锶原子互组跃迁中原子相干谱的实验观测

王叶兵1 丛东亮1,2 许 朋1 田 晓1,2 常 宏1

(¹中国科学院国家授时中心时间频率基准重点实验室,陕西西安 710600 ²中国科学院大学,北京 100049

摘要 在热原子束中利用锶原子互组跃迁塞曼子能级构成的 V 型能级结构,通过荧光观测实验研究了互组跃迁中 的原子相干效应。对互组跃迁简并能级构成的 V 型能级结构的电磁诱导透明(EIT)效应进行了理论计算,且详细 分析了耦合光失谐、线宽和拉比频率对互组跃迁 EIT 效应的影响。实验测量了不同耦合光失谐和功率条件下的互 组跃迁电磁诱导透明效应。

关键词 量子光学;电磁诱导透明;原子相干;互组跃迁 中图分类号 O431.2 **文献标识码** A **doi**: 10.3788/AOS201333.0427001

Observation of Atomic Coherence in Intercombination Transition Line of Strontium Atom

Wang Yebing¹ Cong Dongliang^{1,2} Xu Peng¹ Tian Xiao^{1,2} Chang Hong¹

¹ Key Laboratory of Time and Frequency Primary Standards of Chinese Academy of Sciences, National Time Service Center, Chinese Academy of Sciences, Xi'an, Shaanxi 710600, China ² University of Chinese Academy of Sciences, Beijing 100049, China

Abstract The atomic coherence effect is investigated experimentally in the thermal strontium atomic beam by means of fluorescence observing, based on the V-type Zeeman-sublevel system of intercombination line of Sr. A theoretical calculation of the V-type electromagnetically induced transparency (EIT) has been elaborated, taking into account the effect of detuning, linewidth and Rabi frequency of the coupling laser on intercombination transition EIT. The V-type electromagnetically induced transparency of intercombination is measured experimentally under different condition of detuning and with different powers of the coupling laser.

Key words quantum optics; electromagnetically induced transparency; atomic coherence; intercombination transition

OCIS codes 020.1670; 300.2530; 300.6210

1 引 言

原子相干是由多能级原子和相干光场共同作用 实现的相干作用,如电磁诱导透明(EIT)^[1,2]、无反 转激光(LWI)^[3]、相干布居俘获(CPT)^[4]、电磁诱导 吸收(EIA)^[5]和无吸收折射率增强^[6]等。近二十年 来,原子相干一直是量子光学领域的研究热点之一。 原子相干在众多领域有重要的应用,比如 Subrecoil 激光冷却,折射率或非线性磁化率增强^[7]、高灵敏度 磁强计、光速减慢、光存储^[8]和原子干涉仪等。由于 碱金属原子能级简单且相干光源容易获取,因此原 子相干效应一般以其作为研究介质,例如铷和铯等 原子。而镁、钙和锶等碱土金属原子,最外层的两个 价电子形成单态和三重态,因此拥有更丰富的能级 结构用于原子相干效应的研究,可以展现更丰富的

收稿日期: 2012-10-24; 收到修改稿日期: 2012-12-06

基金项目:国家自然科学基金(11074252)、中国科学院百人计划基金(O916YC1101)和陕西省自然科学基金(Y112KF1101)资助课题。

作者简介: 王叶兵(1985—), 男, 硕士研究生, 主要从事光频标方面的研究。E-mail: wyblobin@126. com

导师简介:常 宏(1977-),男,博士,研究员,主要从事量子光学和光频标等方面的研究。

E-mail: changhong@ntsc.ac.cn(通信联系人)

物理内容,近年来成为人们关注的热点,其中单态和 三重态之间的互组跃迁有望在光频标和高分辨率光 谱等领域发挥重要作用^[9]。

对于原子相干的电磁诱导透明效应及其相关特 性已经进行了大量的理论和实验研究[10,11]。电磁 诱导透明效应最初是在锶原子蒸气介质中观测到 的[12],后续也有以锶原子为介质进行电磁诱导透明 效应的研究[13]。但是这些研究都选择的是偶极跃 迁,对碱土金属原子互组跃迁线的电磁诱导透明效 应研究较少。冷原子锶光钟系统的研制要求二级冷 却光源 689 nm 激光的线宽要低于锶原子互组跃迁 的自然线宽(7.5 kHz),应用窄线宽的电磁诱导透 明效应进行锁频可以同时实现 689 nm 激光的线宽 压窄和长期频率稳定。本文理论计算了 V 型三能 级结构的电磁诱导透明效应,分析了耦合光失谐、线 宽和拉比频率对电磁诱导透明效应的影响,然后使 用荧光探测的方法进行锶原子互组跃迁线的原子相 干效应的实验观测,并研究了耦合光的失谐和功率 对电磁诱导透明效应的影响。

