# 调 Q CO<sub>2</sub>激光功率放大器的输出特性

柯常军1,钟艳红1,李丹阳1,2,万磊1,2,吴谨1\*

1中国科学院电子学研究所,北京 100190;

<sup>2</sup>中国科学院大学,北京 100049

摘要 利用描述 CO<sub>2</sub>激光器动力学过程的六温度模型理论,建立了计算调 Q CO<sub>2</sub>激光功率放大器输出特性的数学 模型,进行了理论分析和数值计算,并讨论了分光比等参数对输出脉冲特性、输出光谱的影响。结果表明:该调 Q CO<sub>2</sub>激光功率放大器存在临界增益长度和临界光强分束比,低于临界值时无法获得激光输出;该调 Q CO<sub>2</sub>激光功 率放大器的输出激光脉冲波形、峰值功率、脉冲宽度、输出光谱与光强分束比、抽运电子数密度等参数有关,光强分 束比越小,输出的调 Q 激光脉冲宽度越大,峰值功率越低;该调 Q CO<sub>2</sub>激光功率放大器利用 Q 调制的高增益特性, 通过控制调 Q 元件所在的低功率支路可以实现高平均功率的调 Q 脉冲 CO<sub>2</sub>激光输出,很好地解决了调 Q CO<sub>2</sub>激 光功率放大器难以高功率运转的问题。

关键词 激光器;输出特性;六温度模型;CO2激光功率放大器;调Q;峰值功率;脉冲宽度
 中图分类号 TN248 文献标识码 A doi: 10.3788/AOS201838.0414001

# Output Characteristics of Q-Switched CO<sub>2</sub> Laser Power Amplifier

Ke Changjun<sup>1</sup>, Zhong Yanhong<sup>1</sup>, Li Danyang<sup>1,2</sup>, Wan Lei<sup>1,2</sup>, Wu Jin<sup>1</sup>

<sup>1</sup> Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; <sup>2</sup> University of Chinese Academy of Sciences, Beijing 100049, China

Abstract By using the six temperature model theory on the kinetic process in a  $CO_2$  laser system, we build a mathematical model to calculate output characteristics of Q-switched  $CO_2$  laser power amplifier. Theoretical analysis as well as numerical calculation is carried out, and the effects of parameters such as beam split ratio on output pulse characteristics and output spectra are discussed. The results show that the Q-switched  $CO_2$  laser power amplifier has a critical gain length and a critical beam split ratio, below which no laser output can be obtained. The laser pulse waveform, peak power, pulse width, and output spectra of the Q-switched  $CO_2$  laser power amplifier are all effected by the beam split ratio and pumping electron density. The less the beam split ratio, the greater the output Q-switched laser pulse width, and the lower the laser peak power. The Q-switched  $CO_2$  laser power amplifier utilizes the high gain characteristic of Q modulation. By controlling the low power branch of Q-switched  $CO_2$  laser power amplifier is difficult to operate at high power is well solved.

Key words lasers; output characteristic; six temperature model;  $CO_2$  laser power amplifier; Q-switched; peak power; pulse width

OCIS codes 140.3470; 140.3540; 140.3538

1 引 言

高重复频率调 Q CO<sub>2</sub>激光器在材料超精加工 方面具有重要应用,可用于精密钻孔以及光学元件 的表面抛光和修复<sup>[1-3]</sup>。CO<sub>2</sub>激光器的调 Q元件普 遍采用声光调制器(AOM)或电光调制器(EOM), 由于 AOM 和 EOM 的材料通常为 Ge 和 CdTe,因 此它们的激光损伤阈值都很低,导致调 Q CO<sub>2</sub>激光 器的平均输出功率长期处于较低水平(一般不超 过几十瓦),远不能满足现代快速激光超精加工的 需求。2016年,Kiyko<sup>[4]</sup>提出了一种新的调 Q CO<sub>2</sub> 激光功率放大方案,该方案通过巧妙的调 Q 功率

收稿日期: 2017-10-18; 收到修改稿日期: 2017-11-15

**基金项目**: 国家自然科学基金(61475157)

作者简介:柯常军(1973—),男,博士,研究员,主要从事红外激光及其应用方面的研究。E-mail: cjke@mail.ie.ac.cn

<sup>\*</sup> 通信联系人。E-mail: jwu@mail.ie.ac.cn

放大光路设计,使调 Q元件在低功率状态下工作 的同时,可以将调 Q CO<sub>2</sub>激光的平均功率放大数 十倍。本文利用描述 CO<sub>2</sub>激光器动力学过程的六 温度模型理论,建立了计算该调 Q CO<sub>2</sub>激光功率 放大器输出特性的数学模型,并进行了理论分析和 数值计算,讨论了相关参数对输出激光脉冲特性的 影响。

