

基于长脉冲热激励的红外序列图像处理方法

魏延杰^{1,2*},肖瑶¹

「石家庄铁道大学工程力学系,河北 石家庄 050043;

²石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室,河北 石家庄 050043

摘要 针对长脉冲热波激励后采集到的红外原始热图中缺陷对比度低、缺陷边缘模糊等问题,本文提出了一种基于傅里 叶变换、频域相位积分和保边滤波的红外序列图像处理方法,该算法首先对冷却时间段内采集到的红外原始热图进行消 背景处理,再利用傅里叶变换将试样表面的红外辐射信息转化为相位信息,频域相位积分处理可以将不同频率下缺陷的 相位信息整合至一幅相位积分图中,最后通过保边滤波器及自适应伽马变换对积分图像进行增强和量化。该算法克服 了传统方法需要人工从多张频率或成分图中甄别出最优检测结果的缺点,并且可以消除加热不均匀的影响,改善缺陷的 可视化。试验结果从定性和定量两个角度验证评估了该算法的有效性,并讨论了采集参数的影响。

关键词 长脉冲热像法; 傅里叶变换; 相位增强; 复合材料 中图分类号 O436 文献标志码 A

DOI: 10.3788/AOS231805

1 引 言

随着材料科学和化学工艺技术的进步,复合材料 得到了快速的发展,并广泛应用于航天航空、能源动 力、船舶制造和汽车工业中。但是复合材料在制造和 使用的过程中易产生脱粘、鼓泡、气孔、凹坑、裂纹、分 层、夹杂等缺陷,这些缺陷严重影响复合材料的强度和 刚度,并可能导致结构功能完全失效,故可靠的无损检 测方法是评价复合材料质量的必要手段^[1]。红外热成 像无损检测技术是以红外辐射原理为基础,运用红外 辐射分析方法对材料、设备等进行检测。其核心是利 用不同形式的激励热源对物体表面进行加载,再根据 物体表面的红外辐射信息即可推导出材料的均匀性和 材料内部的结构,进而对其内部是否存在缺陷作出判 断^[2]。这种技术涉及信号调制与处理等相关领域,具 有高效、非接触、全场检测等优点,为复合材料的无损 检测提供了一种缺陷可视化手段^[34]。

红外热成像无损检测技术根据激励热波的不同 形式可分为脉冲热像法、锁相热像法、阶跃热波检测 技术和长脉冲热波检测技术^[5]。其中红外长脉冲热波 检测技术(LPT)是利用卤素灯对物体表面进行数秒 至数十秒的激励,并在冷却阶段采集大量红外热图以 定性或定量地分析缺陷特性,由于使用成本较低且便 于携带的卤素灯作为激励源,故此种检测方法非常适 合工业环境下的现场检测^[6]。但由于器件设备本身及 其成像机理的影响,使其所采集的红外原始图像仍不 够理想,性能没有得到充分体现[7]。大多表现为采集 到的红外热像图中缺陷与无缺陷处的对比度较低、图 像噪声较大、辐射分布不均匀、缺陷边缘模糊不清等, 无法正常进行缺陷定位及尺寸测量[8-9]。因此对缺陷 图像进行去噪、增强缺陷细节信息、提高缺陷边缘的 对比度已成为国内外学者的研究重点。Bu等^[10]开发 了一种基于长脉冲激励的金属基复合材料缺陷识别 方法,并采用多种信号处理算法和图像分割、边缘提 取算法分析采集到的红外序列热图,结果表明,在给 定测试参数相同的情况下,三种图像后处理算法均能 够有效地提高信噪比,便于脱粘缺陷的定量评估。 Wang 等^[11-12]利用多种序列图像处理算法对长脉冲激 励和阶跃激励中采集到的红外热图进行处理,结果表 明,绝对热对比度(ATC)法、热信号重构(TSR)法和 主成分分析(PCA)法均有助于检测径深比较小的 缺陷。

但目前现有的算法仍存在受热波横向扩散影响 较大、检测灵敏度低等缺点^[13],所以需要进一步开 展红外热波特征提取算法的研究,结合图像处理技 术,降低外界环境因素的影响,提高复合材料检测 结果的准确度^[14]。为此,本文提出了一种基于离散 傅里叶变换(DFT)的序列图像处理算法以提高缺 陷的可视化程度,该算法首先对采集到的红外原始 热图进行背景均匀化处理,再利用傅里叶变换和频

收稿日期: 2023-11-19; 修回日期: 2024-01-15; 录用日期: 2024-01-25; 网络首发日期: 2024-02-20

基金项目:国家自然科学基金(12072184, 12002222)

通信作者: *weiyanjie@stdu.edu.cn

研究论文

域相位积分得到包含不同深度缺陷信息的积分图 像,最后通过保边滤波器和自适应伽马变换对积分 图像进行增强和量化,图像分割和边缘提取算法也 被用来处理增强后的检测结果。试验将所提出算 法应用至玻璃纤维复合材料(GFRP)层压板的检测 中,并讨论了不同序列图像处理算法及采集参数设 置的影响。

