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Light Amplification and Noise Reduction Based on
Dressed-State Electromagnetically Induced Transparency
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Department of Optoelectronics, School of Electronic and Electrical Engineering ,

Wuhan Textile University, Wuhan , Hubei 430073, China

Abstract It is suggested that the dressed-state electromagnetically induced transparency (EIT) can be used as an
efficient way to produce light amplification and quantum noise reduction. The four-level tripod atoms are studied in
the scheme by dressed-state atom and collective-mode approach. On two-photon resonance, two strong coherent fields
induce the depopulation of a coherent superposition state of two lower states, which leads to quantum beat between
the cavity modes. While the two strong coherent fields dress the atoms., the system is simply reduced to a standard
EIT model, in which the laser transition, the coherent coupling, and the spontaneous decay constitute a successive
population transfer channel to recycle the laser electron. It is for the very mechanism that the cavity modes oscillate
with high intensities and exhibit squeezing.
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1 Introdution

As is known, two-mode squeezing can lead to efficient distribution of entanglement and implementation

2] The parametric oscillators have been demonstrated to be an effective way for the

[3-6]

of quantum channels

generation of two-mode squeezed light As a class of alternative and important schemes, four-wave

[7-11]

mixing interactions have been proposed for this purpose. In particular, for a two-level mixing

7], one has the best achievable two-mode squeezing of 50%. However, for this class of schemes,

system
two cavity modes operate below threshold and the steady state average amplitudes are zero. It is desirable
to devise a scheme in which the two-mode squeezing occur well above threshold. So far, there have been

several schemes been presented to obtain light amplification and two-mode squeezing''*'"!. For a closed A
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system, incoherent pumping from the lower to upper lasing level, and a successive decay from the upper
lasing level to the auxiliary level add up to a large population in the auxiliary level. For a Raman system, a
direct decay pathway from the lower lasing level to the auxiliary level makes the laser electron swiftly
recycle to the auxiliary level. Therefore, only when coherent driving is combined with fast incoherent
processes can good squeezing be achieved.

We suggest an efficient way to obtain light amplification and dynamical noise reduction. The dressed-
state atom and combination mode approcach is employed in the calculations. It will be shown that two-
mode squeezing with light amplification can be obtained via dressed-state electromagnetically induced
transparency (EIT) in a four-level tripod atomic system. Three external coherent driving fields are coupled
to the higher states to the three lower states, respectively. Two cavity fields are generated from two of the
three transitions, respectively. On two-photon resonance, the two superposition states of the two lower
states are induced by the coherent coupling of the two strong driving fields, and only one state is coupled to
the system, while the other state is decoupled and has vanishing population. According to the combination
modes, only one sum mode is mediated into the interaction, while the relative mode is decoupled from the
system and keeps in vacuum state. It leads to the two original cavity fields in quantum beat. When two of
the three driving fields induce the Stark splitting, the system is in dressed-state EIT, in which the laser
electron is regularly recycled. On the basis of this, the two cavity modes run well above threshold and are

in a two-mode squeezed state.

2 Laser oscillation and two-mode squeezing
2.1 Model and equation

We consider N four-level tripod-type atoms are put in a two-mode optical cavity (as shown in Fig. 1).
ky— 1) (k=4;1=1,

2,3) with complex Rabi frequencies (2,,, respectively. Two cavity modes a,, of frequencies v, , are