## 2 工作原理

调 Q CO<sub>2</sub>激光功率放大器的结构原理如图 1 所示。放大器由 AOM、λ/4 波片、薄膜偏振片、增益 介质和 2 个全反镜组成。





调 Q CO<sub>2</sub>激光功率放大器由 2 条激光支路组 成。左侧全反镜、λ/4 波片、增益介质和薄膜偏振片 构成高功率激光支路;右侧全反镜、AOM、薄膜偏振 片、增益介质、λ/4 波片和左侧全反镜构成低功率激 光支路。低功率(P<sub>b</sub>)激光支路提供激光调 Q 和反 馈;高功率(P<sub>h</sub>)激光支路提供激光功率放大和激光 输出。整个放大器的功率 P=P<sub>b</sub>+P<sub>b</sub>,由外界注入 功率和增益介质共同决定。

薄膜偏振片起分光作用,使低功率水平的偏振 激光透过,使高功率的垂直偏振激光发生反射。为 了方便解释,假定低功率激光支路中的一束低功率 水平偏振光经薄膜偏振片透射后经增益介质放大, 先经λ/4波片变换成圆偏振光,之后经右侧全反镜 反射后,再经λ/4波片变换成垂直偏振光,经增益介 质放大后最终由薄膜偏振片反射出谐振腔。此时由 于没有水平偏振光进入低功率支路,因此无法形成 有效反馈。轻微改变λ/4波片的角度,上述过程中 的低功率水平偏振光经过一个循环再次到达薄膜偏 振片时变成椭圆偏振光,高功率垂直偏振光由薄膜 偏振片反射出谐振腔,形成激光输出;低功率水平 偏振光透过薄膜偏振片进入低功率激光支路形成 有效反馈,开始下一个循环。通过简单地调整λ/4 波片的角度,可以在大范围内控制 2 个激光支路 的分光比。

从图 1 中可以看出:低功率激光支路是耦合输 出为 0 的常规 AOM 调 Q激光器结构<sup>[5-6]</sup>,可以形 成脉冲激光振荡;高功率激光支路仅起放大作用, 不会形成激光振荡。由于低功率支路的激光功率 较低,避免了调 Q元件因通过高功率激光而损坏, 很好地解决了调 Q CO<sub>2</sub>激光难以获得高功率输出 的问题。

## 3 理论模型

## 3.1 模型建立

采用六温度模型理论<sup>[7]</sup>对调 Q CO<sub>2</sub>激光功率 放大器进行理论计算。六温度模型是描述 CO<sub>2</sub>激 光器动力学过程的最常用理论<sup>[7-10]</sup>,其中,描述 CO<sub>2</sub> 激光器多纵模运行的六温度动力学模型是由多个方 程构成的微分方程组,可实现激光输出光谱的计算, 是本研究采用的理论计算模型,其数学表达式比较 复杂,在此不再赘述,详见文献[9-10]。

将六温度动力学模型应用于调 Q CO<sub>2</sub>激光功 率放大器的计算,需要建立符合其工作原理的激光 光强微分方程。为此,首先建立图 1 中各部分的增 益/损耗模型。

为不失一般性,假定 $\lambda/4$ 波片、薄膜偏振片、增 益介质等都是无损耗的,2个全反镜的光强反射率 分别为 $R_1$ 和 $R_2$ ,AOM 的单程透过率为 $T_{AOM}(t)$ , 单程损耗为 $\delta_{AOM}(t) = 1 - T_{AOM}(t)$ 。通过 $\lambda/4$ 波 片和薄膜偏振片的分光获得激光输出,其分光比  $\eta_p$ 为

$$\eta_{\rm p} = \frac{I_{\rm p}}{I} = \frac{I_{\rm p}}{I_{\rm p} + I_{\rm s}},\tag{1}$$

式中 *I*<sub>p</sub>和 *I*<sub>s</sub>分别为偏振方向与薄膜偏振片入射面 平行和垂直的激光光强,*I*为两者之和。光束分光 比 η<sub>p</sub>为参与激光振荡的光强与总光强的比值,并且 假设与激光频率无关。