2 方法及原理

2.1 红外序列图像预处理

在卤素灯加热数秒至数十秒之后,红外热像仪开始采集物体表面红外辐射随时间的变化并以三维数据 矩阵的形式存储至计算机中,采集过程如图1所示。 在采集红外序列图像的过程中需要注意采集参数的确 定,序列图像采集所涉及的参数包括采样总时间S、采

第 44 卷 第 8 期/2024 年 4 月/光学学报

集图像数*N*和红外热像仪的采样频率*f*_s,三个参数之间的关系如下:

$$S = \frac{N}{f_{\rm s}}_{\circ} \tag{1}$$

只要确定其中的两个参数,另外一个参数随之确定,理 论上采样频率应足够高,以捕捉试样表面热辐射的连 续变化。采样总时间也应足够长以记录下不同深度的 缺陷从出现到消失的完整过程,最大化地提高缺陷的 信噪比,尤其是出现时间较晚、深度较大的缺陷。然而 由式(1)可知,当S和f,增大时,N也随之增大,则后续 处理的离散数据点增多,需要更多的计算机内存和计 算时间开销,这在实际情况中是不能接受的,所以需要 合理调配S与f,的最优值使缺陷的信噪比最高,根据后 续4.2节的讨论,可确定本文试验的最优采样总时间S 为30 s,采样频率f,为30 Hz。

图 1 长脉冲热波激励后红外探测器采集到的红外图像序列及其DTF Fig. 1 Acquisition and DFT of infrared image sequence by infrared detector after long pulse thermal wave excitation

在采集原始红外序列图像之后,考虑到初始热辐射分布的不均匀性,首先要对其进行消背景处理。加 热前需要设置一张参考背景图像,为了降低空间噪 声,参考背景图像为热激励前0.67 s至0 s之间采集的 20帧原始红外热图的平均值^[15],再从加热后的红外图 像序列中减去该参考背景图像,以获得由长脉冲激励 引起的物体表面实际红外辐射上升值ΔT:

$$E_{i,j} = \frac{1}{20} \sum_{k=1}^{20} T'_{i,j}(k), \qquad (2)$$

$$\Delta T_{i,j}(t) = T_{i,j}(t) - E_{i,j},$$
(3)

式中:*E_{i,j}*为坐标(*i*,*j*)处像素的背景参考值;*T*′为加热 前采集的红外辐射数据;*T*为加热后冷却阶段采集的 红外辐射数据;*t*为冷却时间。利用式(2)和式(3)对序 列热图中每一帧进行处理可有效降低非均匀加热的影 响,有助于后续热信号重构算法的处理与分析,减去背 景图像后还可以进一步采用对数多项式拟合的方法去 除红外辐射在时间维度上的噪声,实现时空双方向去 噪,对数多项式拟合算法将经过消背景处理后红外辐 射数据的每一个像素点的离散信号用下式所示的对数 多项式拟合成平滑曲线^[12]:

$$\ln \left[\Delta T_{i,j}(t) \right] = a_0 + a_1 \ln(t) + a_2 \ln^2(t) + \dots + a_n \ln^H(t), \qquad (4)$$

式中,H为拟合阶数。拟合后的曲线保留了原始热辐射信号的特征,同时可以滤除高频噪声,再利用式(5) 将拟合后的曲线从对数域转化到时间域,即可以得到 重构的热辐射信号,每个像素点随冷却时间变化的重 构热辐射信号仅与*a*₀,*a*₁,*a*₂,…,*a*_H这*H*+1个系数相 关,大大缩减了计算机内存消耗,提高了计算效率,本 文设置*H*为6^[12]。

$$\Delta T_{i,j}(t) = \exp\left\{\sum_{n=0}^{H} a_n \left[\operatorname{In}(t) \right]^n \right\}_{\circ}$$
(5)

2.2 相位提取与频域积分

在红外长脉冲热波成像无损检测中,施加的矩形脉冲热波不同于锁相技术中单一频率的调制热波,其频谱范围非常广,可以利用傅里叶变换算法提取热波 信号的谐波分量信息。由于各个分量中相位数据的信 噪比高于幅值数据和原始的红外辐射数据,特别有利 于检测较深的缺陷,因此本文采用一维离散傅里叶变 换逐像素地处理红外序列图像的每个像素点上的红外 辐射量随时间维度的变化数据,将采集到的红外辐射 信号从时域转化到频域,如图1所示,进而得到红外相 位数据^[16]:

$$\phi_{i,j}(f_k) = \tan^{-1} \frac{\sum_{n=1}^{N} \Delta T_{i,j}(t_n) \cos\left(2\pi kn/N\right)}{\sum_{n=1}^{N} \Delta T_{i,j}(t_n) \sin\left(2\pi kn/N\right)},$$