Three external coherent fields of frequencies wy are applied to the three transitions

generated from the transitions |1,,2,)— ‘ 4,7 respectively. The transitions ‘4#>* ‘ 1,.2,,3,) are dipole-
allowed. while the transitions between the three lower states|1,,2,.3,) are dipole forbidden. In the dipole
and rotating wave approximation and in the interaction picture, the master equation of the atom-field

density operator is given by"'™

bz—é[H,p]+/ap+/fpa (1

—— 7

a
! Qy s,

[1,)

u

Fig. 1 Schematic energy level diagram for the four-level tripod atomic system
where H=H,+V, H, represents the free term of the atoms and the interaction of the coherent fields with

the atoms, and V' denotes the interaction of the cavity fields with atoms,

H, :?ELA41‘4,1><4,1 +

N
+ E %{941 ‘4/1><1” +Q4gexp[* I(A UiA 42)[] ‘4{,1><2/1
u=1

Quexp[—i(A ,,—A ][40, ]| 1+ H.c. , (2)
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V= > algia |41, [exp o) + goa. [ 4,02, |exp Gpo) ]+ H.c. (3)
n=1

H. c. represents Hermitian conjugates. k is the reduced Planck constant, a, and af (I =1, 2) are
annihilation and creation operatorss and g, are atom-field coupling constants. Ay = wy — wg are the
detunings between the coherent field frequencies and atomic resonance frequencies, where wy are the
atomic resonance frequencies, k=4, [=1,2,3. 8 =v; —wy and & =v, —w.. are the detunings between the
cavity frequencies and atomic resonance frequencies. 5 =w, —v,(/=1,2), represents the detunings between
the coherent driving field frequencies and the cavity field frequencies. ¢,0 and ¢,p represent the atomic and

field decay terms, respectively.

N

1
o= D) Yulups leo = D, 7[2(75;“(002{" —wi’oil’ —oil’oil’p ] €Y
k=4;1=1,2,3 p=1
1
lip = leéalp’ lup = ?(Za,paf —pla, —alap), (5
1=1,2
oif) = |k, (L, | (k,1=1~4) are the atomic projection operators for k=17 and the flip operators for k%, 7y

are the atomic decay rates from [%,) to [1,), and x,(I=1,2) are the decay rates of the two cavity fields.
We focus on the case of two-photon resonance A;y =A;; =A, and yp =5 =7, g = g4 = g" are assumed for
simplicity. We define the two superposition states [c,)>=cos 0|1, +sin 0]2,), |d,»=—sin 0]1,) +
Qo

cos 6| 2,>, with tan 0= , and the combination modes A= cos 0a,exp (i$,) + sin fa,exp (i$,), B=

41

—sin fa, exp(i$; ) +cos fa,exp (i$,). Then the Hamiltonians H, and V are respectively rewritten as

N
H, = > hAci# +%< 4 Qo exp [1(A—ADe] )+ Hoe. s (6)
p=1
N
V = > hg"[As” + Bol Jexp (ig) + H.c. . <)
p=1

with 0= ‘ Qﬂ

2+ 1., |?. It is seen from Hamiltonian Eq. (6) that only the superposition state ‘C”> is
coupled to the applied fields while the coherent superposition state |d,) is decoupled. The state |d,) is
empty, which leads that the mode B always stays in its vacuum state. That is to say, there exists a
quantum beat between the original modes a,,,» which makes the relative mode B is independent of the sum
mode A", So the four-level tripod atomic system is reduced to a conventional EIT (states [c,),[3,).

\4#> form a A system) as shown in Fig. 2(a).

Fig. 2 (a) Transitions in the equivalent three-level A type atom in the bare tates basis;
(b) dressed transitions for the equivalent EIT system

For clarity, we transform the bare atomic states to the dressed states!'™. We assume that the coherent
driven fields are much stronger than the cavity fields 2= A +0° > (| g;<a;) | syu) G=1.2:k=4,1=1,2,

3). The y-th atomic dressed states induced by the driving fields Q are |+,)=—sin ¢|c,) +cos $[4,).

