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Abstract. With differential optical absorption spectroscopy (DOAS), trace gases in the

atmosphere can be measured and its concentrations can be retrieved based on least squares

regression.

Under complicated atmospheric conditions,

there are outliers and the error

distribution is not normal in DOAS differential spectra, which resulted in misestimate of least-

squares regression.

The retrieving model of robust regression based on M-estimator was

developed to evaluate concentrations of trace gases in DOAS system. The evaluation procedure

and effects using M-estimator robust regression were studied. The normal spectrum and abnormal

spectrum were retrieved basing on two methods. Experimental results show that reliability is

improved with method of robust regression in DOAS evaluation.
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0 Introduction

Differential optical absorption spectroscopy
(DOAS) has become a widely used method to

research  and measure trace gases in the

atmosphere. DOAS uses the narrow molecular
absorption bands to identify trace gases and their
differential absorption intensity to retrieve trace

concentration based on least

regression‘!’.

gases squares
DOAS is the integration of optical, mechanical

and electronic technologies. The trace gas

measurement is continuously and automatically

performed in DOAS system'>*'. The outliers and
heteroscedasticity  will appear in  DOAS
measurement under complicated atmospheric

environment. The retrieving model of robust
regression based on M-estimator was developed to

process the absorbing spectra in DOAS evaluation.

1 Experiment

Differential optical absorption spectroscopy

permits sensitive, specific, and temporally well-
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resolved in situ measurements. Fig. 1 shows the
typical experimental setup of a DOAS system to

measure tropospheric concentrations.

DOAS

transmitting  and

trace-gas

setup consists of light source, the

receiving telescope, a
spectrograph, retro-reflector arrays, an optical

fiber, a detector and the computer.

Light path L Retro-reflector

Telescope and atmosphere
Xe Lamp Aﬁ-’

Sampling
DSP L.

Spectrograph [} § Detector |y, Computer

Fig. 1 Schematic view of a DOAS system
1.1 Basic principle
Lambert-Beer' s law is the basic principle
behind the DOAS techniquet
IO=1,(Dexp (—Ls(A)c) (D
Where I, (1) and I ()) denote the initial emitted
light intensity and

received light intensity,

respectively. A denotes wavelength and the
absorption cross section ¢ (A), ¢ denotes the
average concentration of trace gases at optical path
L,

The basic idea of DOAS is the separation of
the cross section ¢(1) =4:(1) +0, (1) in a part g; (1)
that represents narrow spectral structures and
5, (1) representing the broad spectral features"™*.
The Rayleigh extinction and Mie extinction by

aerosols is described by ez (1) and ey (1) » and B())
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is the noise depending on I(Q).
IO =1, Wexp ( L[(—0,() —0,Q))e,—
ex (D —ew W IL)+ BQO 2

The logarithm of the ratio of the measured
I(}) and I, (1) is expressed by

{1, D/ T = S (0, () —o1()e,—

er (W) —en (WD JL+B" Q) (3)
A polynomial of a specified degree is used to
So the differential

filter the ¢slow’ wvariation.

optical density is defined as

InCl,/D=Soel+B Q) 5

Then the concentration of trace gases is
retrieved by fitting reference absorption spectra to
the differential optical density”®, which used a
stochastic model based on least-squares regression.

The stochastic model may be written in matrix

notation as

U=V+r (5
Z=Vk+y 6
where Ujj :L_/GJ/(AI)C_/.WIV Vio =1, 1=1,2,32" 7,

z;=In(I,/D), V and I" are n X (m—+1) matrices, Z
and » are n X 1 vectors and & is a (m + 1) X
lvector. Assuming that { 7 } is not normally
distributed andE () =0, Var () = w:] It is
straightforward to get an estimate of the coefficient
vector k in this model if we assume that I" =0. /Ae is

the value of estimation, the model is as follow
Z=Vk+e %)

"
Least squares estimation minimizes > e?. The

i=1

fitting coefficients based on least squares will be
wrong if {7} is not normally distributed, in
particular there is heteroscedastic.

For temporal fluctuation of Xe lamp, the
resolution of detector and the interference caused
by different absorptive species existing under
complicated atmospheric environment, the outliers
and heteroscedasticity appear in DOAS system.
Therefore, robust regression based on M-estimator
was developed to retrieve the concentrations of

trace gases in DOAS system.

The M-estimator minimizes the objective
functiont™

Zp((),)zzlo(zlfv,jk) (8)

i=1 i=1

Here, the function p gives the contribution of each

residual to the objective function. Assume (k) =

o/ (&), k should meet with; > e(7)v, =0. Based
i=1

¥ 4 38 %
on simulated experiments in DOAS system,
objective function ¢ is the Andrews function
|sin (k/¢c) k| <cm
(k - >0 9
14 |0 k| >cn

Define the weight function w(e) =g¢(e) /e, and
let w; =w(e;), then the estimating equations may

be written as

_i}lw,(z,'*v;k)u;zo (10)
Solving the estimating equations is a weighted least
squares problem, minimizing > w?e?. The
weights, however, depend upon the residuals, the
residuals depend upon the estimated coefficients
and estimated coefficients depend upon the
weights®' . An iterative solution is therefore

required

1) Select initial estimates &° =/Ae, such as the
least squares estimates.

