基于血红细胞特征体积模型匹配的慢速血流检测

陈铭,徐君宜,高志山,朱丹,袁群*

南京理工大学电子工程与光电技术学院, 江苏南京 210094

摘要 针对微血管中血流速度慢、血红细胞数量少的特点,采用同步移相显微干涉术实时测量血红细胞的相位,建 立血红细胞特征体积模型,对多帧相位图进行特征血红细胞匹配,以实现慢速血流检测。利用牛红细胞阿氏液制 备了流速在 0.1~1.0 mm/s内可控,内径为 100 μm 的微血管模型,搭建了基于微偏振阵列的同步移相显微干涉实 验装置,通过实验验证了所提慢速血流检测方法的可行性,血流速度的测量误差不超过±11.2%。 关键词 医用光学;慢速血流检测;特征体积模型;同步移相显微干涉 中图分类号 TN247 文献标识码 A doi: 10.3788/AOS201939.0917002

Slow Blood Flow Detection Based on Red Blood Cell Characteristic Volume Model Matching

Chen Ming, Xu Junyi, Gao Zhishan, Zhu Dan, Yuan Qun*

School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China

Abstract Simultaneous phase-shifting interferometric microscopy is proposed herein to measure the phase of red blood cells for leveraging the characteristics of slow blood flow and a small number of red blood cells in microvessels. A characteristic volume model of red blood cells is established to match characteristic red blood cells from multi-frame phase maps. Then, slow blood flow detection is realized. A Φ 100- μ m microvessel prototype with a flow rate of 0.1-1.0 mm/s is prepared using Alsever's solution of bovine red blood cell. A simultaneous phase-shifting interferometric microscopy experimental setup based on a micro-polarization array is constructed to validate the feasibility of the proposed detection method, and the measurement error of the blood flow velocity is no greater than $\pm 11.2\%$.

Key words medical optics; slow blood flow detection; characteristic volume model; simultaneous phase-shifting interferometric microscopy

OCIS codes 170.3880; 170.0180; 260.3160

1引言

微循环是微动脉与微静脉之间毛细血管中的血液循环,若微血管中血液流速减慢或形成血栓,就会使局部组织缺血、缺氧甚至坏死,引起一系列的临床症状,如血管瘤、高血压、糖尿病及诸多心脑血管疾病。因此,检测微血管中的慢速血流对疾病的诊断具有重大意义。

血流速度检测方法主要有超声成像(US)^[1]、核 磁共振(MRI)^[2]、计算机断层扫描(CT)^[3]、激光散 斑成像(LSI)^[4]、多普勒相干层析成像(DOCT)^[5] 等。US的主要方式有彩色多普勒超声、散斑追踪 超声等,在血流速度较慢的情况下,多普勒频谱容易 受到杂波的干扰,且仅能获得超声波波束方向的一 维信息^[6]。散斑追踪超声是一种矢量血流成像方 法,但受制于散斑信号较低的信噪比,其测量结果不 够准确^[7]。CT存在电离辐射,会影响人体健康^[8]。 MRI设备昂贵并且检测时间较长,不能实时测 量^[9]。LSI系统中的噪声会随着探测深度的增加而 增大,因此仅适用于样品浅层的流速检测^[10]。 DOCT使用相邻A扫描之间运动血红细胞散射引 起的多普勒频移来计算轴向速度^[11-12],受限于多普 勒效应的探测角度,无法对垂直于光束入射方向的 血流速度进行探测^[13]。

* E-mail: yuanqun@njust.edu.cn

收稿日期: 2019-03-05; 修回日期: 2019-04-04; 录用日期: 2019-05-21 基金项目: 中央高校基本科研业务专项(30917011107,30918014115-004)

