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Abstract

Objective

The measurement of high frequency and micro-vibration plays a critical role in multiple fields, such as

nondestructive testing, micro machinery, materials science, biomedicine, and aerospace. Optical measurement methods

with high accuracy, non-contact, and other advantages are widely applied to avoid device interference and damage.

Compared with out-of-plane vibration measurement, in-plane vibration measurement is difficult because the measured light

cannot be incident parallel to the in-plane vibration direction. Speckle interferometry is the most commonly used method

for in-plane displacement measurement. However, owing to the high-speed performance limitation of the charge-coupled

device (CCD) in the imaging process, its measurement frequency cannot be increased. In addition, the measured vibration

surface is typically rough, leading to low measurement sensitivity for traditional laser interferometry. The dynamic

holographic vibration measurement method based on a photorefractive crystal has attracted increasing attention due to

advantages such as wavefront matching and low-frequency cutoff. In this study, a dynamic holographic in-plane vibration

measurement system based on bismuth silicate (BSO) crystal is examined, which measures high frequency and small in-
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plane vibration in real time. It has strong anti-interference ability and is suitable for rough surfaces.

Methods The laser beam emitted from the source is split into a reference beam and a signal beam. The signal beam
carrying in-plane vibration information passes through a scatterer driven by shear piezoelectric ceramics. Both beams
interfere in a BSO crystal. According to the photorefractive properties of BSO crystal, a refractive index grating is formed
on the crystal which is equivalent to the interference recording in holography. The grating automatically meets the Bragg
condition, and the reference beam generates Bragg diffracted beam in real time, which is equivalent to the diffraction
reproduction in holography. The diffracted beam of the reference beam passing through the grating interferes with the
transmitted beam of the signal beam. Vibration information can be obtained by receiving the interference signal and
demodulating it through the detector. The relationship between the intensity of the diffraction signal and the light intensity
ratio of the two interference beams is measured to obtain a better interference signal. A commercial out-of-plane laser
vibrometer PDV 100 (Polytec, Germany) is used for comparison, and the feasibility of the proposed system for measuring
in-plane micro-vibration is verified. The capability of the proposed system to measure high-frequency vibration is also
verified by demodulating the loading frequency beyond the measurement upper limit of PDV100. To this end, the

demodulation frequency is obtained directly by the spectrum analyzer.

Results and Discussions First, the relationship between the intensity of the diffraction signal and the light intensity ratio
of the two interference beams is measured (Fig. 4). The highest diffraction efficiency is established, which obtains a better
interference signal. PDV100 and the proposed system are placed in a mutually vertical structure relative to the measured
object, and the out-of-plane vibration measured by PDV100 is the in-plane vibration measured by the proposed system.
When the measured object is driven by sinusoidal voltage with the same frequency and different voltage (1 kHz, 80—
200 V), the measurement results of the proposed system demonstrate a highly linear relationship with those of PDV 100
(Fig. 6). When the measured object is driven by sinusoidal signals with the same voltage and different frequencies (200 V,
500 Hz-5 kHz), the time domain signal measurement results of both measurement systems are consistent, which verifies
the feasibility of the proposed system (Fig. 7). According to the relevant calibration of the PDV 100 and the conversion
relationship between amplitude and vibration velocity, the amplitude is 0. 11 pm when the vibration frequency is 5 kHz. In
addition, as the upper measurement limit of the PDV 100 vibrometer is 20 kHz, the in-plane vibration of 20-240 kHz is
also measured. The frequency domain signals are obtained by the spectrometer (Fig. 8), and the measurement results are

consistent with the signal frequency loaded on the shear piezoelectric ceramics.

Conclusions In contrast to out-of-plane vibration which is straightforward to measure, this paper proposes a dynamic
holographic measurement system for in-plane vibration. The signal beam is modulated by the in-plane vibration of a
scatterer after passing through it. The signal and reference beams form dynamic holography in a BSO crystal. Interference
between the transmitted scattered beam and the diffraction beam of the reference beam occurs, and the in-plane vibration
signal is obtained by demodulation of the interference signal. Photorefractive properties of the BSO crystal enable it to
record dynamic holography and diffract in real time. As a result, the automatic wavefront match of the two interference
beams can be achieved, which is suitable for measuring the vibration of rough surfaces. Combined with the low-frequency
cutoff of BSO crystals, higher measurement sensitivity can be obtained and it is more suitable for high-frequency vibration
measurement with small amplitude. The feasibility of the proposed system is verified by the comparison with the
measurement results of a commercial vibrometer. With the scatterer as the object, the submicron in-plane vibration with a

frequency of 240 kHz can be measured.

Key words measurement; dynamic holography; in-plane vibration; bismuth silicate (BSO) crystal; vibration measurement
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