— Y=—cos $|c,>+sin ¢|4,>, with tan (2¢):*l,6:é, and the eigenvalues are A :i(*Ai‘ﬁ).
! 2 I 8 Q 2
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The bare state | 3,7 keeps unchanged but is denoted by ‘ 3, for consistency. We tune the driving field 0.,
such Aj; =A—2, that it is resonant with the \g/)* \ %I,) transition, and tune the cavity fields such y=

—A—Q that they are resonant with Rabi sideband transition | +,)—|—,). After rotating transform and

secular approximation (neglecting the fast oscillating terms), the interaction Hamiltonian is rewritten as
N
H= > h[g:As " + Q' 1+ H.c. s (8)
n=1

. ; 1 . . . .
with g, =gcos’ ¢, and Qd:?ﬂw cos ¢. By separating the relative mode B, we derive the master equations

for the density p of the sum mode A after the above transformations as

J__ i ~ ;o -
20 = h[H,p:H—ZU‘O +lap s (9
where the damping terms /Mﬁ has the form
Vo =Ale o+l ipt+ Aty p+Tolsp 10000 (10)
with the phase damping Z,)ﬁZ%(ZE,)p@*pr, —owp)s o,=c 1+ —ad . For the atomic damping we have

taken y,; =¥, for simplicity. ¢,p has the same form as ¢yp as in Eq. (4). For the damping of cavity fields
we have assumed that x; =x; =x. ¢,p has the same form as in Eq. (5) except for the substitutions of A for

a,. The parameters in Eq. (10) are A, =y, sin' ¢,I", =7y, cos' ¢,A, =7y,3sin” ¢, I, =7y,5cos’ ¢, and I, =
%}/“sin2 2¢. The dressed transitions described by Eqgs. (8) and (10) are indicated in Fig. 2(b).

2.2 Steady-state intensities and two-mode squeezing
To obtain the quantum correlations for the cavity fields, we calculate the normally ordered part of the

output fluctuation spectrum

o s ) 2

St = 2| decostar) SHEEDLDD = o(26) A an
where (1) =kA" (1) A(¢) represents the output intensity operator, A is proportional to the differential gain
and Q is the Mandel factor Q:%. We know that S(w) =0 is corresponding to shot noise and
—1<{S(w)<C0 to sub-Poissonian statistics. Correspondingly, the normally ordered parts of the output
spectra for the two original modes are indicated as S, (w) :¥. Quadrature squeezing in the respective

modes occurs when sub-Poissonian statistics in the sum mode is existent.
The Langevin equations are derived from the master equation by means of the generalized P

7]

representation of Drummond and Gardiner"'’”, The atomic variables are described by collective operators

. 1Y . P _ - S L .
O'k[:NZIG’Zz. We choose the normal ordering A"y 6455 64— s03- s0 1+ » G33+0—— 20 —3+0 —+ 03+ A and
=

define the correspondence between the c-numbers and operators as a<>A(a<>A) v, <96, (vl <6 3), v, <

6 1 (e ) yues s (vlos, )z, (I=1,3). The set of equations for the c-numbers are derived as

o= %/m —ig\No, + F. (12)

v, =— }’1‘111+iQd(Z+*23)+ig,qa'vg+Fvl , (13)

vy, =— Y0y +igaa (zo— z_) — iQ4v; +F, . (14)

vy =— Y30y + igaav] — 1Quvs + F, . (15)

2 =— (A +ADz + 2+ igalav) —a* v,) +F. (16)
2 = Az A+ Doz 4 Qi (o] — o) +F. . (17)
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Populations follow the closure relation - +=2, +=2;=1. The parameters in Eqs. (12)~(17) are ¥, Z%(D +

F2+Fﬂ1)9y2:%(1—‘] +F2 +A] +A2>+2F/}/1 9}/3 :%(Al +A2 +F/)11)9 and Fz(t> are the nOiSe fOrCeS. The

[ We assume the atomic

noise correlations can be easily calculated from the generalized Einstein relations
variables change much more rapidly than the cavity fields (y,, 7.2 > k). The atomic variables can be
adiabatically eliminated. By solving the steady state Eqs. (12)~(17), we can easily obtain the linear gain
G and the stable intensities 1= g% {(a" @) for sum mode A. It is not hard to find that G>k, which means

that the cavity modes operate above threshold. Using the mode transform relation, we obtain the
respective intensities for the two original cavity modes <I[>:g1<a,+a[>:?g21, (l=1,2).

