键的伸缩振动吸收峰在 2 200 cm⁻¹附近.

3)通过对比分裂能、二阶能量差分曲线图发现, Ga_nN₃($n=1\sim8$)团簇在 n=4,7 具有较高的稳定 性,即 Ga₄N₃,Ga₇N₃的基态结构最稳定.从能隙图 上可得,随着团簇尺寸的增加,能隙差 E_{gap} 的大小大 体呈现奇偶交替变化规律,并且其间隔为 1.652~ 4.164 eV 之间,表明上述团簇具有半导体的性质.

致谢 感谢西安交通大学多学科材料研究中心 提供计算方面的帮助.

参考文献

- [1] FAN Long, HAO Yue, FENG Qian, et al. The relation of yellow band luminescence of undoped GaN epitaxial grown on AlN/6H-SiC(0001) substrate with thin film defects[J]. Acta Photonica Sinica, 2003, 32(8):977-980.
 范隆,郝跃,冯倩,等. SiC/AlN 上外延 GaN 薄膜的黄带发光与 晶体缺陷的关系[J]. 光子学报, 2003, 32(8):977-980.
- [2] GARDNER N F, MULLER G O, SHEN Y C. Blue-emitting InGaN-GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200A/cm² [J]. Appl Phys Lett, 2007, 91(24):243506.
- [3] DEB P,KIM H,QIN Y X,*et al*. GaN nanorod schottky and p-n junction diodes[J]. *Nano Lett*, 2006,**6**(12):2893-2898.
- [4] PENG Dong-sheng, FENG Yu-chun, LIU Wen, et al. Effects of surface treatment for sapphire on GaN optical propertities[J]. Acta Photonica Sinica, 2008, 37(6):1161-1164.
 彭冬生,冯玉春,刘文,等. 蓝宝石表面处理对氮化镓光学性质的影响[J]. 光子学报, 2008, 37(6):1161-1164.
- [5] HELAOUI M, GHANNOUCHI F M. Optimizing losses in distributed multiharmonic matching networks applied to the design of an RF GaN power amplifier with higher than 80% power-added efficiency[J]. *IEEE*, 2009, 57(2):314-322.
- [6] LI Yan, ZHENG Rui-sheng, FENG Yu-chun, et al. Influence of disordered photonic crystal on light extraction of a kind of light-emitting diode model[J]. Acta Photonica Sinica, 2006, 35

(6):902-905.

李岩,郑瑞生,冯玉春,等.一种发光二极管模型中无序光子晶体对光输出影响的研究(英文)[J].光子学报,2006,**35**(6): 902-905.

- [7] COSTALES A, KANDALAM A K, PANDEV R. Theoretical study of neutral and anionic group III nitride clusters: $M_n N_n$ (M = Al, Ga, and In; $n = 4 \sim 6$)[J]. J Phys Chem B, 2003, 107 (19):4508-4514.
- [8] COSTALES A, PANDEV R. Density functional calculations of small anionic clusters of group III Nitrides[J]. J Phys Chem A, 2003, 107(1):191-197.
- [9] SONG B, CAO P L. Geometric and electronic structures of small GaN clusters[J]. *Phys Lett A*, 2004, **328**(4):364-374.
- [10] KANDALAM A K, RANDEY P, BLANCO M A, et al. First principles study of polyatomic clusters of AlN, GaN, and InN.
 1. Structure, stability, vibrations, and ion-ization[J]. J Phys Chem B, 2000, 104(18):4361 4367.
- [11] KANDALAM A K,BLANCO M A,PANDEY R. Theoretical study of structural and vibrational properties of Al₃N₃, Ga₃N₃ and In₃N₃[J]. J Phys Chem B, 2001, 105(26): 6080-6084.
- [12] KANDALAM A K,BLANCO M A,PANDEY R. Theoretical study of $Al_n N_n$, $Ga_n N_n$ and $In_n N_n$ ($n = 4 \sim 6$) cluster [J]. J Phys Chem B,2002, **106**(8):1945-1953.
- [13] LI En-ling, WANG Xue-wen, CHEN Guang-Can, et al. Study of structure and stability of Ga_nN_m anions[J]. Acta Phys Sin, 2006, 55(5):2249-2256.
 李恩玲,王雪雯,陈贵灿,等. Ga_nN_m 阴离子团簇的结构及稳定性的研究[J]. 物理学报, 2006, 55(5):2249-2256.
- LI En-ling, CHEN Gui-can, WANG Xue-wen, et al. First principles study on structures and photoelectron spectroscopy about Ga_nP_m anions[J]. J At Mol phys, 2006, 23 (2): 279-282.

李恩玲,陈贵灿,王雪文,等.第一性原理对 Ga,Pm 阴离子团 簇结构及其光电子能谱的研究(英文)[J].原子与分子物理学报,2006,23(2):279-282.

- [15] GE Gui-xian, LEI Xue-ling, YAN Yu-li, et al. First principles study on structure and electronic properties of small Ga_nN_n(n = 2~5) clusters[J]. J At Mol Phys, 2008, 25(1):143-148.
 葛桂贤,雷雪玲,闫玉丽,等.第一性原理对 Ga_nN_n(n=2~5) 小团簇的结构及电子性质的研究[J].原子与分子物理学报, 2008, 25(1):143-148.
- [16] YAO Jian-gang, WANG Xian-wei, WANG Yuan-xu, et al. First principles study of the NiMg_n(n=1~12) clusters[J]. Chin Phys Soc, 2008, 57(7):4166-4173. 姚建刚,王献伟,王渊旭,等.NiMg_n(n=1~12)团簇的第一性 原理研究[J].物理学报,2008, 57(7):4166-4173.

Structures and Photoelectron Energy Spectroscopy about Ga_nN_3 ($n=1\sim 8$) Clusters

LI En-ling¹, ZHU Hong¹, LI Li-sha², QI Wei¹, LI Xiao-ping¹, WANG Jin-yu¹ (1 School of Science, Xi'an University of Technology, Xi'an 710048, China) (2 Department of Physics, Northwestern University, Xi'an 710068, China)

Abstract: The B3LYP method of Density Functional Theory (DFT) is used to optimize geometry configuration of Ga_nN_3 ($n=1 \sim 8$) clusters at the level of 6-31G *. The bond properties, photoelectron energy spectroscopy and stability are calculated and analyzed, and the most stable structures are obtained finally. The results show that there is a transition from planar to spacial structures at n=5 with increasing cluster size, and N-N bonds are more stable. The strong Ga-N bonds play an important role in Ga_nN_3 ($n=6 \sim 8$). Among the Ga_nN_3 ($n=1 \sim 8$) clusters, Ga_4N_3 , Ga_7N_3 are more stable; Average polarizabilities are increased as the *n* value increases. The vibrational frequencies of Ga-N bond are close to the peaks of the phonon vibration modes of the wurtzite structure GaN by analyzed the photoelectron energy spectroscopy. Key words: Clusters; Density Functional Theory (DFT); Geometry structures; Photoelectron energy spectroscopy; Stability

LI En-ling was born in 1965. She chieved the Ph. D. degree from Xi'an Jiaotong University. Now she is a professor at Xi'an University of Technology, and her research interests focus on photoelectronic integration and photoelectron materials.