一般的血管截面内通过的血红细胞数量很多, 正常的血流速度均大于1 cm/s。而微血管截面内 通过的血红细胞数量相对较少,毛细血管属于微血 管,直径一般为7~9 µm,血流速度一般为0.3~ 0.7 mm/s。针对毛细血管同一截面血红细胞数量较 少的特点,研究人员通过观测并定位相邻两帧图片 中的同一个血红细胞,就可以得到两帧图片间隔时 间内的平均血流速度。血红细胞的信息可以由强度 和相位来表征。血红细胞的强度图像可以通过传统 的显微设备观察获取,尽管通过粒子图像测速技术 对单荧光粒子进行匹配就可以得到微通道内流体的 流速[14],但受血管中环境的干扰,很难根据血红细 胞的强度信息来判别两帧图片中的细胞差异以及细 胞的移动距离。与强度信息相比,血红细胞的相位 信息更加容易判别。南京理工大学来建成课题组使 用单次离轴共焦显微干涉测量技术对血红细胞样品 进行了检测,通过对单幅干涉图像进行希尔伯特变 换得到了血红细胞的真实相位[15-16]。但该系统需要 对具有一定数量的载频条纹图像进行解包计算,属 于频域同步移相,精度比空域移相的同步移相显微 干涉低,干涉图处理时间长。墨西哥图兰辛戈理工 大学的 Toto-Arellano 等^[17-18]将同步移相显微干涉 用于离体活血红细胞的形貌检测,得到了较为准确 的血红细胞相位,该方法得到了空域上的两幅同步 移相干涉图,但需要提前测量背景相位,消除背景相 位后才能得到正确的血红细胞相位,不适用于活体 检测。同步移相显微干涉术兼具显微技术高空间分 辨率和同步移相干涉技术高时间分辨率、高探测精 度的优点,因此,通过该技术检测得到微血管中血红 细胞的相位后,再经过特征匹配就可以计算得出微 血管中较慢的血流速度,该方法在微血管造影领域 具有重要意义。

基于上述思路,本课题组搭建了基于微偏振片 阵列移相的同步移相显微干涉实验装置,并制作了 模拟微血管样品,对牛血红细胞的相位进行了实时 测量,得到空间域上的4幅移相干涉图,然后对干涉 图进行解包,得到了实时的牛血红细胞相位。此外, 本文开展了牛血红细胞特征体积模型建立、特征血 红细胞在多帧相位图中的匹配、慢速血流速度检测 等方面的工作。

2 原理与算法

2.1 测量原理

血红细胞与输送血红细胞的血浆在折射率上存

在差异,正常血红细胞的折射率在 1.395 左右,而血 浆的折射率在 1.3346 左右^[19]。当光束通过均匀介 质时,折射率的改变会导致光程差发生变化,所以血 红细胞的相位与周围介质的相位具有明显的差异。 利用同步移相显微干涉获取血红细胞的相位,将血 红细胞看作示踪粒子,依据多个血红细胞的平均相 位建立血红细胞的特征体积模型,对多帧图片进行 特征血红细胞匹配,根据相邻两帧图片的采集时间 与相邻两帧图片中特征血红细胞移动的距离,就可 以计算出短时间内血红细胞移动的平均速度。由于 血红细胞的移动速度与血流速度有关,故可以将短 时间内血红细胞移动的平均速度看作是血流的瞬时 速度。

2.2 基于血红细胞特征体积模型匹配的血流速度 检测算法

本文提出的基于血红细胞特征体积模型匹配的 血流速度检测算法流程如下:1)利用实验装置得到 微血管血红细胞同步移相干涉图;2)相位计算与解 包裹;3)用多项式拟合解包相位,从拟合残差中提取 血红细胞的相位;4)提取微血管中多个单血红细胞 的相位,建立血红细胞特征体积模型;5)对相邻干涉 图划定区域内的特征血红细胞进行搜索,记录匹配 位置;6)依据采样间隔时间与匹配位置的位移向量 计算血流的移动速度与方向。