2 锶原子互组跃迁线

由于锶原子最外层有两个价电子,自旋耦合的 不同导致其能级结构分为单态(S=0)和三重态 (S=1),如图 1(a)所示为⁸⁸Sr 原子能级简图。单态 或三重态内的跃迁为偶极跃迁,服从偶极选择定则 $(\Delta S=0)$,例如单态间的 $(5s^2)^1S_0 - (5s5p)^1P_1$ 跃 迁,对应波长为460.86 nm,自然线宽为32 MHz;而 单态和三重态之间的跃迁不符合偶极选择定则,理 论上是严格禁阻的。但是锶原子的原子量较大,价 电子自身的自旋轨道磁耦合作用相对较强,使原子 偏离了严格的 LS 耦合,由于自旋轨道耦合以及其 他的相对论效应的修正, ${}^{1}P_{1}$ 态和 ${}^{3}P_{1}$ 态出现混 合[14],增加了跃迁的概率,理论上的禁阻跃迁变为 局部允许,所以实际上仍有微弱的跃迁发生,称为互 组跃迁,对应波长为 689.45 nm,相应的³P₁ 态的寿 命为21 us。互组跃迁的特征是线宽窄、寿命长,因 此互组跃迁中原子相干的原子波函数有更长的相干 演化时间。

图 1⁸⁸ Sr 原子能级简图。(a) (5s²)¹ S₀ - (5s5p)³ P₁ 互组跃迁:(b)相应的 Zeeman 子能级

Fig. 1 Energy levels of ⁸⁸Sr atom. (a) $(5s^2)^1S_0 - (5s5p)^3P_1$ intercombination transition; (b) relevant Zeeman sublevels 实现原子相干的三能级结构有三种类型: Λ 型, 梯形和 V 型。由于⁸⁸ Sr 为玻色子,没有核自旋(I= 0),因此基态无超精细能级结构。实验中以⁸⁸Sr 原子 的 $(5s^2)^1S_0 - (5s5p)^3P_1$ 互组跃迁为基础,由基态和 $(5s5p)^{3}P_{1}$ 态的两个塞曼子能级 $(m_{1} = \pm 1)$ 组成一个 V型能级结构,如图1(b)所示。

采用半经典理论来模拟,能级 | a > 和 | b > 被强耦

合光所耦合,耦合光的拉比频率为 Ω_{o} ,原子能级 $|a\rangle$ 跃迁到 $|b\rangle$ 的角频率为 ω_{ab} ,原子能级 $|c\rangle$ 跃迁到 $|b\rangle$ 的角频率为 ω_{a} ,原子能级 $|c\rangle$ 到 $|b\rangle$ 的跃迁偶极矩 为 μ_{d} , \hbar 为普朗克常量, E为探测光振幅, 失谐为 $\Delta_{c} =$ $\omega_{ab} - \nu_{c}$ 。弱探测光耦合能级 $|c\rangle$ 和 $|b\rangle$,拉比频率为 $\Omega_{\rm p} = \mu_{d} E / \hbar$,失谐为 $\Delta_{\rm p} = \omega_{d} - \nu_{\rm p}$ 。在电偶极近似和旋 转波近似条件下,密度矩阵元的运动方程分别为

$$\dot{\rho}_{aa} = -\gamma_{a}\rho_{aa} - \frac{i}{2}\Omega_{c}\exp(i\nu_{c}t)\rho_{ab} + \frac{i}{2}\Omega_{c}\exp(-i\nu_{c}t)\rho_{ba}, \qquad (1)$$

$$\dot{\rho}_{bb} = -\gamma_{b}\rho_{bb} - \frac{i}{2}\Omega_{c}\exp(-i\nu_{c}t)\rho_{ba} + \frac{i}{2}\Omega_{c}\exp(i\nu_{c}t)\rho_{ab} + \frac{i}{2}\Omega_{p}\exp(i\nu_{p}t)\rho_{db} - \frac{i}{2}\Omega_{p}\exp(-i\nu_{p}t)\rho_{bc}, \qquad (2)$$