图 2 所示为 Q开关 AOM 的损耗函数模型,其 中  $\delta_0$ 为 AOM 未加电时的单程损耗, $\delta_1$ 为 AOM 加 电时的单程损耗, $t_0$ 为 AOM 加电时间长度, $t_s$ 为 AOM 关断延迟时间。当时间  $t < t_0$ 时,AOM 通电 形成声光效应,大部分透过 AOM 的激光被衍射,谐 振腔内的损耗大,Q值小,激光器没有输出,产生布 居数聚集;当 $t = t_0$ 时,开始关掉声光效应,经过一段 时间  $t_s$ 后,声光效应完全消失。声光衍射消失时,谐 振腔的内损耗急剧降低,产生 Q开关效应,形成巨 脉冲激光输出。





Fig. 2 Loss function model of Q-switch

当 AOM 损耗采用线性模型近似时,在一个开 关周期内,其透过率函数 T<sub>AOM</sub>表示为

$$T_{\text{AOM}}(t) = \begin{cases} 1 - \delta_1, & t < t_0 \\ 1 - \delta_1 + \frac{t - t_0}{t_s} (\delta_1 - \delta_0), & t_0 \leqslant t < t_0 + t_s, \\ 1 - \delta_0, & t \ge t_0 + t_s \end{cases}$$
(2)

根据激光功率放大器的工作原理及六温度模型 理论<sup>[7-10]</sup>可知,频率 v<sub>1</sub>的激光光强应满足微分方程

$$\frac{\mathrm{d}I(\nu_{\mathrm{i}},t)}{\mathrm{d}t} = \{I(\nu_{\mathrm{i}},t)\exp[2g(\nu_{\mathrm{i}})L_{\mathrm{g}}]\eta_{\mathrm{p}}T_{\mathrm{AOM}}^{2}(t)R_{1}R_{2} - \frac{\mathrm{d}I(\nu_{\mathrm{i}},t)\exp[2g(\nu_{\mathrm{i}})L_{\mathrm{g}}]\eta_{\mathrm{p}}R_{\mathrm{AOM}}^{2}(t)R_{1}R_{2} - \frac{\mathrm{d}I(\nu_{\mathrm{i}})R_{1}R_{2}} - \frac{\mathrm{d}I(\nu_{\mathrm{i}},t)\exp[2g(\nu_{\mathrm{i}})R_{1}R_{2} - \frac{\mathrm{d}I(\nu_{\mathrm{i}})R_{1}R_{2} - \frac{\mathrm{d}I(\nu_{\mathrm{i}})R_{1}R_{2}} - \frac{\mathrm{d}I(\nu_{\mathrm{i}})R_{2}} - \frac{\mathrm{d}I(\nu_{\mathrm{i}})R_{2}} - \frac{\mathrm{d}I(\nu_{\mathrm{i}})R_{2}} - \frac{\mathrm{d}I(\nu_{\mathrm{i}})R_{2}} - \frac{\mathrm{d}I(\nu_{\mathrm{i}})R_{2}} - \frac{\mathrm{d}I(\nu_{\mathrm{i}})R_{2}} - \frac{\mathrm{d}I(\nu_{\mathrm{i})}R_{2}} - \frac{\mathrm{d}I(\nu_{\mathrm{i}})R_{2}} - \frac{\mathrm{d}I(\nu_{\mathrm{i})}$$

$$I(\nu_{i},t)\} \frac{c}{2L_{c}} + ch\nu_{i} [N_{001}P_{(a)}(J)S(\nu_{i})], \qquad (3)$$

式中 $g(v_i)$ 为增益系数, $v_i$ 为激光频率, $L_g$ 为增益长度,c为真空中的光速, $L_c$ 为谐振腔长度(图 1 中2 个全反镜之间的光程),h为普朗克常数, $N_{001}$ 为(001)能级粒子数密度, $P_{(a)}(J)$ 为转动能级分布函数,(a)为 CO<sub>2</sub>激光的不同跃迁支,J为转动能级量子数, $S(v_i)$ 为自发辐射项。

在小信号增益近似下,(3)式可写为  $\frac{\mathrm{d}I(\nu_{i},t)}{\mathrm{d}t} \approx -\left[1+2\eta_{\mathrm{p}}\delta_{\mathrm{AOM}}(t)R_{1}R_{2}\right]\frac{c}{2L_{c}}I(\nu_{i},t) + \left[2g(\nu_{i})L_{g}\right]\eta_{\mathrm{p}}T_{\mathrm{AOM}}^{2}(t)R_{1}R_{2}\frac{c}{2L_{c}}I(\nu_{i},t) + \right]$ 

$$ch\nu_{i}[N_{001}P_{(a)}(J)S(\nu_{i})] + \eta_{p}R_{1}R_{2} \frac{c}{2L_{c}}I(\nu_{i},t)$$
 (4)