通过搭建的同步移相显微干涉系统获取的干涉 图计算探测相位 W, W 中包含了高频的血红细胞相 位信号 W_H 与低频的血管相位信号 W_L 。由于微血 管中血红细胞的数量较少,故可以将低频血管相位 信号 W_L 看作是背景信号,而 W_H 则被淹没在背景 信号 W_L 中,所以可以将解包相位 W 近似成低频的 血管相位信号 W_L 。为了提取血红细胞的相位信 号,使用 37 项泽尼克多项式对相位 W 进行拟合,可 以得到拟合波面 W'

$$W'(x_{k}, y_{k}) = \sum_{n=1}^{N} a_{n} Z_{n}(x_{k}, y_{k}), \qquad (1)$$

式中: $W'(x_k, y_k)$ 为通过泽尼克多项式拟合而得的 波面,k=1,2,...,p,p为离散采样点数量;N为采 样点总数; $Z_n(x_k, y_k)$ 为在点 (x_k, y_k) 处的第n项 泽尼克多项式值; a_n 为泽尼克多项式系数。对于局 部区域变化较大的波面,泽尼克多项式的拟合效果 差,拟合生成的波面仅是原始波面的低频分量,即

$$W_{\rm L} \approx W',$$
 (2)

而高频分量包含在拟合残差中。因此可以提取出高频成分并将其作为血红细胞的相位 W_H:

$$W_{\rm H} = W - W_{\rm Loo} \tag{3}$$

 $W_{\rm H}$ 包含了视场内所有血红细胞的相位信息, 通过相位与高度的转化可以得到血红细胞的高度信息h,采用数值积分可以求解出血红细胞的体积。 假设血红细胞占据了N'个像素点,在第m 个像素 点处的高度等于 h_m ,像素点的边长为d,那么这个 像素点上血红细胞的体积 V_m 可以近似为

$$V_m = h_m d^2 \, . \tag{4}$$

用血红细胞相位占据 N'个像素点的体积之和来表 示血红细胞的体积 V_{RBC},即

$$V_{\rm RBC} = \sum_{m=1}^{N'} h_m d^2 \,. \tag{5}$$

由于强度信息仅反映了血红细胞在二维平面上 的分布,血红细胞的厚度信息有所缺失,而通过相 位信息得到的体积反映了血红细胞在三维空间上 的分布,所以血红细胞的体积相比于其强度信息 更适合用来搜索特征血红细胞。通过建立平均血 红细胞体积模型的方法来避免搜索到的特征区域 是无效的噪点区域,以提高特征血红细胞匹配位 置的准确度。

由于不同时刻每一个血红细胞的形貌与运动姿态都不同,所以血红细胞的体积可以作为血红细胞的特征,通过与特征体积相减得到体积残差,体积残差最小时说明此时血红细胞的体积与特征体积最为接近。当采样频率较快时,细胞在短时间内的运动姿态并不会有很大变化,下一时刻的特征细胞也可以通过同样的方法搜索到,搜索到之后通过阈值判定两次是否是同一个血红细胞。如果是同一个血红细胞,则根据采样时间间隔以及两次特征体积模板位置,就可以得出血红细胞的运动速度和运动方向,进而得出该时刻平均血流速度的大小Δν 及方向角θ,即

$$\begin{cases} \Delta \nu = \frac{\Delta x}{\Delta t} \\ \theta = \arctan \frac{y_2 - y_1}{x_2 - x_1}, \end{cases}$$
(6)

式中: (x_1, y_1) 和 (x_2, y_2) 分别为相邻图片中特征血 红细胞的位置; $\Delta x = |x_2 - x_1|, \Delta y = |y_2 - y_1|; \theta$ 为血流方向与x轴的夹角; Δt 为相邻图片采样时间 间隔。

