

基于变形镜的多波长艾里光束生成与传播特性

韩洪民,范引鹏,杨叶城,钟贵明,马剑强" 宁波大学机械工程与力学学院,浙江 宁波 315211

摘要 为了获得高质量无色差的多波长相干艾里光束,提出了一种基于变形镜的多波长艾里光束生成方法,并通 过仿真与实验研究了多波长艾里光束的传播特性。实验结果表明,变形镜可以有效消除色差对光束的影响,生成 高质量的多波长艾里光束;且传播中主瓣不会发生色差分离和衍射。此外,生成的多波长艾里光束主瓣被不透明 障碍物遮挡后,经过一段距离传播后可自行恢复。本研究为多波长艾里光束在多光谱成像和光学微操作等领域中 的应用提供了一定的基础。

关键词 自适应光学; 艾里光束; 变形镜; 多波长; 光束传播 中图分类号 O436 **文献标志码** A

doi: 10.3788/AOS202141.1626001

Generation and Propagation Characteristics of Multi-Wavelength Airy Beams Based on Deformable Mirrors

Han Hongmin, Fan Yinpeng, Yang Yecheng, Zhong Guiming, Ma Jianqiang Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, Zhejiang 315211, China

Abstract In order to obtain high-quality multi-wavelength coherent Airy beams without chromatic aberration, we propose a method for generating multi-wavelength Airy beams based on deformable mirrors, and through simulation and experiment, the generation and propagation characteristics of multi-wavelength Airy beams are studied. The experimental results show that the deformable mirrors can effectively eliminate the influence of chromatic aberration on the beam and generate a high-quality multi-wavelength Airy beam, and the main lobe does not undergo chromatic aberration separation and diffraction during propagation. In addition, the main lobe of the generated multi-wavelength Airy beam can heal itself after propagating for a certain distance when it is blocked by an opaque obstacle. This research provides a basis for the potential applications of multi-wavelength Airy beams in the fields of multispectral imaging and optical micromanipulation.

Key words adaptive optics; Airy beam; deformable mirrors; multi-wavelength; beam propagation OCIS codes 220.1080; 070.7345; 350.5500

1 引 言

艾里光束(Airy beam)具有独特的无衍射、自愈 和弯曲传播特性^[1-3],引起了人们的广泛关注,在空 间光通信^[4]、光学微粒操作^[5]、弯曲光波导^[6]及高分 辨生物显微成像^[7-8]等领域有着重要应用。现有研 究主要集中在单波长相干艾里光束,多波长(宽带) 艾里光束在多光谱成像和光学微操作等领域中具有 潜在的应用价值^[9-10],近年来也得到了人们的广泛 研究。Valdmann等^[11-12]采用透射式立方相位片生 成了多波长艾里光束,但透射式元件存在的色差使 生成艾里光束的偏转系数与波长有关,导致艾里光 束的主瓣发散。之后,Valdmann等^[13]采用反射式 立方相位片解决了色散问题,保证了多波长艾里光

基金项目:国家自然科学基金(51805280)、浙江省省属高校基本科研业务费(SJLY2020002)、浙江省航空发动机极端制 造技术研究重点实验室开放基金

通信作者:*majianqiang@nbu.edu.cn

收稿日期: 2020-12-18; 修回日期: 2021-02-22; 录用日期: 2021-03-18

研究论文

束的主瓣在传播过程中不发散,但相位片生成的艾 里光束无法调节,不利于实际应用。Morris等^[14]使 用空间光调制器生成可调的多波长艾里光束,但无 法解决色差问题。Mansour等^[15]通过组合柱面镜 系统产生可调的多波长艾里光束,但柱面镜系统的 调节能力有限,且装配精度要求高,限制了其应用。

变形镜(DM)作为自适应光学系统的波前校正器,是一种具有可控反射镜面的自适应光学元件,不 仅可以校正光学系统中的像差,还可以生成高精度 的立方曲面,且反射式元件在原理上可克服不同波 长带来的色散问题,有望生成可调的多波长艾里光 束^[16]。因此,本文基于 DM 开展了多波长艾里光束 的生成研究,搭建了基于相干光源叠加的多波长艾 里光束生成系统,并通过仿真和实验研究了艾里光 束的生成与传播特性。