(4)式的物理意义如下:第1项为由腔内损耗等 引起的光强衰减;第2项为受激辐射产生的增益;第 3项为自发辐射的贡献;第4项为经过分束的激光 形成的正反馈。第4项相当于注入锁定中的注入 光强,与常规注入锁定不同的是,注入光强不是来 自外部,而是由激光功率放大器的低功率激光支 路提供的。

从(3)式和(4)式中可以看到,在谐振腔中, AOM的作用是同时调制了光强的衰减与增益。当 AOM 打开产生声光效应时,谐振腔的损耗增大,光强衰减加快,有效增益降低。

(3)式和(4)式中的増益系数 g(v<sub>i</sub>)和自发辐射 项 S(v<sub>i</sub>)<sup>[7,9]</sup>分别为

$$\begin{cases} g_{(a)}(\nu_{i},\nu_{0}) = h\nu_{i} \left[ \frac{\lambda_{i}^{2}}{8\pi h\nu_{i}\tau_{sp}^{(a)}} f(\nu_{i},\nu_{0}) \right] \Delta N_{(a)}(J) \\ S_{(a)}(\nu_{i},\nu_{0}) = \frac{0.58}{\tau_{sp}^{(a)}} \frac{\lambda_{i}^{2}}{A} f(\nu_{i},\nu_{0}) d_{v} \end{cases},$$
(5)

式中 $\nu_0$ 为中心频率, $\lambda_i$ 为激光波长, $\tau_{sp}^{(a)}$ 为自发辐射 寿命, $f(\nu_i,\nu_0)$ 为洛伦兹线型函数, $\Delta N_{(a)}(J)$ 为反 转粒子数,A为输出镜的截面积, $d_v$ 为纵模谱线的线 宽。增益系数 $g(\nu_i)$ 写成了 $g_{(a)}(\nu_i,\nu_0)$ ,自发辐射 项 $S(\nu_i)$ 写成了 $S_{(a)}(\nu_i,\nu_0)$ ,下标(a) = 9P, 9R,10P,10R,表示 CO<sub>2</sub>激光不同的跃迁支。

对某一个纵模频率,激光输出功率可参照文 献[7]中的推导方法,得到其表达式为

$$P_{\text{out}}(\nu_{i},t) = -\frac{1}{2}A(1-\eta_{p}) \cdot \left[ \left( \frac{1}{R_{1}} - 1 \right) \sqrt{\eta_{p} T_{\text{AOM}}^{2}(t) R_{1} R_{2}} + 1 - \eta_{p} T_{\text{AOM}}^{2}(t) R_{2} \right]^{-1} \cdot \ln[\eta_{p} T_{\text{AOM}}^{2}(t) R_{1} R_{2}] I(\nu_{i},t) \circ$$

$$R_{1} = R_{2} = 1, \text{ M} f$$
(6)

$$P_{\text{out}}(\nu_{\text{i}}, t) = -\frac{1}{2} A \ln[\eta_{\text{p}} T_{\text{AOM}}^{2}(t)] \cdot \frac{1 - \eta_{\text{p}}}{1 - \eta_{\text{p}} T_{\text{AOM}}^{2}(t)} I(\nu_{\text{i}}, t)_{\circ}$$
(7)

如果右侧反射镜 2 是部分反射镜,则其透射输 出的激光功率为

$$P'_{out}(\nu_{i},t) = -\frac{1}{2}A\eta_{p}T_{AOM}(t)(1-R_{2}) \bullet \\ \left[\left(\frac{1}{R_{1}}-1\right)\sqrt{\eta_{p}T_{AOM}^{2}(t)R_{1}R_{2}}+1-\eta_{p}T_{AOM}^{2}(t)R_{2}\right]^{-1} \bullet \\ \ln[\eta_{p}T_{AOM}^{2}(t)R_{1}R_{2}]I(\nu_{i},t)_{\circ}$$
(8)

若  $R_1 = 1$ ,  $\eta_p = 1$ , 则调 Q 激光功率放大器变为普通 的腔内声光调 Q CO<sub>2</sub> 激光器, 其输出功率表达 式为

$$P'_{out}(\nu_{i},t) = -\frac{1}{2}AT_{AOM}(t) \frac{1-R_{2}}{1-T^{2}_{AOM}(t)R_{2}} \cdot \ln[T^{2}_{AOM}(t)R_{2}]I(\nu_{i},t)_{\circ}$$
(9)