3 实验与分析

3.1 实验装置

图1所示为用于测量慢速血流速度的同步移相

显微干涉实验系统示意图。由 He-Ne 稳频激光器 发出线偏振光,光经过扩束系统 BE,再经过半波片 HWP 得到口径为 25.4 mm 的平行光束,光束经平 面反射镜 M 折转后进入会聚透镜 L1,偏振分光棱 镜(PBS)将会聚光束分为等光强的光束 A(p光)和 光束 B(s 光), p 光和 s 光分别经过 1/4 波片 QWP1 和 QWP2 后变为左旋圆偏光和右旋圆偏光,左旋圆 偏光通过显微物镜 MO1 后经参考平面反射镜 M1 反射,再次通过 QWP1 转变为 s 光。右旋圆偏光通 过显微物镜 MO2 后经过流体样品,被反射后再次 通过 QWP2 转变为 p 光。两束光在 PBS 中再次重 合, 光束 A 和光束 B 通过 1/4 波片 QWP3 后转变 为旋向相反的圆偏光,然后经过透镜 L2 后得到叠 加在一起的两束平行光,最终光线通过相机前的光 阑 IRIS 入射至偏振相机。由于两束光的极化方向 不同,所以两束光并不会发生干涉,光束的干涉和移 相通过偏振相机靶面前耦合的微偏振片阵列来完 成。微偏振片阵列由4种偏振方向不同的线偏振片 组成,透光轴分别与x轴成 0° 、90°、180°、270°夹角, 透射圆偏光和参考圆偏光仅在这4个方向上发生干 涉,分别获得 $0,\pi/2,\pi,3\pi/2$ 的相位延迟量。根据 微偏振片排列的规律可以从原始图片中抽取出4幅 相位延迟为 π/2 的移相干涉图,最后采用计算机对 偏振相机采集到的干涉图进行后续数据处理。图1 中透镜 L1 和透镜 L2 的焦距 f 均为 400 mm。

偏振相机中微偏振片与相机靶面的像元一一对应,为了避免移相误差,要求入射光为平行光,所以 实验光路中将成像光路设计为物方远心光路,显微 物镜 MO1、MO2 与透镜 L1、L2 共焦,满足出射光 为平行光这一要求。

光源为索雷博公司的 HRS015B 型 He-Ne 稳频 激光器,激光波长为 632.8 nm;显微物镜 MO1 和 MO2 选用南京东利来公司 45 mm 金相平场消色差 50×明场显微物镜,其数值孔径(NA)为 0.55,有效 工作距为 8.2 mm,焦距为 4 mm,焦深为 0.9 μ m,物方 视场为 0.5 mm;微偏振片阵列相机选用美国 4D 公司 的 V 型偏振相机,靶面尺寸为 640 pixel×460 pixel, 像元大小为 7.4 μ m,最大帧频为 135 frame/s。

3.2 实验样品

模拟微血管样品由玻璃毛细管、折射率匹配液、 盖玻片以及牛红细胞阿氏液组成。将玻璃毛细管固 定在平面反射镜上,将盖玻片覆盖在玻璃毛细管表 面,并在毛细管中填充折射率匹配液,使用软管将玻 璃毛细管与注射泵相连,并注入设定好流量的牛红 细胞阿氏液,用来模拟生物体内的微血管。 玻璃毛细管为高硼硅酸玻璃毛细管,其内径为 100 μ m,外径为 300 μ m。注射泵采用中国申辰公 司的 SPLab01 单通道微量折射泵,其最小线速度为 5 μ m/min,精度《±0.5%,使用的注射器是容量为 1 μ L 的液相微量进样器,连接软管的内径为 300 μ m。血液样品为 6%体积分数的牛红细胞阿 氏液。

3.3 血红细胞相位的提取

使用实验装置对血流样品进行观察,调节条纹 至最少,采集移相干涉图,使用基于离散余弦变换 (DTC)的最小二乘法对相位进行展开^[20]。其中某 一帧的图像如图 2 所示。图 2 中横坐标 A 表示细 胞在水平方向的位置,纵坐标 B 表示细胞在垂直方 向的位置,后文中出现的 A、B 与此处含义相同。