$$n = 1, 2, \dots, N, k = 1, 2, \dots, N,$$
 (6)

$$t_n = (n-1)\Delta t, \quad \Delta t = \frac{1}{f_s}, \tag{7}$$

式中: $\phi(f_k)$ 是傅里叶变换后第k个频率分量的相位信息;N为红外序列图像总帧数; $\Delta T(t_n)$ 为 t_n 时刻采集的由式(2)~(5)消背景处理及对数多项式拟合后的红外辐射数据; Δt 是红外探测器的采集间隔; f_s 是红外探测器的采集帧率。傅里叶变换后谐波分量的频率及满足Shannon采样定理的最大频率为

$$f_k = (k-1)\Delta f, \quad \Delta f = \frac{1}{\Delta t} \frac{1}{N-1} = \frac{f_s}{N-1}, \quad (8)$$

$$f_{\max} = \frac{f_s}{2} \left[1 - \frac{1}{(N-1)} \right], \tag{9}$$

式中:f_k是第 k个谐波分量所对应的频率,构成了频率 域的横坐标;每个频率分量的横坐标之间间隔为 Δf; 最大频率的横坐标值为f_{max}。值得注意的是,研究表明 不同深度缺陷与无缺陷区域的相位差曲线具有不同的 峰值频率^[17]。当缺陷较深时,相位差峰值较小,且对应 的峰值频率较低,这是由于热波中较低频率的谐波分 量扩散速度较慢,强度衰减也较慢,所以其热波扩散能 力强,适合检测深度大的缺陷,这也意味着仅用单一频 率的相位图像很难确定所有不同深度的缺陷。为了解 决上述问题,本文提出了一种整合频谱范围内所有相 位信息的改进方法,具体实施方案如下;

首先需要确定无缺陷区域的参考相位数据,对于 内部缺陷尺寸较大的试样,在处理前可手动框选一个 无缺陷区域A_{sound},并以此区域中所有像素点相位数据 的均值作为参考相位数据,对各个频率分量下的相位 图像重复进行此步骤,最终得到一组一维离散的参考 相位数据。当缺陷面积相对于检测物体表面面积较小 时,可以直接选择整个检测表面作为A_{sound},并计算内部 所有像素点相位数据的均值作为参考相位数据^[18]。此 时面积较小的缺陷区域中的像素点数据对整体均值计 算结果的影响较小,基本可以忽略不计。鉴于实际检 测表面作为A_{sound},参照以下公式计算参考相位数据:

$$\boldsymbol{\phi}_{\text{ref}}(f_k) = \frac{1}{A} \sum_{(i,j) \in A_{\text{sumd}}} \boldsymbol{\phi}_{i,j}(f_k), \qquad (10)$$

式中: $A 为 A_{sound}$ 的像素面积; $\phi_{i,j}(f_k)$ 为通过式(3)计算 得到的第k个频率分量对应的相位图中像素(i,j)的相 位数据; $\phi_{ref}(f_k)$ 为计算得到的第k个频率分量的参考 相位数据,可用于后续相位差的计算。

为了克服傅里叶变换分析法中单帧相位图无法检 测到不同深度缺陷的缺点,可以利用相位差曲线在频 率域中积分的方法整合所有频率分量下的相位信息。 以图 2 中的平板为例,假设缺陷 1 和缺陷 2 均有 200 个 计算点,无缺陷区域有 4000 个计算点,将所有 4400 个 点的相位数据代入式(6)以计算参考区域相位数据 $\phi_{ref}(k)$,得到参考相位数据后,需要计算每个像素点 (包括缺陷区域与无缺陷区域)的相位值与参考相位数 据之差 $\Delta \phi$:

$$\Delta \phi_{i,j}(f_k) = \phi_{i,j}(f_k) - \phi_{\text{ref}}(f_k)_{\circ}$$
(11)

图 3(a)为图 2 中点 a、b、c 的相位曲线及所有 4400 个点的平均值(参考相位曲线),由图 3(a)可知,参考 相位数据是介于缺陷与无缺陷区域之间的,略小于 无缺陷区域的相位且远远大于缺陷区域的相位。 图 3(b)为利用式(11)计算的相位差数据,从图中可以 观察到,缺陷1和缺陷 2 的相位差曲线积分面积要远远 大于无缺陷区域的面积,且缺陷处积分的符号为负,无 缺陷处积分后的符号为正。故利用相位差数据的积分 能够有效改善缺陷的对比度,并进一步滤除相位数据 中的噪声,提高积分图像的信噪比,最终重构出一幅包 含不同深度缺陷信息的相位积分图像。从而避免了人 为选择最佳相位图的不确定性,提高了检测效率,相位 积分图像中每个像素点的值可通过下式计算得到:

$$I_{i,j} = \int_{0}^{f_{max}} \Delta \phi_{i,j} \, \mathrm{d}f = \sum_{f_k=0}^{f_k=f_{max}} \Delta \phi_{i,j}(f_k)_{\circ}$$
(12)