当 T<sub>AOM</sub>(t)=1 时,(9)式简化为

$$P'_{\rm out}(\nu_{\rm i},t) = -\frac{1}{2}A\ln R_2 I(\nu_{\rm i},t), \qquad (10)$$

(6)~(10)式是文献[6-7]中的表达式。

总的激光输出功率包括所有纵模频率成分的贡

献,由(6)式可以得到

$$P_{\text{out}}(t) = \sum_{\nu_{i}} P_{\text{out}}(\nu_{i}, t) \,. \tag{11}$$

(11)式是输出激光脉冲波形的数学表达式。调 Q激光脉冲的峰值功率是(11)式的最大值,脉冲宽 度是以峰值功率为基准的半峰全宽(FWHM)。

同样,激光输出光谱可由(6)式得到,即

$$E_{\text{out}}(\nu_{i}) = \int P_{\text{out}}(\nu_{i}, t) dt . \qquad (12)$$

理论上,抽运电子数密度函数  $N_{e}(t)$ 可根据实际的放电电路和激光混合气条件进行计算<sup>[11-14]</sup>,涉及到的各种输运系数还需要求解 Boltzmann 输运方程<sup>[15-17]</sup>,相当复杂,因此通常直接采用经验公式进行计算<sup>[7-10]</sup>。对于连续波 CO<sub>2</sub>激光器,可以简单地将抽运电子数密度函数  $N_{e}(t)$ 视为与时间无关的常数,即

$$N_{\rm e}(t) = N_{\rm 0} \, . \tag{13}$$

3.2 理论分析

根据(3)式可知,调 Q激光功率放大器建立振荡的基本条件为

 $\exp\left[2g(\nu_{i})L_{g}\right]\eta_{p}T_{AOM}^{2}(t)R_{1}R_{2} \ge 1.$ (14)

除了偏振分光比  $\eta_p$ ,(14)式与常规的调 Q CO<sub>2</sub> 激光器建立振荡的条件相同。由于  $\eta_p \leq 1$ ,因此引 入薄膜偏振分光片等效于降低了增益系数或缩短了 增益长度。缩短后的有效增益长度为

$$\tilde{L}_{g} = L_{g} + \frac{\ln \eta_{p}}{2g(\nu_{i})}.$$
(15)

可见,分光比 η,越小,增益长度缩短的程度越 大,这不利于建立激光振荡,必须通过提高增益系数 g(ν<sub>i</sub>)来弥补。

由(14)式可知,对于设定的分光比  $\eta_{p}$ ,存在临 界增益长度  $L_{g}^{(c)}$ ;反之,对于一定增益长度的激光 器,也存在临界分光比  $\eta_{p}^{(c)}$ 。低于临界值,则不满足 (14)式,无法建立激光振荡。该临界增益长度  $L_{g}^{(c)}$ 与临界分光比  $\eta_{p}^{(c)}$ 表达为

$$\begin{cases} L_{g}^{(c)} = -\frac{\ln[\eta_{P}T_{AOM}^{2}(t_{off})R_{1}R_{2}]}{2g(\nu_{i})_{max}} \\ \eta_{P}^{(c)} = \frac{1}{\exp[2g(\nu_{i})_{max}L_{g}^{(c)}]T_{AOM}^{2}(t_{off})R_{1}R_{2}}, \quad (16) \end{cases}$$

式中  $T_{AOM}(t_{off})$ 为 AOM 处于"off"状态下的透过 率, $g(\nu_i)_{max}$ 为激光器增益系数的最大值。可见,临 界增益长度  $L_g^{(o)}$ 与分光比  $\eta_P$ 为对数关系。在理想条 件下, $R_1 = R_2 = 1, T_{AOM}(t) = 1, 则(16) 式变为$ 

$$\begin{cases} L_{g}^{(c)} = -\frac{\ln \eta_{p}}{2g(\nu_{i})_{max}} \\ \eta_{p}^{(c)} = \frac{1}{\exp[2g(\nu_{i})_{max}L_{g}]} \end{cases}$$
(17)