2)At each iteration ¢, calculate residuals e!'™"
and associated weights w!{" " =w[e! " ] from the

previous iteration.

e=e ' A W'V =w[e ] (1D

3) Solve for new weight least squares
estimates.

kl :I:VTW(I ])V] TVTW(I l)Z (12)

Step 2 and 3 are repeated until the estimated
coefficients converge. The asymptotic covariance
matrix of £ is (13)

E(¢")
[E(go/)jz

Using >J [50 (e;)]* to estimate E ( 502 ), and
[X¢ (e)/n]" to estimate [ E(¢')]* produces the
estimated asymptotic covariance matrix.

Using 2 [ ¢ (¢,)]* to estimate E (¢’), and
[Zgﬁl(ei)/njz to estimate [E(gol)jz produces the

estimated asymptotic covariance matrix.

v(k) = (X'X)H) ! (13)

1.2 Example

In order to exemplify the results of presented
procedures based on the M-estimator, the two
types of spectra, which attained by DOAS system.,
were retrieved. The one was normal spectrum
(Fig. 2(a)), the other was abnormal spectrum
(Fig. 2 (b)). After they were corrected offset,
dark current and a polynomial of a specified degree

‘slow’ wvariation, the

was used to filter the
differential optical densities were obtained and
shown in Fig. 3,in which (a) and (b) were normal
and abnormal spectra, respectively. The abnormal

values were still existence in analyzing spectra.
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Fig. 3 Differential optical density
Fig. 4 was f{itting examples of abnormal
spectra, which was overlay of all of trace gases

absorption. Least squares estimation approached

the abnormal points in order to minimize Z ¢?. The

i=1
weights for robust estimator decline when |e| >k,
In the
differential absorption, we saw the absorptions of
O;, NO,, SO,, HCHO and Lamp. The reference
spectra of O;, NO,, SO,, HCHO and Lamp were
shown in Fig. 5. Wavelength 308. 5 nm~322. 6 nm
was used to retrieved O; since it had stronger
absorption feathers, 332. 3~359. 3 nm for NO,,
299.6~306. 6 nm for SO,, 313.07~325.9 nm for

HCHO. Lamp reference was used to remove its

therefore {fitting results were accurate.

— Absorption spectrum

Differential optical density

~0.04 - Fitted spectrum based on roust
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300 320 340 360
Wavelength/nm
(b)Robust regression

Fig.4 Fitting examples of abnormal spectra based

on least square and robust regressions
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Fig. 5 Differential absorption spectrum

influence on evaluation of trace gases.

2 Analysis

In order to compare robust regression based
on M-estimator with the least squares method, the
simulated measurement spectra were composed of
SO,, HCHO, NO,, O,, lamp and residuals. The
fitted results and relative errors were shown in
Tab. 1 and Tab. 2. When there were not abnormal
values in measuring spectra, both of the least
squares fitting and robust regression based on M-
estimator can give accurate values, and relative
errors were lower (seen in Tab. 1). In case

abnormal values appeared (seen in Fig. 3(b)), the
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roust regression based on M-estimator attained
right values and relative errors were below 10%.
But least squares method gave the wrong values.
HCHO error reached up 14%, especially O; error
was 100% (seen Tab. 2). For O, cross section is

L2 O, concentration

the smallest of all other gases
was biggest in measuring spectra. The influence on
the trace gases of the smaller cross section is
significant. Therefore, there are outliers, and the
distribution of random errors is not Gaussian in
DOAS measurement, robust regression based on
M-estimator must be applied to process DOAS
spectral.

Table 1 Results of normal spectra fitting and relative errors

Least squares Robust
Sample . .
regression regression
cell values fitting relative fitting relative
Molecules

(ppb) values  errors  values errors
SO, 28 27.5  1.8%  27.4 1.8%
NO, 45 45.7  1.5%  44.8 0.4%
HCHO 15 15.5  3.3%  14.3  5.3%
0, 80 84.2  5.3%  83.8 4.8%
Table 2 Results of abnormal spectra fitting and relative errors

Least squares Robust

Sample . .

regression regression
cell values fitting relative fitting relative
Molecules

(ppb) values  errors  values errors
SO, 28 29.1 3.9% 27.3  2.5%
NO, 45 48.2  7.1%  42.5 5.6%
HCHO 15 17.1 14% 4.0 6.7%
0, 80 -0.08  100%  73.1 8.6%

3 Conclusions

The presented robust regression based on M-
estimator for DOAS spectra analysis shows that it
is necessary to use the new method if there are
outliners in the measuring spectra, and errors
distribution is not abnormal in DOAS system. Test

results show that reliability is improved with

method of robust regression, especially for the

trace gases of the smaller cross section. In

principle, the new methods are not confined to

DOAS and may also appropriate for application to

other spectroscopic techniques such as tuneable

diode laser spectroscopy and Fourier transform
infrared spectroscopy.
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