2.3 基于保边滤波器的图像增强与量化

由于相位积分图像中的数据精度较高,需要量化为8位灰度图像以显示在计算机等设备上,但传统的线性拉伸处理会自动忽略掉很多图像细节和缺陷信息^[19]。针对上述问题,本文提出了一种红外相位图像的细节增强算法。该方法包括图像分离和增强两个步骤,然后采用局部自适应伽马算法进行校正。

首先将所要处理的相位积分图像拉伸扩展至M 位数据(一般为14或16数据)以获取较高的图像精度, 再采用引导滤波的处理方法从相位图像中提取缺陷的 细节边缘。利用导向图像可以增强缺陷的边缘,提高

图 3 仿真试验结果。(a)各点的相位数据及参考相位数据; (b)各点的相位差曲线与对应的积分区域

Fig. 3 Simulation test results. (a) Phase data and reference phase data at corresponding points; (b) curve of phase difference at each point and corresponding integrated regions

缺陷在相位图像中的对比度。导向图像通常被认为是 输入相位图像I本身。因此,傅里叶变换得到的相位 图像可以被分离为两部分,即背景图像B和细节图像 D。图像B和D的定义如下:

$$B = a \cdot I + b, \qquad (13)$$

$$D = I - B, \tag{14}$$

式中:B和D分别为背景层图像与细节层图像;a和b 是导向滤波的线性系数图像。将I分离成D与B之后, 下一步是对细节层D的增强处理,因为引导滤波中的 线性系数矩阵a在无缺陷区域处接近于零而在缺陷边 缘处较大,能很好地反映出图像中的缺陷分布,所以可 利用a作为掩模与细节层图像D点乘,进而实现对细 节层中缺陷及其边缘的增强,如下式所示:

$$D' = a \cdot D, \tag{15}$$

式中,D'为增强之后的细节图像。再将D'与B相加即 可得到缺陷增强后的相位积分图像O:

$$O = D' + B_{\circ} \tag{16}$$

最后利用自适应伽马校正算法对增强后的相位积分图像O的对比度和亮度进行调整并最终量化为8位灰度 图像,以便于可视化。长脉冲红外序列图像的处理流 程如图4所示。

第 44 卷 第 8 期/2024 年 4 月/光学学报

图 4 长脉冲红外成像序列图像处理流程 Fig. 4 Flow chart of image sequence processing method for long pulse thermography

3 试验及结果

3.1 检测试样及试验设备

本文的检测试样为一块尺寸为200mm×150mm× 6 mm的GFRP层压板,通过精密机加工在层压板上加 工了总共20个直径和深度变化的圆形平底盲孔模拟 分层缺陷,缺陷的直径分别为5、10、15、20 mm,缺陷距 试样表面的距离分别为0.5、1.0、1.5、2.0、2.5 mm。缺 陷分布情况如图5所示。检测前在试样表面均匀涂 抹黑色的哑光漆以提高表面的能量吸收率和辐射 率15。本文试验使用的检测设备为实验室自行研发 的红外无损检测系统,如图6所示。系统主要由红外 热像仪、热辐射加载系统、同步控制器、信号采集与分 析单元组成。其核心装置为一台 IR-HiNet-H 非制冷 长波红外热像仪,镜头焦距为13mm,口径为F1.2,工 作距离在0.5~3 m之间,图像分辨率为640×512。试 验中将系统放置在检测试样正前方1000 mm处,长脉 冲热加载时间为10s,采集频率设为30Hz,采集时间 为 30 s。

3.2 检测结果

长脉冲激励后,红外检测系统在不同时刻采集的

图 5 GFRP 试样。(a) GFRP 面板缺陷分布示意图;(b)试样的正反面 Fig. 5 GFRP sample. (a) Schematic of defect distribution in GFRP panel; (b) front and rear surfaces of sample

图 6 自主研发的红外无损检测系统 Fig. 6 Self-developed infrared non-destructive testing system

原始红外热图如图7所示。不同深度的缺陷在不同时 间的对比度有明显的差异。如图7(a)所示,在冷却初 期,由于热传导时间较短,仅能观察到试样右边较浅 的三列缺陷。随着冷却时间的增长,较深的缺陷也逐 渐被探测到,但横向热传导的现象也越来越明显,较 小尺寸的缺陷受到的影响更为严重,极大地降低了尺 寸为5mm缺陷的对比度,如图7(b)所示。最后试样 表面会达到热平衡的状态,缺陷与无缺陷区域红外辐 射逐渐趋于一致,难以辨识出缺陷位置,如图7(c) 所示。