由此可知,图1所示的调 Q激光功率放大器可 以看成是输出耦合镜透过率极大的常规激光器,其 新颖之处在于巧妙地利用了调 Q激光器的高增益 特性,在 η<sub>p</sub>很小的情况下,仍然能满足建立激光振 荡的条件。只要 η<sub>p</sub>处于临界值以上,调 Q激光功率 放大器就可以正常工作,在外界注入功率不变的条 件下,η<sub>p</sub>越小,调 Q激光功率放大器输出的功率越 高,功率放大倍数越大。

## 4 计算结果与讨论

#### 4.1 理论模型与计算程序的验证

数值计算方法参考文献[9,18]。对于 10P、 10R、9P、9R 这 4 个跃迁支,每支考虑以 J = 20(激 光下能级)为中心的 11 条振-转跃迁谱线(J = 10~ 30),4 个跃迁支共 44 条振-转谱线,每条谱线取 31 个纵模,4 支共 1364 个激光频率,加上六温度微 分方程,共 1370 个微分方程,采用龙格-库塔法求解。

采用文献[6]中报道的调 Q CO<sub>2</sub> 激光器实验 数据来检验理论模型与程序运行的结果。文 献[6]中报道的 AOM 调 Q CO<sub>2</sub> 激光器参数如下: 激光器总气压  $P_{tot} = 3.3$  kPa,混合气体中 Xe、 CO<sub>2</sub>、N<sub>2</sub>、He 的体积比为 1:2.5:2.5:17.5;放电管 内径为 8 mm,长度  $L_{dis} = 0.8$  m,放电电流约为 10 mA;谐振腔长度  $L_c = 1.2$  m,AOM 的单程损耗 占总损耗的比例  $\delta_0 = 10\%$ ,一级衍射效率为 80%, 开启时间  $t_s = 0.85 \ \mu s$ ;输出镜截面积  $A = 60 \ mm^2$ , 全反镜 1 的光强反射率  $R_1 = 98.5\%$ ,输出镜 2 的透 过率为  $1 - R_2 = 30\%$ 。该激光器输出激光脉冲参数 如下:调 Q激光峰值功率约为 4.75 kW,脉冲宽度约 为 160 ns。

将上述激光器实验参数转换为对应本研究六温 度模型的计算参数。需要指出的是,六温度模型理 论是"点"模型,认为介质的增益是均匀且各向同性 的,谐振腔内激光光强横向均匀分布;而在实际运转 的激光器中,放电电流与输出光强均具有一定的横 向分布,增益的空间分布不均匀;因此,将实验中激 光器放电管长度 L<sub>ds</sub> = 0.8 m 折算到六温度模型的 增益长度时,需要适当修正。一般来说,修正因子小 于1。在本研究的计算中,该修正因子取为 0.5。设 置实验激光器对应的六温度模型计算参数为

$$\begin{cases} P_{tot} = 3.3 \text{ kPa} \\ R_1 = 98.5\% \\ L_c = 1.2 \text{ m} \\ L_g = 0.4 \text{ m} \\ \eta_p = 1 \\ \delta_0 = 10\% \\ \delta_1 = 82\% \\ R_2 = 70\% \\ R_2 = 70\% \\ A = 60 \text{ mm}^2 \\ t_s = 0.85 \ \mu \text{s} \\ N_c = 8 \times 10^{17} \text{ m}^{-3} \end{cases}$$
(18)

计算中,AOM的开关设置如下:在 3.5 μs前, 关闭 AOM 射频驱动,放电激励工作,形成初始状态;3.5 μs时,开启 AOM 驱动,产生声光效应,谐振 腔内损耗加大,无法建立激光振荡;4 μs后,关闭 AOM 射频驱动,经过 0.85 μs后,声光效应完全消 失,谐振腔进入低损耗阶段,形成激光振荡输出。然 后求解六温度模型方程组,计算结果如图 3 所示。 由图 3(a)可知,调 Q激光脉冲峰值功率为 3.3 kW, 脉冲宽度为 136 ns,这与文献[6]给出的实验结果 (调 Q激光峰值功率约为 4.75 kW,脉冲宽度即 FWHM 约为 160 ns)基本相符。在图 3(b)中可见 2 条明显的 10P 带跃迁谱线,符合没有频率选择特 性谐振腔 CO<sub>2</sub>激光器的多谱线输出规律。这说明 理论模型与计算程序的编写、运行是正确的,可用于 下一步计算。