使用 37 项泽尼克多项式对原始波面进行拟合, 拟合波面和波面残差如图 3 所示。

图 3 模拟微血管拟合残差的提取结果。(a)拟合波面;(b)波面残差

Fig. 3 Results of simulated microvascular fitting residual extraction. (a) Fitting wavefront; (b) wavefront residual

对残差波面中血红细胞的相位进行提取,图4 中血红细胞与图3(b)视场中央的血红细胞相对 应。通过提取泽尼克拟合残差的方法较好地消除 了血管的相位,血红细胞相位较为明显地显示在 背景中。可见,提取出较好的血红细胞相位相对 比较容易。

图 4 牛血红细胞的相位。(a)三维高度;(b)横截面高度曲线

Fig. 4 Phase of bovine red blood cell. (a) Three-dimensional height distribution; (b) cross-sectional height curve

3.4 血红细胞特征体积模型的建立

对采集到的 10 组实验干涉图序列计算相位并 解包裹,提取出每幅图中的一个血红细胞作为模板, 模板的大小由血红细胞的边界决定,根据最大的模 板确定特征体积模板的大小,其余血红细胞的模板 中心位置与最大的模板中心位置一致,小于最大模 板部分的高度都记作 0。

图 5 中给出了部分模拟微血管中血红细胞的三 维高度图像,图中横坐标 X 表示细胞在水平方向的 位置,纵坐标Y表示细胞在垂直方向的位置,单位 均为 pixel,后文中出现的 X、Y 与此处含义相同。

将血红细胞相位记作 φ ,可以得到血红细胞的 高度 h_{RBC}

$$h_{\rm RBC} = \frac{\varphi \lambda}{4\pi \left| n_{\rm B} - n_{\rm RBC} \right|} \cdot 10^{-3}, \qquad (7)$$

式中:λ 为探测光的波长;n_B 为血浆的折射率;n_{RBC} 为血红细胞的折射率。取血浆的折射率为 1.3346, 血红细胞的折射率为 1.395。

将 10 个模板中每一个像素点的值分别叠加求 平均之后得到特征模板,如图 6 所示。

图 5 部分模拟微血管中血红细胞的三维高度分布。(a) 血红细胞 I;(b) 血红细胞 II; (c) 血红细胞 III;(d) 血红细胞 IV

Fig. 5 Three-dimensional height distribution of red blood cells in partially simulated microvessels. (a) Red blood cell I; (b) red blood cell II; (c) red blood cell III; (d) red blood cell IV

3.5 血液流速计算

为了避免血红细胞在图片边缘被检测到,选定 图片中央 250 pixel×440 pixel 的范围为检测区域。 考虑到实际毛细血管血流速度正常值为 0.3~ 0.7 mm/s,检测区域的大小设置为 1.85 mm× 3.256 mm,相机的采样频率设置为 33 frame/s。对 于不同的速度区间,可以通过调节相机的采样频率 来实现检测不同的速度区间。为了避免特征体积模 板选择的过大或过小,将先前实验中检测到的微血 管中 10 个血红细胞合成的平均血红细胞体积模板 作为特征体积模板。为了避免图中没有血红细胞出 现而搜索到特征点,根据经验设定血红细胞的体积 残差阈值 Q₁ 为 1000 rad。为了避免下一幅图片搜 索因为测量误差与阈值限制搜索不到对应上一幅图 片的特征细胞,设置相邻两帧图片中血红细胞的体 积差阈值 Q₂ 为 100 rad。

控制注射泵产生不同的流速,将相机的采图 帧频设置为 33 frame/s,采集不同流速下的干涉 图。不同速度下的实验相互独立,可以避免血流 因惯性导致实际流速与注射泵推进流速不匹配 的情况。控制注射泵的流量为 0.047 µL/min,计 算得到玻璃毛细管中的血流速度为 0.1 mm/s。 图 7 是实际采集到的相邻两帧干涉图。图 8 是 经过算法提取后的血红细胞残差图,血红细胞高 度数据中的所有负值均取 0,以方便后续的数据 处理。