$$\dot{\rho}_{\alpha} = -\gamma_{\rm c}\rho_{\alpha} - \frac{\mathrm{i}}{2}\Omega_{\rm p}\exp(\mathrm{i}\nu_{\rm p}t)\rho_{\phi} + \frac{\mathrm{i}}{2}\Omega_{\rm p}\exp(-\mathrm{i}\nu_{\rm p}t)\rho_{bc}, \qquad (3)$$

$$\dot{\rho}_{ab} = -\left(\mathrm{i}\omega_{ab} + \gamma_{ab} + 2\Delta\upsilon\right)\rho_{ab} + \frac{\mathrm{i}}{2}\Omega_{\mathrm{c}}\exp(-\mathrm{i}\nu_{\mathrm{c}}t)\left(\rho_{bb} - \rho_{aa}\right) - \frac{\mathrm{i}}{2}\Omega_{\mathrm{p}}\exp(-\mathrm{i}\nu_{\mathrm{p}}t)\rho_{ac},\qquad(4)$$

$$\dot{\rho}_{db} = -\left(\mathrm{i}\omega_{db} + \gamma_{db}\right)\rho_{db} + \frac{\mathrm{i}}{2}\Omega_{\mathrm{p}}\exp(-\mathrm{i}\nu_{\mathrm{p}}t)\left(\rho_{bb} - \rho_{\alpha}\right) - \frac{\mathrm{i}}{2}\Omega_{\mathrm{c}}\exp(-\mathrm{i}\nu_{\mathrm{c}}t)\rho_{\alpha}, \qquad (5)$$

$$\dot{\rho}_{a} = -\left(\mathrm{i}\omega_{a} + \gamma_{a} + 2\Delta v\right)\rho_{a} - \frac{\mathrm{i}}{2}\Omega_{c}\exp(\mathrm{i}\nu_{c}t)\rho_{b} + \frac{\mathrm{i}}{2}\Omega_{p}\exp(-\mathrm{i}\nu_{p}t)\rho_{ba}, \qquad (6)$$

式中 $\gamma_{ab} = \gamma_a/2, \gamma_b = \gamma_c/2, \gamma_a = (\gamma_a + \gamma_c)/2, \gamma_a, \gamma_c$ 和 γ_b 分别是激发态 $|a\rangle, |b\rangle$ 和基态 $|c\rangle$ 的自发辐射 率。 $\Delta \nu$ 是耦合光的激光线宽。

实验中探测光的吸收和色散与如下相干项的虚部和实部分别成比例

$$\tilde{\rho}_{\phi} = \frac{\mathrm{i}\mu_{\phi}E(\mathrm{i}\Delta_{\mathrm{p}} - \mathrm{i}\Delta_{\mathrm{c}} + \gamma_{a} + 2\Delta\nu)}{2\hbar\left[(\mathrm{i}\Delta_{\mathrm{p}} + \gamma_{c}/2)(\mathrm{i}\Delta_{\mathrm{p}} - \mathrm{i}\Delta_{\mathrm{c}} + \gamma_{a} + 2\Delta\nu) + |\Omega_{\mathrm{c}}|^{2}/4\right]},\tag{7}$$

式中po的虚部为探测光的吸收

$$\chi'' = \frac{N_a |\mu_{db}|^2}{\varepsilon_0 \hbar Z} \Big\{ (\Delta_p - \Delta_c) \big[\gamma_c (\Delta_p - \Delta_c) + \Delta_p (\gamma_a + 2\Delta\nu) \big] - (\gamma_a + 2\Delta\nu) \Big[\Delta_p (\Delta_p - \Delta_c) - (\gamma_a + 2\Delta\nu) \gamma_c - \frac{|\Omega_c|^2}{4} \Big] \Big\},$$
(8)

 $\mathfrak{K} \oplus Z = \left[\Delta_{\mathrm{p}} (\Delta_{\mathrm{p}} - \Delta_{\mathrm{c}}) - (\gamma_{\mathrm{a}} + 2\Delta_{\nu})\gamma_{\mathrm{c}} - \left| \Omega_{\mathrm{c}} \right|^{2} / 4 \right]^{2} + \left[\gamma_{\mathrm{c}} (\Delta_{\mathrm{p}} - \Delta_{\mathrm{c}}) + \Delta_{\mathrm{p}} (\gamma_{\mathrm{a}} + 2\Delta_{\nu}) \right]^{2} .$