### 4.2 调 Q CO<sub>2</sub> 激光功率放大器的计算结果

调  $Q \operatorname{CO}_2$ 激光功率放大器在计算时,除  $R_1 =$  98.5%外,其余参数仍然采用(18)式的数据。

图 4 所示为抽运条件  $N_{e}(t) = 8 \times 10^{17} \text{ m}^{-3}$ 不变,分光比  $\eta_{P}$ 从 20%变化至 6%的激光输出计算结果。由图 4 可知,当抽运电子数密度相同时,分光比  $\eta_{P}$ 越小,参与反馈放大的激光光强越小,调 Q脉冲形成的时间越长,激光的峰值功率越低,激光脉冲宽度越大。这表明分光比  $\eta_{P}$ 的大小同时影响调 Q激光脉冲的峰值功率和宽度,可以通过改变分光比来调节输出调 Q脉冲的峰值功率和宽度。

图 5 所示为同一分光比  $\eta_p = 6\%$ 时不同抽运电 子数密度  $N_e(t)$  对激光输出计算结果的影响。由 图 5(a)可知,在保持光束分光比  $\eta_p = 6\%$ 不变的条 件下,抽运电子数密度从  $4.5 \times 10^{17}$  m<sup>-3</sup>增加至 9×  $10^{17}$  m<sup>-3</sup>。由图 5(b)可知,调 Q CO<sub>2</sub>激光峰值功率 呈现先升高后降低的变化趋势。由图 5(c)可知,随





着峰值功率提高,激光脉冲宽度先略有减小,然后继 续增大。这说明激励条件也会影响输出调 Q激光 脉冲的峰值功率和宽度。由图 4(d)和图 5(d)可知, 在同样的分光比( $\eta_p = 6\%$ )下,随着抽运条件改变, 输出 谱线的强弱明显不同。在图 4(d)中,当  $N_e(t) = 8 \times 10^{17} \text{ m}^{-3}$ 时,只可见一条 10P(18)强线; 在图 5(d)中,当 $N_e(t) = 6 \times 10^{17} \text{ m}^{-3}$ 时,可见一条 10P(18)强线和一条 10P(16)弱线。进一步对比 图 4(d)和图 3(b)可知,图 3(b)对应弱损耗腔, 图 4(d)对应强损耗腔,二者的输出光谱不同,前者 以 10P(18)为强线,后者以 10P(16)为强线。因此, 该调 Q CO<sub>2</sub>激光功率放大器没有频率选择特性,输 出光谱一般是多谱线,若要以单谱线输出,需要增加 频率选择元件。

理论计算结果表明,该调 Q CO<sub>2</sub>激光功率放大 器利用了 Q调制的高增益特性,通过控制调 Q元件 所在的低功率支路,实现了高平均功率的调 Q脉冲 CO<sub>2</sub>激光输出,很好地解决了调 Q CO<sub>2</sub>激光器难以 高功率运转的问题。例如,在  $\eta_P = 6\%$ 时,如果低功 率支路的激光功率为 50 W,则高功率支路激光的输 出功率可达到 783 W,放大倍数大于 15。





Fig. 4 Calculated results of laser output of Q-switched CO2 laser power amplifier with different beam split ratios.

(a) Laser pulse waveforms with different beam split ratios; (b) laser peak power;





图 5 分光比为 6%时不同抽运电子数密度对调 Q CO<sub>2</sub>激光功率放大器激光输出计算结果的影响。(a)不同抽运电子数 密度时的激光脉冲波形;(b)激光峰值功率;(c)激光脉冲宽度;(d)抽运电子数密度为 6×10<sup>17</sup> m<sup>-3</sup>时的激光光谱 Fig. 5 Effects of different pumping electron densities on calculated results of laser output of Q-switched CO<sub>2</sub> laser power amplifier with same beam split ratio of 6%. (a) Laser pulse waveforms with different pumping electron densities; (b) laser peak power; (c) laser pulse width; (d) laser spectra with pumping electron density of 6×10<sup>17</sup> m<sup>-3</sup>

# 5 结 论

利用 CO<sub>2</sub>激光器中的六温度模型理论,建立了 调 Q CO<sub>2</sub>激光功率放大器运转的动力学方程,并对 其输出特性进行了计算,获得了输出激光脉冲波形、 脉冲峰值功率、脉冲宽度等参数与分光比、抽运电子 数密度等参数之间的关系。研究结果表明,该调 Q 脉冲 CO<sub>2</sub>激光功率放大器具有采用普通半导体调 Q元件(AOM 或 EOM)实现高功率调 Q激光输出 的功能,为进一步研制调 Q CO<sub>2</sub>激光功率放大器提 供了理论分析手段和参考数据。