图 7 模拟微血管内血红细胞流速检测过程中的相邻两帧原始图片。(a) 第一帧照片;(b) 第二帧照片 Fig. 7 Adjacent two frames of original pictures in the process of detecting red blood cell flow rate in microvessels. (a) First-frame photo; (b) second-frame photo

通过之前采集的特征体积模板搜索到图 8 中红 色方框所在的区域,区域内的血红细胞在算法中被 认为是这幅图中的特征细胞,计算得出 $|\Delta h_1(X_1,Y_1) - \Delta h_2(X_2,Y_2)| = 70, \Delta h_1(X_1,Y_1)$ 为图 8 (a)中特征细胞的体积, $\Delta h_2(X_2,Y_2)$ 为 图 8(b)中特征细胞的体积,体积差满足阈值条件, 判定特征细胞有效。血红细胞移动的距离为 $\sqrt{(X_1 - X_2)^2 + (Y_1 - Y_2)^2} \approx 33.96$ 。 为避免随机相位扰动对测量结果带来的影响, 实验中又取了在检测范围内的后7帧图片,使用基 于血红细胞特征体积模型匹配的血流速度检测算法 对相邻图片进行处理,图9展示了血红细胞相位在 0.212 s内的动态移动过程。对图9中的血流速度 进行计算,表1列出了0.1 mm/s时连续7帧图片 中特征体积模板左上角顶点的匹配位置坐标 (X'_n,Y'_n) 、每两帧图片之间血红细胞运动的方位角

图 8 根据模拟微血管的波面残差提取的特征红细胞的相位。(a) 第一帧处理结果;(b) 第二帧处理结果 Fig. 8 Phase of characteristic red blood cells extracted from the wavefront residuals of simulated microvessels. (a) First-frame processing result; (b) second-frame processing result

Fig. 9 Phase change of red blood cells extracted from the wavefront residuals of adjacent 8 pictures

以及运动距离,其中 X'_n 为横向位置, Y'_n 为纵向位置,n 为不同帧图片的序号。

通过表 1 中的移动距离可以计算出每两帧图片 之间血红细胞移动的平均距离为 Δl = 37.46 pixel, 移动距离的标准差为 σ = 0.63 pixel,移动距离的最 大偏差 χ = 1.95 pixel。可见,在基于血红细胞特征 体积模型匹配的血流速度检测算法中,特征体积模 型匹配位置误差小于 2 pixel。根据平均移动距离 $\overline{\Delta l}$ 计算得出相邻 8 帧血红细胞的平均移动速度 $\overline{\Delta \nu}$ = 0.090 mm/s。

表 1 0.1 mm/s 流速下模拟微血管血流速度的实验结果 Table 1 Experimental results of blood flow velocity of simulated microvascular at flow rate of 0.1 mm/s

n	X'_n /pixel	Y'_n /pixel	Distance / pixel	Azimuth /(°)
0	33	314	0	0
1	42	278	37.11	75.96
2	51	243	37.11	75.58
3	61	207	37.36	74.48
4	69	170	37.85	77.80
5	76	132	38.64	79.56
6	87	97	36.69	72.55

对于 0.1~1.0 mm/s 的理论流速分别进行了 3 组独立实验,由于流速较快时靶面仅能采到两帧 图片,所以对所有数据均只使用两帧来计算流速。 将 3 组数据的平均值作为实际测量值来计算测量速 度与实际速度之间的偏差,数据如表2所示。