图 7 不同时刻采集的原始红外热图。(a) 5 s;(b) 15 s;(c) 25 s Fig. 7 Raw thermal images captured at different times. (a) 5 s; (b) 15 s; (c) 25 s

红外无损检测会采集成百甚至上千张红外热图数据,人工探查出所有的缺陷信息十分困难,故本文提出的红外序列图像处理技术在实际检测中具有重要的意

义,试验在30s的时间内采集900张红外热图并利用 第2节提出的方法进行处理。图8(a)是GFRP试样中 缺陷与无缺陷处的相位曲线,缺陷区域为直径为20mm、

图 8 GFRP 试样的试验检测结果。(a) 相位曲线;(b) 相位差曲线 Fig. 8 Test results of GFRP sample. (a) Phase curves; (b) phase difference curves

深度为0.5~2.5 mm的5个缺陷中心,无缺陷区域为试 样左下角5×5方框内所有的像素点,参考相位曲线是 GFRP试样上所有像素点的平均值。由图可知,试验 结果与图3的理论分析结果一致,无缺陷处的相位积 分面积较小,且符号为正,缺陷处的相位积分面积较 大,符号为负,这样可以最大化地整合不同深度缺陷的 相位信息,扩大缺陷与无缺陷区域的差异,提高缺陷的 对比度。

图 9 为不同频率下的相位图像,这些图像在利用 傅里叶变换提取出相位值后即进行 2.3 节所述的图像 增强与量化,并没有经过频域上的相位积分处理,在 0.019 Hz 的相位图中能够观察到最深为 2.5 mm 的缺 陷,但右下角的两个较浅的缺陷对比度很低,缺陷边缘 十分模糊,而在 0.039 Hz 和 0.078 Hz 的相位图像中,深 度为2.5 mm和2.0 mm的缺陷逐渐消失,但右下角深 度为0.5 mm和1.0 mm的缺陷清晰可见,这些结果验 证了仅用单一频率的相位图很难确定所有不同深度的 缺陷这一理论。为了解决上述问题,试验利用2.2节 所述的相位提取与频域积分,如图9(d)所示,从图中 可以清楚地观察到所有20个不同深度和尺寸的缺陷, 且缺陷边缘清晰可见,这有利于后续的图像分割和边 缘提取处理。对图9(d)中的相位积分图像进行K均 值聚类和Sobel算子处理的结果如图10所示,缺陷边 缘信噪比高、连续且十分清晰,可用于缺陷的定量尺寸 估计。估计方法为提取边缘图像中每个缺陷水平和垂 直方向的最大像素距离并作均值,再根据像素与尺寸 之间的比例关系换算为缺陷直径的测量值。表1显示 了深度为1.5 mm的4个缺陷的直径测量结果,测量误

图 9 不同频率的相位图。(a) 0.019 Hz;(b) 0.039 Hz;(c) 0.078 Hz;(d)相位积分图 Fig. 9 Phase images at different frequencies. (a) 0.019 Hz; (b) 0.039 Hz; (c) 0.078 Hz; (d) phase integrated image

图 10 缺陷尺寸的测量图像。(a)图像分割;(b)边缘提取

Fig. 10 Images for size measurement of defects. (a) Image segmentation; (b) edge extraction

	表1	缺陷尺寸测量结果
Table 1	Mea	surement results of defect size

Defect	Measured /mm	Designed /mm	Error / %
1	5.2	5	4.0
2	9.9	10	1.0
3	15.2	15	1.3
4	20.5	20	2.2
			Average is 2.2%

差的平均值约为2.2%,最大误差仅为4%,这表明本 文提出的算法能够有效准确地识别缺陷边缘。

4 分析与讨论

4.1 不同序列图像处理方法的比较

本文采用ATC、TSR和PCA等几种传统的热信 号处理算法对采集时间为30s、采集频率为30Hz的红 外图像序列进行处理并与所提出的方法相比较以验证 其有效性。ATC法的处理结果如图11(a)所示,深度 分别为0.5、1.0、1.5 mm的缺陷比较容易被观察到,但 2.0 mm 和 2.5 mm 深度的缺陷对比度极低,缺陷边缘 非常模糊,严重影响缺陷尺寸的定量测量。图11(b) 为TSR法的处理结果,与ATC法相比,深度为2.0mm 的缺陷更加清晰,除了最左侧的一列深度为2.5 mm的 缺陷外,剩余的缺陷均可以被检测到,但尺寸较小的缺 陷仍存在边缘模糊的问题。PCA法的第三主成分如 图 11(c)所示,虽然所有缺陷均能够被识别,但中间的 两列缺陷存在伪边缘和光晕的问题。采用本文算法处 理后的结果如图11(d)所示,该方法能够改善缺陷的 对比度,有效地抑制背景噪声,提高缺陷边缘的清晰 度。4种方法的检测图像中10mm直径缺陷与无缺陷 区域灰度差绝对值的水平轮廓曲线如图12(a)所示, 5个缺陷的灰度差绝对值均在图 9(d)中达到最大,即