2 多波长艾里光束生成系统

基于 DM 的多波长艾里光束生成系统如图 1 所 示,采用 532 nm 的绿色激光(Thorlabs NJ07860)和 635 nm 的红色激光(Thorlabs HLS635)作为系统 光源。准直后的两束激光经过分光棱镜 BS1 合束, 通过两个自由度可调的反射镜 M 使绿色激光与红 色激光平行,合束后的激光到达 DM 镜面进行立方 相位调制。实验采用 32 单元单压电 DM,其有效孔 径为 15 mm^[17]。DM 产生的立方波前(光程差)为 镜面物理变形量的 2 倍,可表示为^[16]

$$G(x, y) = k(x^{3} + y^{3}), \qquad (1)$$

式中,k 为与波长无关的幅值系数,(x, y)为归一化 坐标。相应的立方相位则需乘以 $2\pi/\lambda$,其中, λ 为 波长。虽然 DM 的镜面变形不取决于入射光束的 波长,但其相位与波长相关。Mansour 等^[15]的研究 表明,生成艾里光束传播过程中在 x 或 y 方向上的

$$D(z) = \frac{z^2}{(12f^3k)},$$
 (2)

式中, f 为傅里叶透镜的焦距, z 为艾里光束主瓣的 传播距离。可以发现, (2)式中不包含波长项, 这表 明反射型器件生成的艾里光束偏转轨迹与波长 无关。

为适配 DM 口径与波前传感器的探测口径,先 将调制后的光束通过由透镜 L1 和透镜 L2 组成的 缩束系统进行缩束(缩束比为 0.2)。然后用分光镜 BS2 将光束分成两束,其中一束激光由波前传感器 WFS(Thorlabs WFS150-7RS)探测,所测波前形变 是镜面机械形变的 2 倍,以实时补偿光学系统的像 差并生成目标调制相位;另一束激光经过焦距为 100 mm 的透镜 L3 进行傅里叶变换,生成艾里光 束。定义焦距为艾里光束的零点位置(z=0 mm), 生成的艾里光束在不同位置处的光强分布由置于滑 轨上的彩色 CCD 相机(Basler ace-1300gc30)采集, 相机的像素尺寸为 3.75 μm。为了避免光学系统中 各元件的色散对多波长艾里光束产生的影响,系统 中的透镜均为消色差透镜。

3 多波长艾里光束的仿真

由于不同波长之间不相干,仿真多波长艾里光 束时可先根据菲涅耳衍射公式仿真出不同波长激光 经 DM 立方相位调制后生成的艾里光束,进而将不 同波长艾里光束 RGB(Red,Green,Blue)通道的强 度进行累加。根据国际照明委员会(CIE)标准色度 原则可知^[18],不同波长艾里光束 RGB 通道的强度 累加可表示为

$$R = \int_{\lambda} I(\lambda) r(\lambda) d\lambda$$

$$G = \int_{\lambda} I(\lambda) g(\lambda) d\lambda, \qquad (3)$$

$$B = \int_{\lambda} I(\lambda) b(\lambda) d\lambda$$

式中,R、G、B分别为红、绿、蓝通道的光强值, $I(\lambda)$ 为激光的光强值, $r(\lambda)$ 、 $g(\lambda)$ 、 $b(\lambda)$ 为归一化的光谱 三刺激值。系统中红色和绿色光源的强度比约为 1:0.8。绿色激光(532 nm)光谱的三刺激值比例 $r(\lambda)$: $g(\lambda)$: $b(\lambda)$ 为0.05:0.95:0,红色激光(635 nm)光 谱的三刺激值比例 $r(\lambda)$: $g(\lambda)$: $b(\lambda)$ 为1.54: -0.23:-0.31。由(3)式可计算出多波长艾里光束 RGB通道的光强值。

仿真经 DM 调制生成的绿光和红光艾里光束

研究论文

在z=0 mm 处的光强分布如图 2 所示,可以发现, 两种波长艾里光束沿水平截面的光强曲线符合艾里 函数。艾里光束的主瓣尺寸及瓣间距均随波长的增 大而增大,绿光和红光艾里光束的主瓣半峰全宽 (FWHM)分别约为 63 µm 和 66 µm。仿真得到双 波长艾里光束在不同位置的横向光强分布如 图 3(a)所示,主瓣中心的传播轨迹如图 3(b)所示。 可以发现,不同波长艾里光束相互叠加,主瓣呈黄 色,即绿光和红光的混合色。由于两种波长艾里光 束的主瓣在传播过程中的偏转轨迹一致,因此,双波 长艾里光束在传播过程中的主瓣尺寸和颜色均保持 不变,未发生颜色分离。这表明基于 DM 生成的不 同波长艾里光束的主瓣中心位置及弯曲轨迹是一致 的,不受波长影响,可生成高质量的多波长艾里光 束,而旁瓣则呈红绿相间的色散现象,原因是瓣间距 随波长的增加而增大。