由表 2 可以看出,系统的最大误差为 11.2%, 此时的理论流速为 0.1 mm/s,实际测得的流速为 0.0888 mm/s。

上述测量误差存在的一个重要原因是血流速度 理论值本身也难以准确获取,即血流速度的设定值 并不代表其实际值。玻璃毛细管不同位置处的流速 不同(玻璃毛细管中央的流速大于管壁附近的流 速),所以细胞处于管壁附近和管中央虽然产生了相 同的位移量,但实际的流速却是不同的。同时,由于 实验设备的限制,无法直接将微量进样器与毛细管 相连,而是通过 300 μm 内径的硅胶软管相连,硅胶 软管的长度相对较长,流体与硅胶软管摩擦会产生 能量损失,也会导致实际的流速与注射泵产生的流 速不同。

	表 2 0.1~1.0 mm/s 理论流速下模拟微血管血流速度的实验结果	
Table 2	Experimental results of blood flow velocity of simulated microvascular at flow rate of 0.1-1.0 mm	ı/s

$Th_{rest}(rest) = Th_{rest}(rest) = Th_{rest}(rest)$	Measured velocity $/(mm \cdot s^{-1})$			Average velocity /	Duristics /0/	
I heoretical value / (mm•s *) =	Group 1	Group 2	Group 3	$(mm \cdot s^{-1})$	Deviation / /0	
0.1	0.0900	0.0882	0.0878	0.0888	11.2	
0.2	0.1849	0.1848	0.1802	0.1833	8.4	
0.3	0.2712	0.2768	0.2750	0.2743	8.6	
0.4	0.3628	0.3620	0.3672	0.3640	9.0	
0.5	0.4618	0.4584	0.4558	0.4587	8.2	
0.6	0.5438	0.5444	0.5446	0.5443	9.3	
0.7	0.6604	0.6548	0.6614	0.6589	5.9	
0.8	0.7382	0.7230	0.7364	0.7325	8.4	
0.9	0.8512	0.8456	0.8448	0.8472	5.9	
1.0	0.9304	0.9286	0.9380	0.9323	6.8	

4 结 论

搭建了同步移相显微干涉实验装置,对内径为 100 μm 的模拟微血管样品中牛红细胞阿氏液的流 速进行了检测,采集了同步移相干涉图,然后对干涉 图进行解包裹,建立血红细胞特征体积模型,并对多 帧相位图匹配了特征血红细胞,计算出实时血流速 度。本文使用的检测手段可以测量 0.1~1.0 mm/s 的慢速血液流速,测量误差不超过 11.2%,说明基于 血红细胞特征体积模型匹配的血流速度检测方法可 以对慢速血流速度进行检测。该研究表明了基于血 红细胞特征体积模型匹配的血流速度检测方法在微 血管慢速血流检测中具有广阔的应用前景。

参考文献

- [1] Murakawa H, Muramatsu E, Sugimoto K, et al. A dealiasing method for use with ultrasonic pulsed Doppler in measuring velocity profiles and flow rates in pipes [J]. Measurement Science and Technology, 2015, 26(8): 085301.
- [2] Bouvy W H, Geurts L J, Kuijf H J, et al. Assessment of blood flow velocity and pulsatility in cerebral perforating arteries with 7-T quantitative flow MRI[J]. NMR in Biomedicine, 2016, 29(9): 1295-1304.
- [3] Vedantam A, Robertson C S, Gopinath S P. Quantitative cerebral blood flow using xenonenhanced CT after decompressive craniectomy in

traumatic brain injury[J]. Journal of Neurosurgery, 2018, 129(1): 241-246.