在 V 型三能级系统中, 探测光的吸收(与 $\tilde{\rho}_{d}$ 成 正比)和荧光(与 ρ_{α} 成正比) 互为比例, 彼此是相对 应的,由(1)式可以看出^[15]

$$\rho_{\alpha} = 2 \left| E \right|^2 \operatorname{Re} \frac{\rho_{\phi}}{i E \gamma_c}. \tag{9}$$

由(8)式可知,电磁诱导透明的强度和线宽受原 子能级特性和激光参量的共同影响,原子能级结构 和特性是无法改变的,但是可以研究激光参量对电 磁诱导透明的影响。由理论模拟可知,电磁诱导透 明线宽应与互组跃迁的自然线宽 $\gamma=7.5$ kHz 量级 相当^[16],此时电磁诱导透明信号受激光参量的影响 较大,如耦合光的失谐,线宽和拉比频率等。

图 2 是探测光的吸收随探测光和耦合光的失谐 的变化,其中耦合光的线宽为 1.5 MHz,拉比频率 为 4.5 MHz。电磁诱导透明信号随着耦合光失谐 变化不断的偏离吸收的中心位置,但是总是出现在 耦合光和探测光失谐相等的地方,即只要满足双光 子共振条件就可以出现电磁诱导透明效应。

探测光的吸收随探测光的失谐和耦合光的线宽 的变化如图 3 所示,其中耦合光的拉比频率为 1.5 MHz,随着耦合光线宽的增加,电磁诱导透明信 号的强度逐渐减小甚至消失,线宽逐渐增加。这也说 明加宽耦合光的线宽相当于增加了非自发辐射率。

图 4 是理论模拟的探测光的吸收随探测光失谐和 耦合光的拉比频率的变化图,其中耦合光的线宽为 1 MHz。从中可以看出,随着耦合光拉比频率的增加,

图 2 探测光的吸收随探测光和耦合光的失谐的变化 Fig. 2 Absorption of probe as a function of the probe detuning and the coupling-light detuning

图 3 探测光的吸收随探测光的失谐和耦合光的线宽 Fig. 3 Absorption of probe as a function of the probe detuning and the linewidth of the coupling light

图 4 探测光的吸收随探测光的失谐和耦合光的 拉比频率的变化

Fig. 4 Absorption of probe as a function of the probe detuning and the Rabi frequency of the coupling light 电磁诱导透明信号的强度不断增加且线宽增加。

3 实验装置

实验装置示意图如图 5 所示,主要由外腔半导体 激光器(ECDL)、光隔离器(IO)、偏振分束棱镜(PBS) 和光电二极管(PD)。锶原子由温度为 930 K,真空度 为2.5×10⁻⁶ Pa 的锶炉喷发出来形成热原子束,原子 的发散角约为 25 mrad。耦合光和探测光分别来自 两个温控的外腔半导体激光器,这两个激光器都可 以调谐到锶原子(5s²)¹S₀-(5s5p)³P₁ 互组跃迁线。 一个光栅反馈外腔半导体激光器(ECDL)用作探测 光,其典型线宽为 1 MHz,实验中处于扫描状态且 一部分激光入射到法布里-珀罗(F-P)腔用于模式检 测;另外一个自制的半导体激光器作为耦合光源,实 验时锁定于锶原子束互组跃迁的饱和荧光谱线。

为了消除剩余多普勒线宽,选择耦合光和探测 光同向传输的方式^[17,18],两个同向传输的激光束通

图 5 实验装置示意图 Fig. 5 Schematic diagram of the experimental setup

过偏振分束棱镜重合,再经过四分之一波片后耦合 光和探测光都变为旋转方向不同的圆偏振光,然后 垂直入射到真空腔和原子相互作用。实验中,耦合 光(10 mW,对应的拉比频率约 0.6 MHz)强于探测 光(1 mW),两者的光斑半径均为 8.5 mm。

由(9)式可知,探测光的荧光与吸收是成比例 的,实验中通过探测光的荧光来观测电磁诱导透明 效应,这是由于(5s5p)³P₁态的自发辐射率极小 (Γ =4.7×10⁴/s)^[19],荧光的信噪比要好于吸收。 实验中探测到的荧光是 ρ_{α} 和 $\rho_{\alpha\alpha}$ 的和,而弱探测光的 引入基本上不改变态 $|a\rangle$ 的布居数, $\rho_{\alpha\alpha}$ 项可近似看 作一个不变的量,因此实际上探测到的荧光变化量 为 ρ_{α} 的变化量。弱探测光的荧光由位于原子束和 激光相互作用区域上方的光电二极管来收集^[20]。 同时在真空腔的另外一对窗口上观测原子束的互组 跃迁的饱和荧光谱,作为频率参考,频率标准由一个 自由光谱区为 750 MHz 的参考腔来提供。