In the numerical calculations, we scale Rabi frequencies, coupling constants, detunings, and decay rates
2g*N

The intensities (I, ) =<I,) are in
KY 1

in units of 2y,;. The cooperativity parameter is defined as C=

units of 4g°¥i;. The zero-frequency output spectrum and the respective intensities for the two cavity modes
are plotted in Fig. 3. It is seen from Fig. 3(a) that for a wide range of parameters, the squeezing is
existent and the respective intensities are large. Both the variances and the intensities are strongly
dependent on the cooperativity parameter C. As C is small, the laser intensities are also relatively small
and the range of squeezing is relatively narrow. As C increases, the laser intensities rise with relatively
wide range of squeezing. When the cooperativity parameter C=800, the minimal output spectrum S(0)=
—0.49 is obtained. That corresponds to 49% squeezing for the respective mode, and the intensities are
also strongly intensified (I, > = (I,)=~148 at the same time. In a word, for a large range of parameters,

two cavity fields operate well-above threshold and display sub-Poissonian statistics.

0 .
o
02— 0=800 |
% —04 ::_—;—_u-_ :: H
064 -6 -3 0 3
D)
1000
(b)
100 PN
N0 ,f ’ 1
S
o=
|
0.1
-9 -6 -3 0 3

Fig. 3 (a) Zero-frequency output spectrum S(0) and (b) steady intensities (I, ) versus the normalized detuning
0=A/Q for different cooperativities C=200, 500, 800 (the other parameters are chosen as 2,3 =2,020=50,y,, =2)

As for the mechanism of the squeezing, the following three aspects are important. 1) Quantum beat.
Because the state |d,) is not mediated into interaction with the cavity fields, the relative mode B is
decoupled from the system, which leads to the two cavity modes in quantum beat. 2) Dressed state EIT.
According to the dressed states induced by the effective field 2, the sum mode A is tuned resonant with the
transition | +,>— | —,), and the coherent field Q; is tuned resonant with the transition [3,) — |+ ,).

This leads to the system in a standard EIT configuration [as shown in Fig. 2(b)]. The coherent transition

|3,>— | +,>and the successive spontaneous decay | —,)— |3, transfer the atomic population from | —,)
to | +,), which leads to a reduction of absorption. At the same time, atomic coherence between |3,) and
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|+, increases extra gain, as in lasing without inversion"*’,

As a result, the sum mode runs above
threshold. Laser oscillation with large intensities for the cavity modes can be obtained. 3) Intrinsic

feedback. It is seen from Fig. 2(b) that there exist two intrinsic, incoherent channels | —,)>— |+, and

| —,>—13,>, which is crucial for quantum correlations. By the two incoherent pathways and the coherent

N S A~ . .
transitions ‘3,)41 | +,) and | Jr,u); —,7» the electron is regularly recycled. Such a recycling forms a
deep intrinsic feedback™®. As a result, the sum mode A has sub-shot noise when the system operates well
above threshold. Since the system runs well above threshold, the saturation effect limits the degree of

correlations. The present system can serve as an active device that provides high intensities and squeezed light.

3 Conclusion

It is possible to generate two-mode squeezing based on dressed-state EIT in a four-level tripod system.
In terms of the combination modes and dressed states, the four-level tripod system can be reduced to a
standard EIT system. Quantum beat occurs between the two cavity modes for the decoupling of the
relative mode. In the dressed state EIT system, there exist electron recycling pathways to form an intrinsic
feedback. The quantum beat and the deep feedback combine to make the sum mode operate well above
threshold and have sub-shot noise. This leads to the two-mode squeezing with high intensities for the two

cavity fields.
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