图11 不同算法的处理结果。(a) ATC;(b) TSR;(c) PCA;(d)本文算法

研究论文

第 44 卷 第 8 期/2024 年 4 月/光学学报

使是深度为2.5 mm、尺寸为5 mm的缺陷也能够获得较高的对比度,这表明该方法能够有效准确地识别缺陷及其边缘。

为了定量评价不同热信号处理算法,需要对各检测 图像的信噪比(SNR)进行分析,信噪比的计算公式^[19]为

 $\left|S_{\mathrm{defect}}-S_{\mathrm{sound}}
ight|$

式中:S_{defect}和S_{sound}分别为缺陷区域与无缺陷区域的 灰度平均值; σ_{sound}是无缺陷区域灰度值的标准差。 图 12(b)为不同热信号处理算法中所有缺陷 R_{sN}的 平均值,可以发现长脉冲激励配合本文提出的后 处理方法可以得到最高的 R_{sN},且兼具设备便携和 成本低的优点,更适合应用于实际的工业无损 检测。

EV S 10 5 0 ATC TSR PCA proposed method

图 12 不同算法的定量评估。(a)缺陷水平方向的灰度差绝对值;(b)信噪比

Fig. 12 Quantitative evaluation of different algorithms. (a) Absolute grayscale difference profiles in horizontal line of defects; (b) SNR

4.2 红外序列图像最优采集参数的确定

根据式(1)可知,红外序列图像的采集参数主要 包括采样总时间S及采样频率f_s,首先需要确定最小 的采样总时间S以保证能覆盖所有缺陷的出现时间, 图 13(a)为深度不同的5个缺陷表面温度差随时间的 变化关系,随着缺陷深度的增加,缺陷与无缺陷处的 温差峰值也逐渐减小导致较深的缺陷信噪比较低, 且较深缺陷的最大温差峰值出现的时刻较晚,所以 总的采样时间S至少应涵盖最深缺陷最大温差峰值 出现的时刻,故本文设置采集时间为30 s。在确定了 参数S之后,即考虑采样频率f_s的选取,如图 13(b)所 示,缺陷处的信噪比在采样频率增加到 30 Hz 时趋于 稳定,即使继续增大采样频率,缺陷信噪比也不会提 高。所以在检测时,首先要设置采样总时间 S 的范 围,保证最大深度缺陷的检测要求,然后根据检测试 样的热性质选择合理的采集帧率。图 14 是不同采样 频率下的检测结果,可以发现,在 30 Hz 的检测图像 中,所有的 20 个缺陷都清晰可见,但在较低采样频率 的检测图像中,深度较大的缺陷边缘模糊,对比度较 低。所以对于GFRP试样,由于其热传导系数较低,为 了兼顾计算效率和检测效果,采样频率设置为 30 Hz 即可。

图 13 缺陷与无缺陷区域的试验结果。(a)温度差随时间的变化;(b)信噪比随采样频率的变化 Fig. 13 Test results of defective and sound regions. (a) Variation of temperature difference with time; (b) variation of *R*_{sN} with sampling

frequency

5 结 论

本文提出了一种新颖的热信号处理技术,该技术 包括傅里叶相位分析、频域相位积分和保边滤波处理, 适用于处理长脉冲热波检测采集到的红外序列热图。 试验使用自主研发的红外检测系统对GFRP层压板中 不同尺寸与深度的平底孔缺陷进行检测,处理得到的 缺陷对比度高,边缘清晰,可以精确地测量缺陷尺寸,

图 14 不同采样频率下的检测结果。(a) 1 Hz;(b) 5 Hz;(c) 10 Hz;(d) 30 Hz Fig. 14 Detection results at different sampling frequencies. (a) 1 Hz; (b) 5 Hz; (c) 10 Hz; (d) 30 Hz

平均误差仅为2.2%,这些结果表明,本文提出的方法 对热传导性能较差的复合材料缺陷损伤识别效果显 著。试验还讨论了不同序列图像处理算法及采集参数 的影响,确定了最佳的采集时间和采集频率,以平衡计 算效率和检测效果。

参考文献

- 喻星星,曹艳,朱颖,等.碳纤维复合材料常见缺陷涡流检测 试验分析[J].无损探伤,2020,44(4):24-27.
 Yu X X, Cao Y, Zhu Y, et al. Eddy current testing analysis of common defects in carbon fiber composites[J]. Nondestructive Testing Technology, 2020, 44(4): 24-27.
- [2] Wang M L, Gao B, Wu T L, et al. Defect depth retrieval method based on nonlinear transformation for pulsed thermographic inspection[J]. International Journal of Thermal Sciences, 2020, 149: 106196.
- [3] 聂磊,刘江林,张鸣,等.基于主动红外激励的硅通孔内部多 缺陷分类与定位[J/OL].激光与光电子学进展:1-15[2024-01-03]. http://kns.cnki.net/kcms/detail/31.1690.TN.20230920. 1827.082.html.