- Qiu J J, Zhang H Y, Luo W H, et al. Impact of averaged image speckle size on laser speckle imaging
 [J]. Acta Optica Sinica, 2009, 29(7): 1863-1867.
 邱建军,张红艳,骆卫华,等.像面散斑平均尺寸对 激光散斑成像的影响[J].光学学报, 2009, 29(7): 1863-1867.
- [5] Qi L, Zhu J, Hancock A M, et al. Fully distributed absolute blood flow velocity measurement for middle cerebral arteries using Doppler optical coherence tomography[J]. Biomedical Optics Express, 2016, 7(2): 601-615.
- [6] Marzbanrad F, Stroux L, Clifford G D. Cardiotocography and beyond: a review of onedimensional Doppler ultrasound application in fetal monitoring[J]. Physiological Measurement, 2018, 39(8): 08TR01.
- [7] Saris A E C M, Nillesen M M, Fekkes S, et al. Robust blood velocity estimation using point-spreadfunction-based beamforming and multi-step speckle tracking[C] // 2015 IEEE International Ultrasonics Symposium (IUS), October 21-24, 2015, Taipei, China. New York: IEEE, 2015: 15601493.
- [8] Callahan M J, MacDougall R D, Bixby S D, et al. Ionizing radiation from computed tomography versus anesthesia for magnetic resonance imaging in infants and children: patient safety considerations[J]. Pediatric Radiology, 2018, 48(1): 21-30.
- [9] Kaul M G, Salamon J, Knopp T, et al. Magnetic particle imaging for in vivo blood flow velocity measurements in mice[J]. Physics in Medicine &-Biology, 2018, 63(6): 064001.
- [10] Morales-Vargas E, Sosa-Martinez J, Peregrina-Barreto H, et al. A morphological approach for locating blood vessels in laser contrast speckle imaging
 [C] // 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), May 14-17, 2018, Houston, TX, USA. New York: IEEE, 2018: 17917126.
- [11] Gao F, Fan J Y, Kong W, et al. Research progress on optical coherence tomography in detecting vascular flow field[J]. Chinese Journal of Lasers, 2018, 45(2): 0207019.
 高峰,樊金宇,孔文,等.光学相干层析技术在血管 流场检测方面的研究进展[J].中国激光, 2018,

流场检测方面的研究进展[J]. 中国激光, 2018 45(2):0207019.

- [12] Chen Z P, Milner T E, Srinivas S, et al. Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography[J]. Optics Letters, 1997, 22(14): 1119-1121.
- [13] Pan L H, Zhang X Y, Li Z L, et al. Blood flow measurement with photoacoustic microscopy and optical coherence tomography[J]. Chinese Journal of Lasers, 2018, 45(6): 0607004.
 潘柳华,张向阳,李中梁,等.基于光声-光学相干层 析成像的血流测量技术[J].中国激光, 2018, 45(6): 0607004.
- [14] Zhao P J. Study on the three-dimensional particle tracking velocimetry based on the defocusing microscopic image [D]. Hangzhou: China Jiliang University, 2016: 19-22.
 赵攀杰.基于散焦显微图像的三维粒子追踪测速研究[D]. 杭州:中国计量大学, 2016: 19-22.
- [15] Xue L, Lai J C, Wang S Y, et al. Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells[J]. Biomedical Optics Express, 2011, 2(4): 987-995.
- [16] Xue L, Vargas J, Wang S Y, et al. Quantitative interferometric microscopy cytometer based on regularized optical flow algorithm[J]. Optics Communications, 2015, 350: 222-229.
- [17] Toto-Arellano N I. 4D measurements of biological and synthetic structures using a dynamic interferometer[J]. Journal of Modern Optics, 2017, 64(sup4): S20-S29.
- [18] Flores Muñoz V H, Toto-Arellano N I, López-Ortiz B, et al. Measurement of red blood cell characteristic using parallel phase shifting interferometry[J]. Optik, 2015, 126(24): 5307-5309.
- Park Y, Diez-Silva M, Popescu G, et al. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum[J]. Proceedings of the National Academy of Sciences, 2008, 105(37): 13730-13735.
- [20] Ge B Z, Cui P, Lü Q N, et al. Implement of phase unwrapping of digital holographic reconstruction image by discrete cosine transform least square method[J]. Journal of China University of Petroleum (Edition of Natural Science), 2008, 32(6): 169-173.
 葛宝臻,崔鹏,吕且妮,等.基于离散余弦变换最 小二乘法实现数字全息再现像的相位解包裹[J]. 中国石油大学学报(自然科学版), 2008, 32(6): 169-173.