4 实验结果与讨论

观测了荧光中的电磁诱导透明效应,如图 6 所示,其中曲线 a 为无耦合光时弱探测光的荧光谱,曲线 b 为耦合光功率为 10 mW 时探测光的荧光谱,曲线 c 为添加较弱匀强外磁场(B=1.65 mT)条件下的耦合光功率为 10 mW 时探测光的荧光谱,曲线 d 为探测光的饱和荧光谱。无耦合光时,探测光荧光谱的两个峰分别为⁸⁸ Sr 和⁸⁶ Sr^[21],其线宽对应于热原子束的一级多普勒展宽;耦合光的相干作用使得⁸⁸ Sr 的峰顶出现一个凹陷,即电磁诱导透明现象, 其线宽为 4.1 MHz,是由激光线宽、多普勒加宽等因素导致的^[22]。

图 6 (5s²)¹S₀-(5s5p)³P₁ 互组跃迁荧光谱 Fig. 6 Experimental fluorescence spectra of (5s²)¹S₀-(5s5p)³P₁ intercombination transition

简并的塞曼子能级,实验进一步观测了添加较弱匀 强外磁场情况下的电磁诱导透明效应,此时两个上 能级不再简并,可以排除饱和效应对电磁诱导透明 效应的影响。实验观测到探测光荧光峰上的凹陷相 比无磁场情况下有所减小,如图 6 中曲线 c 所示。 这也说明图 6 曲线 b 上的凹陷是由电磁诱导透明效 应和饱和效应共同造成的,但在同向传输形态中,电 磁诱导透明效应为主要因素^[17]。同时曲线 b 也不 同于饱和光谱(曲线 d),由探测光的饱和光谱可见, 不只⁸⁸ Sr 已经饱和,⁸⁶ Sr 也出现了饱和。

图 7 为不同耦合光失谐情况下的探测光的荧光 谱,随着耦合光偏离共振,出现电磁诱导透明效应的 位置偏离荧光峰,深度也逐渐减小。

图 7 不同耦合光失谐时的实验荧光谱

将(8)式求导且使之等于零,可以求出荧光峰的 最高点与荧光峰上凹陷的最低点,二者相减可以计 算出电磁诱导透明峰的强度,理论数值模拟结果如 图 8 中的曲线所示。实验中在耦合光功率从

Fig. 8 EIT signal intensity versus the Rabi frequency of coupling light

2.5 mW变到 8.5 mW 的过程中,保持探测光功率 不变,电磁诱导透明效应的强度不断增加,其实验数 据测量值如图 8 的黑点所示。从中可以看出实验数 据和理论计算符合的很好。

5 结 论

在实验上观测了锶热原子束中互组跃迁线塞曼 子能级间的原子相干效应,观测到荧光峰上的凹陷, 即电磁诱导透明现象。由理论模拟可知,耦合光的 失谐量、线宽和拉比频率对电磁诱导透明有很大的 影响。实验上观测了耦合光失谐和功率对互组跃迁 电磁诱导透明的影响。由于耦合光和探测光来自于 两台独立的激光器且线宽较宽,因此实验获得的电 磁诱导透明谱线的线宽较宽。若使用同一台激光器 来产生耦合光和探测光且采用线宽更窄的激光器, 同时以冷原子作为研究介质,将会获得线宽更窄的 电磁诱导透明信号,进而进行 689nm 激光器的锁频 可以同时实现 689 nm 激光的线宽压窄和长期频率 稳定。