### 参考文献

- [1] Weingarten C, Uluz E, Schmickler A, et al. Glass processing with pulsed CO<sub>2</sub> laser radiation[J]. Applied Optics, 2017, 56(4): 777-783.
- [2] Meyer B J, Staupendahl G, Müller F A, et al. Sensitive ablation of brittle materials with pulsed CO<sub>2</sub> laser radiation[J]. Journal of Laser Application, 2016, 28(1): 012002.
- [3] Wlodarczyk K L, Weston N J, Ardron M, et al. Direct CO<sub>2</sub> laser-based generation of holographic structures on the surface of glass[J]. Optics Express, 2016, 24(2): 1447-1462.
- [4] Kiyko V. Powerful pulsed self-seeding  $CO_2$  laser: 9307052[P]. 2016-02-08.
- [5] Piltingsrud H V. CO<sub>2</sub> laser for lidar applications, producing two narrowly spaced independently wavelength-selectable Q-switched output pulses[J]. Applied Optics, 1991, 30(27): 3952-3963.
- [6] Xie J J, Pan Q K, Li D J, et al. Theoretical calculation and experimental study of acousto-optically Q-switched CO<sub>2</sub> laser[J]. Chinese Journal of Lasers, 2011, 38(2): 0202004.
  谢冀江,潘其坤,李殿军,等. 声光调 Q CO<sub>2</sub>激光器的理论计算和实验研究[J]. 中国激光, 2011, 38(2): 0202004.
- [7] Smith K, Thomson R M. Computer modeling of gas lasers[M]. Boston: Springer, 1978: 25-78.
- [8] Soukieh M, Ghani B A, Hammadi M. Mathematical modeling of CO<sub>2</sub> TEA laser[J]. Optics & Laser

Technology, 1999, 30(8): 451-457.

- [9] Wu J, Ke C J, Wang D L, et al. Mathematical modeling of tunable TEA CO<sub>2</sub> lasers[J]. Optics & Laser Technology, 2007, 39(5): 1033-1039.
- [10] Ding C L, Wan C Y. Multifrequency dynamical model of pulsed CO<sub>2</sub> lasers[J]. Acta Physica Sinica, 2006, 55(3): 1165-1170.
  丁长林,万重怡. 脉冲 CO<sub>2</sub> 激光器的多频动力学模型[J]. 物理学报, 2006, 55(3): 1165-1170.
- [11] Midorikawa K, Wakabayashi K, Nakamura K, et al. Discharge parameters of a high-pressure, ultravioletpreionized, transversely excited CO<sub>2</sub> laser[J]. Journal of Applied Physics, 1982, 53(5): 3410-3417.
- [12] Tou T Y, Beak K W, Chen Y H. One-dimensional modeling of TEA CO<sub>2</sub> lasers[J]. Optics & Laser Technology, 1996, 28(3): 183-186.
- Bahrampour A, Ganjovi A A. Theoretical analysis of electrical transient behavior in TEA CO<sub>2</sub> laser with dielectric corona pre-ionization[J]. Journal of Physics D, 2003, 36(20): 2487-2497.
- Galeev R S, Safioulline R K. Numerical simulation of the processes in fast flow gas discharge CO<sub>2</sub> lasers[C].
   SPIE, 2004, 5483: 214-223.
- [15] Lowke J J, Phelps A V, Irwin B W. Predicted electron transport coefficients and operating characteristics of CO<sub>2</sub>-N<sub>2</sub>-He laser mixtures[J]. Journal of Applied Physics, 1973, 44(10): 4664-4671.
- [16] Kumar M, Khare J, Nath A K. Numerical solution of Boltzmann transport equation for TEA CO<sub>2</sub> laser having nitrogen-lean gas mixtures to predict laser characteristics and gas lifetime[J]. Optics & Laser Technology, 2007, 39(1): 86-93.
- [17] Thomson R M, Smith K, Davis A R. Boltz: A code to solve the transport equation for electron distributions and then calculate transport coefficients and vibrational excitation rates in gases with applied fields[J]. Computer Physics Communications, 1976, 11(3): 369-383.
- [18] Wu J. Theoretical mode on calculating grating tuned TEA CO<sub>2</sub> laser[J]. Acta Optica Sinica, 2004, 24(4): 472-476.
  吴谨. 光栅调谐 TEA CO<sub>2</sub>激光器理论计算模型[J]. 光学学报, 2004, 24(4): 472-476.