Nie L, Liu J L, Zhang M, et al. Multi-defect classification and localization of through-silicon vias based on active infrared excitation[J/OL]. Laser & Optoelectronics Progress: 1-15[2024-01-03]. http://kns.cnki.net/kcms/detail/31.1690.TN.20230920. 1827.082.html.

- [4] 卜迟武,刘涛,李锐,等.光伏电池缺陷红外热成像检测与图像序列处理[J].光学学报,2022,42(7):0711002.
 Bu C W, Liu T, Li R, et al. Infrared thermography detection and images sequence processing for defects in photovoltaic cells
 [J]. Acta Optica Sinica, 2022, 42(7):0711002.
- [5] He Y Z, Deng B Y, Wang H J, et al. Infrared machine vision and infrared thermography with deep learning: a review[J]. Infrared Physics & Technology, 2021, 116: 103754.
- [6] 王从嗣,陶宁,张群喜,等.方波激励红外热像法在墓室壁画 上的检测研究[J].光学学报,2021,41(16):1611002.
 Wang C S, Tao N, Zhang Q X, et al. Nondestructive detection

of murals in tombs by square-heating thermography[J]. Acta Optica Sinica, 2021, 41(16): 1611002.

- [7] 唐玉俊,周晓萱,倪歆玥,等.红外探测灵敏度自适应优化方法研究[J].中国激光,2022,49(21):2110001.
 Tang Y J, Zhou X X, Ni X Y, et al. Research on adaptive optimization method for infrared detection sensitivity[J]. Chinese Journal of Lasers, 2022, 49(21):2110001.
- [8] de Oliveira B C F, Nienheysen P, Baldo C R, et al. Improved impact damage characterisation in CFRP samples using the fusion of optical lock-in thermography and optical square-pulse shearography images[J]. NDT & E International, 2020, 111: 102215.
- [9] 郝柏桥,范玉刚,宋执环.基于深度迁移学习的脉冲涡流热成 像裂纹缺陷检测[J].光学学报,2023,43(4):0415002.
 Hao B Q, Fan Y G, Song Z H. Deep transfer learning-based pulsed eddy current thermography for crack defect detection[J]. Acta Optica Sinica, 2023, 43(4):0415002.
- [10] Bu C W, Sun Z H, Tang Q J, et al. Thermography sequence processing and defect edge identification of TBC structure debonding defects detection using long-pulsed infrared wave nondestructive testing technology[J]. Russian Journal of Nondestructive Testing, 2019, 55(1): 80-87.
- [11] Wang Z J, Zhu J Z, Tian G Y, et al. Comparative analysis of eddy current pulsed thermography and long pulse thermography for damage detection in metals and composites[J]. NDT & E International, 2019, 107: 102155.
- [12] Wang Z J, Tian G Y, Meo M, et al. Image processing based quantitative damage evaluation in composites with long pulse thermography[J]. NDT & E International, 2018, 99: 93-104.
- [13] Zhu J G, Mao Z Z, Wu D L, et al. Progress and trends in nondestructive testing for thermal barrier coatings based on infrared thermography: a review[J]. Journal of Nondestructive Evaluation, 2022, 41(3): 49.
- [14] 卜迟武,赵博,刘涛,等. CFRP/Al蜂窝结构缺陷巴克编码热 波检测及匹配滤波[J]. 红外与激光工程,2021,50(10): 20210050.

Bu C W, Zhao B, Liu T, et al. Barker coded thermal wave detection and matched filtering for defects in CFRP/Al honeycomb structure[J]. Infrared and Laser Engineering, 2021,

50(10): 20210050.

- [15] Zhang Y Z, Zhang K Z, Wang W J, et al. Effect of background subtraction on defect detection in thermographic signal reconstruction coefficient images[J]. Journal of Nondestructive Evaluation, 2022, 41(2): 44.
- [16] Ishikawa M, Ogasawara N, Yamada H, et al. Reducing inspection time of pulse phase thermography by using phase data at higher frequency range[J]. Infrared Physics & Technology, 2018, 92: 53-59.
- [17] Ibarra-Castanedo C, Avdelidis N P, Grinzato E G, et al.

第 44 卷 第 8 期/2024 年 4 月/光学学报

Quantitative inspection of non-planar composite specimens by pulsed phase thermography[J]. Quantitative InfraRed Thermography Journal, 2006, 3(1): 25-40.