Fig. 2 Intensity distributions of the simulated Airy beams with different wavelengths (simulation value).(a) Wavelength is 532 nm; (b) wavelength is 635 nm; (c) intensity curve of the cross section

4 实验结果

4.1 多波长艾里光束的生成

用图 1 中基于 DM 的多波长艾里光束生成系统 进行实验。以波前形变作为反馈,先用 DM 校正系 统中的光学像差,进而生成立方波前形变。实验生

第 41 卷 第 16 期/2021 年 8 月/光学学报

图 3 多波长艾里光束的传播过程。(a)不同位置处的 横向光强分布;(b)传播轨迹

Fig. 3 Propagation process of the multi-wavelength Airy beams. (a) Intensity distributions at different propagation positions; (b) propagation trajectory

成的立方波前形变的峰谷值为 11.56 μ m,对应的均 方根值为 2.38 μ m,均方根残余误差约为 78 nm,这 表明 DM 可以产生高精度的立方相位。实验生成 的绿光和红光艾里光束在 z=0 mm 处的光强分布 如图 4 所示,可以发现,绿光和红光艾里光束均能很 好地符合二维艾里函数分布,主瓣的 FWHM 分别 约为 64 μ m 和 68 μ m。实测双波长艾里光束在不同 传播位置的横向光强分布及其在 0~40 mm 传播范 围内的主瓣传播轨迹如图 5 所示,可以发现,艾里光 束的主瓣颜色均匀,且传播过程中主瓣未发生分离, 尺寸变化范围为 64~75 μ m,具有较好的无衍射传 播和横向自加速能力。实验结果与仿真结果一致, 这表明基于 DM 可生成高质量的多波长艾里光束。

4.2 多波长艾里光束的自愈性

为了表征生成多波长艾里光束的自愈性,用一 个不透明的障碍物遮挡主瓣,并沿光轴方向移动 CCD相机测量不同传播距离处的光强分布,结果如 图 6 所示。可以发现,随着传播距离的增加,旁瓣部 分能量逐渐重新会聚到主瓣。在传播 18 mm 后,主

Fig. 4 Intensity distributions of the Airy beams with different wavelengths (measured value).(a) Wavelength is 532 nm; (b) wavelength is 635 nm; (c) intensity curve of the cross section

Fig. 5 Propagation process of the multi-wavelength Airy beams (measured value). (a) Intensity distributions at different propagation positions; (b) propagation trajectory

瓣基本恢复,自愈后两个波长的艾里光束中心依然 重合无色散,主瓣的 FWHM 约为 64 μm。这表明 基于 DM 生成的多波长相干艾里光束与单波长艾 里光束同样具有较强的自愈性。

5 结 论

提出了一种基于 DM 的多波长艾里光束产生 方法,搭建了以两种波长激光(532 nm 和 635 nm) 为光源的多波长艾里光束生成系统,通过仿真和实 验对多波长艾里光束的生成与传播特性进行了研 究。结果表明,DM 可以有效消除色差,生成高质量 的多波长艾里光束。在传播过程中主瓣不会发生色 差分离和衍射,而旁瓣则呈现出红绿相间的色差。 此外,生成多波长艾里光束的主瓣被不透明障碍物 遮挡后,经一段距离传播后可以自恢复且主瓣未发 生色差分离,与单波长艾里光束具有相同的自愈性。 这表明本方法能克服透射式立方相位片和空间光调 制器的色散问题,保证多波长艾里光束的主瓣在传 播过程中不发散,且基于 DM 生成的艾里光束具有 可调节性,为其在多光谱成像和光学微操作等领域 中的潜在应用提供了一定的基础。

参考 文 献

- Siviloglou G A, Broky J, Dogariu A, et al. Observation of accelerating Airy beams [J]. Physical Review Letters, 2007, 99(21): 213901.
- [2] Dai C Y, Han H M, Fan Y P, et al. Generation of tunable Airy beams using deformable lens [J]. Chinese Journal of Lasers, 2020, 47(8): 0805002. 代超宜, 韩洪民, 范引鹏, 等. 基于可变形透镜的可

研究论文

第 41 卷 第 16 期/2021 年 8 月/光学学报

调艾里光束生成[J]. 中国激光, 2020, 47(8): 0805002.