参考文献

- 1 J. E. Field, K. H. Hahn, S. E. Harris. Observation of electromagnetically induced transparency in collisionally broadened lead vapor [J]. *Phys. Rev. Lett.*, 1991, **67** (22): 3062~3065
- 2 M. Xiao, Y. Q. Li, S. Z. Jin *et al.*. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms[J]. *Phys. Rev. Lett.*, 1995, **74**(5): 666~669
- 3 E. S. Fry, X. F. Li, D. Nikonov *et al.*. Atomic coherence effects within the sodium D1 line: lasing without inversion via population trapping [J]. *Phys. Rev. Lett.*, 1993, **70** (21): 3235~3238
- 4 J. Vanier, M. W. Levine, D. Janssen *et al.*. Contrast and linewidth of the coherent population trapping transmission hyperfine resonance line in ⁸⁷Rb; effect of optical pumping[J]. *Phys. Rev. A*, 2003, **67**(6): 65801
- 5 A. M. Akulshin, S. Barreiro, A. Lezama. Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor[J]. *Phys. Rev.* A, 1998, **57**(4): 2996~3002
- 6 M. O. Scully. Enhancement of the index of refraction via quantum coherence [J]. Phys. Rev. Lett., 1991, 67 (14): 1855~1858
- 7 J. O. Weatherall, C. P. Search. Quantum control of dispersion in electromagnetically induced transparency via interacting dressed ground states[J]. *Phys. Rev. A*, 2008, **78**(5): 53802
- 8 G. Heinze, A. Rudolf, F. Beil *et al.*. Storage of images in atomic coherences in a rare-earth-ion-doped solid[J]. *Phys. Rev.* A, 2010, 81(1): 11401
- 9 T. Mukaiyama, H. Katori, T. Ido *et al.*. Recoil-limited laser cooling of (span)⁸⁷ Sr(/span) atoms near the fermi temperature [J]. *Phys. Rev. Lett.*, 2003, **90**(11): 113002
- 10 Wang Li, Song Haizhen, Xiao Shaowu. Influence of laser-field linewidth on atomic coherence effect in four-level atomic system [J]. Acta Optica Sinica, 2008, 28(1): 194~199

王 丽, 宋海珍, 肖绍武. 激光场线宽对四能级原子系统相干效 应的影响[J]. 光学学报, 2008, **28**(1): 194~199

- 11 T. Y. Abi-Salloum. Electromagnetically induced transparency and autler-townes splitting two similar but distinct phenomena in two categories of three-level atomic systems[J]. *Phys. Rev. A*, 2010, **81**(5): 53836
- 12 K. J. Boller, A Imamoglu, S. E. Harris. Observation of electromagnetically induced transparency[J]. *Phys. Rev. Lett.*, 1991, 66(20): 2593~2596
- 13 S. Mauger, J. Millen, M. P. A. Jones. Spectroscopy of strontium Rydberg states using electromagnetically induced transparency[J]. J. Phys. B, 2007, 40(2): F319~F325
- 14 M. Schioppo. Development of a Transportable Strontium Optical Clock[D]. Fisica: University of Firenze, 2010. 37~46
- 15 G. R. Welch, G. G. Padmabandu, E. S. Fry *et al.*. Observation of V-type Electromagnetically Induced Transparency in a sodium atomic beam [J]. *Foundations of Physics*, 1998, 28(4): 621~638
- 16 Ma Zhe, Chang Hong, Zhang Shougang. Theory of electromagnetically induced transparency in Sr atomic system[J]. J. Time and Frequency, 2011, 34(2): 87~95
 - 马 喆,常 宏,张首刚. Sr 原子电磁感应透明效应相关理论研 究[J].时间频率学报, 2011, **34**(2): 87~95

- 17 A. Lazoudis, T. Kirova, E. H. Ahmed *et al.*. Electromagnetically induced transparency in an open V-type molecular system[J]. *Phys. Rev. A*, 2011, **83**(6): 63419
- 18 S. Shepherd, D. J. Fulton, M. H. Dunn. Wavelength dependence of coherently induced transparency in a Dopplerbroadened cascade medium [J]. *Phys. Rev. A*, 1996, **54**(6): 5394~5399
- 19 S. Gateva, E. Alipieva, E. Taskova. Power dependence of the coherent-population-trapping resonances registered in fluorescence and transmission resonance-width narrowing effects [J]. *Phys. Rev. A*, 2005, **72**(2): 25805
- 20 Cong Dongliang, Wang Yebing, Xu Peng *et al.*. Bias detector used for fluorescence spectrum of strontium intercombination transition[J]. *Acta Optica Sinica*, 2012, **32**(7): 0704001 丛东亮, 王叶兵,许 朋等. 锶原子互组跃迁荧光探测系统的研 制[J]. 光学学报, 2012, **32**(7): 0704001
- 21 G. Ferrari, P. Cancio, R. Drullinger *et al.*. Precision frequency measurement of visible intercombination lines of strontium[J]. *Phys. Rev. Lett.*, 2003, 91(24): 243002
- 22 A. Javan, O. Kocharovskaya, H. Lee *et al.*. Narrowing of electromagnetically induced transparency resonance [J]. *Phys. Rev. A*, 2002, **66**(1): 13805

栏目编辑:李文喆