- [18] Poelman G, Hedayatrasa S, Segers J, et al. Adaptive spectral band integration in flash thermography: enhanced defect detectability and quantification in composites[J]. Composites Part B: Engineering, 2020, 202: 108305.
- [19] Wei Y J, Su Z L, Mao S S, et al. An infrared defect sizing method based on enhanced phase images[J]. Sensors, 2020, 20 (13): 3626.

Processing Method of Infrared Sequence Images Based on Long Pulse Thermal Excitation

Wei Yanjie^{1,2*}, Xiao Yao¹

¹Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei, China; ²State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei, China

Abstract

Objective Defects such as debonding, bulges, pores, pits, delaminations, and inclusions in composites are common during manufacture and service. They not only reduce strength and stiffness but also fail structures. Reliable non-destructive testing methods are required to assess the quality of composite materials. Long pulse thermography (LPT) is a full-field, non-contact, and non-destructive testing method based on image visualization that provides an efficient way to assess the defect quality. However, the defect visibility of LPT can be compromised by various factors such as experimental conditions, heat intensity, inherent material properties, and noise. The LPT effectiveness is constrained by fuzzy edges and low-contrast defects. Consequently, enhancing defect visibility via signal processing methods is crucial for inspecting defects in composite materials using LPT. Thus, we propose an infrared image sequence processing method that utilizes Fourier transform, phase integration, and edge-preserving filters to enhance the quality of LPT detection results for composite materials. Meanwhile, a few latent variables that better reflect the defect information inside the specimen are proposed by transforming the temperature information of the surface during the cooling period. These variables can eliminate the influence of uneven heating and improve defect visualization. This method enables clear delineation of defect edges and accurate measurement of defect sizes. Our approach and findings are expected to contribute to qualitative and quantitative measurements in the non-destructive testing of composite structures.

Methods We propose a novel infrared image sequence processing algorithm to enhance the defect visibility of LPT. This approach comprises four steps of background uniformity processing, phase extraction, frequency domain integration, and image quantization. Initially, thermal data is acquired after a square pulse heating period and subsequently pre-processed to eliminate the inhomogeneity of the initial temperature distribution. Subsequently, phase Fourier analysis is conducted to extract the phase information related to defects of varying depths and sizes. Next, the phase difference between defect and sound regions is pixel-wise integrated along frequencies to integrate defect information into a new image. Lastly, the integrated phase image transforms into an 8-bit visual image by applying edge-preserving filters and local adaptive Gamma correction.

Results and Discussions To evaluate the effectiveness of the proposed method, we conduct an experiment using a glass fiber reinforced polymer (GFRP) panel and compare it with various thermal signal processing methods. The efficacy of the proposed method is substantiated via qualitative and quantitative analysis, with the influence of acquisition parameters additionally discussed. Figure 7 illustrates the raw infrared images captured in different instances. The defects with deep depths have low contrast and fuzzy edges. The phase images processed by background uniformity and Fourier transform are depicted in Figs. 9(a)-9(c). The visibility of defects in these phase images is improved compared to the raw images. However, the deeper defects are more obvious in the phase images at low frequencies and vice versa. It is challenging to identify all defects at various depths using only phase images at a single frequency. To this end, the frequency domain

integration method is utilized to amalgamate the phase information of all defects, and subsequently, the resulting phase integration image is enhanced and quantified. The processed results are presented in Fig. 9(d), where all 20 defects of various depths and sizes are distinguishable. The edges of the defects are visible, which facilitates subsequent image segmentation and edge extraction processing for accurate defect size measurement. Additionally, three traditional thermal signal processing algorithms of absolute thermal contrast, thermographic signal reconstruction, and principal component analysis are also compared. Figures 11 and 12 highlight the superiority of the proposed method from qualitative and quantitative perspectives respectively. Analyzing the variations in temperature difference over time and the signal-to-noise ratio across various sampling frequencies (Fig. 13) allows for determining the optimal acquisition time of 30 seconds and a sampling frequency of 30 Hz, striking a balance between computational efficiency and detection effectiveness.

Conclusions We employ a homemade infrared non-destructive testing system utilizing LPT for the experiments. A method for processing infrared image sequences based on Fourier transform, phase integration, and edge-preserving filters is developed to mitigate the influence of uneven heating and enhance the contrast of defects. The inspection results of the GFRP panel demonstrate that phase signals can offer more information about defects, and integrating phase information across all frequencies significantly enhances detection performance compared to a fixed-frequency signal phase image. Meanwhile, the accurate defect size measurement in segmented images further validates the reliability of the proposed method. An important advantage of this method is that fewer parameters should be determined, specifically the optimum sampling time and frame rate. Other data dimensionality reduction techniques such as ATC, TSR, or PCA can yield multiple principal component images requiring human visual interpretation. In contrast, the proposed method generates a single optimal detection image, which significantly amplifies the detection automation. Finally, our study provides guidance for practical non-destructive inspection of composite structures.

Key words long pulse thermography; Fourier transform; phase enhancement; composite materials