- [3] Li H T, Wang X K, Zhang Y. Study and applications of terahertz special beams [J]. Chinese Journal of Lasers, 2019, 46(6): 0614007.
 李鹤婷, 王新柯, 张岩. 太赫兹特殊光束的研究与应 用[J]. 中国激光, 2019, 46(6): 0614007.
- [4] Wang M H, Yuan X H, Li J, et al. Propagation of radial partially coherent beams in anisotropic non-Kolmogorov turbulence [J]. Acta Optica Sinica, 2018, 38(3): 0306003.
 王铭淏,元秀华,李军,等. 径向部分相干光束在各 向异性非 Kolmogorov 湍流中的传输[J]. 光学学报, 2018, 38(3): 0306003.
- [5] Zhang P, Prakash J, Zhang Z, et al. Trapping and guiding microparticles with morphing autofocusing Airy beams[J]. Optics Letters, 2011, 36(15): 2883-2885.
- [6] Liang X L, Zhang Z. Curved volume waveguide induced by Airy beams in nanosuspensions with negative polarizability [J]. Laser & Optoelectronics Progress, 2018, 55(10): 101901.
 梁欣丽,张泽. Airy 光束在负极化纳米悬浊液中诱 导弯曲体波导[J]. 激光与光电子学进展, 2018, 55 (10): 101901.
- [7] Yang Z Y, Prokopas M, Nylk J, et al. A compact Airy beam light sheet microscope with a tilted cylindrical lens [J]. Biomedical Optics Express, 2014, 5(10): 3434-3442.
- [8] Piksarv P, Marti D, Le T, et al. Integrated single-and two-photon light sheet microscopy using accelerating beams[J]. Science Report, 2017, 7(1): 1435.
- [9] Li Y X, Wang C, Zhao X N, et al. Multispectral and large bandwidth achromatic imaging with a single diffractive photon sieve [J]. Optics Express, 2018,

26(16): 21141-21152.

- [10] Huang L, Guo H, Li J, et al. Optical trapping of gold nanoparticles by cylindrical vector beam [J].
 Optics Letters, 2012, 37(10): 1694-1696.
- [11] Valdmann A, Piksarv P, Valtna-Lukner H, et al. Realization of laterally nondispersing ultrabroadband Airy pulses[J]. Optics Letters, 2014, 39(7): 1877-1880.
- [12] Cai Z, Liu Y, Hu Y L, et al. Generation of colorful Airy beams and Airy imaging of letters via twophoton processed cubic phase plates[J]. Optics Letters, 2018, 43(5): 1151-1154.
- [13] Valdmann A, Piksarv P, Valtna-Lukner H, et al. White-light hyperbolic Airy beams [J]. Journal of Optics, 2018, 20(9): 095605.
- [14] Morris J E, Mazilu M, Baumgartl J, et al. Propagation characteristics of Airy beams: dependence upon spatial coherence and wavelength[J]. Optics Express, 2009, 17(15): 13236-13245.
- [15] Mansour D, Papazoglou D G. Ultra-broadband tunable continuous phase masks using optical aberrations: publisher's note[J]. Optics Letters, 2018, 43(22): 5668.
- [16] Ma J Q, Li Y, Yu Q Z, et al. Generation of highquality tunable Airy beams with an adaptive deformable mirror [J]. Optics Letters, 2018, 43 (15): 3634-3637.
- Zhu Z X, Li Y, Chen J J, et al. Development of a unimorph deformable mirror with water cooling [J].
 Optics Express, 2017, 25(24): 29916-29926.
- [18] Xue C H. Color science and computer color measurement and color matching practical technology[M]. Beijing: Chemical Industry Press, 2004: 17-21.
 薛朝华.颜色科学与计算机测色配色实用技术[M]. 北京:化学工业出版社, 2004: 17-21.