镜面对称法绝对测量中的误差补偿方法

何宇航 柴立群 陈 波 李 强 魏小红 高 波

(成都精密光学工程研究中心,四川成都 610091)

摘要 提出了一种对镜面对称法绝对测量中的原理性误差进行补偿的方法。镜面对称法绝对测量中,需要旋转其 中一块平板,由于旋转次数的有限性,重构的三板波前均存在缺失 *cNθ* 项的原理性误差。通过增加一次不同角度 的旋转,根据 Zernike 多项式在极坐标系中形式的旋转不变性,对旋转前后的波前差值求解多项式系数方程,获得 了 *cNθ* 项的多项式系数,进而对原理性误差进行了补偿。由于 *cNθ* 项包含无穷多项,根据精度的需要和计算开销 决定补偿的项数。模拟实验证明了该补偿方法的有效性。

关键词 测量;误差补偿;Zernike 多项式;镜面对称;绝对测量;测量精度 中图分类号 O436 **文献标识码** A **doi**: 10.3788/AOS201333.0412003

Error Compensation Method for Mirror Symmetry Absolute Measurement

He Yuhang Chai Liqun Chen Bo Li Qiang Wei Xiaohong Gao Bo (Chengdu Fine Optical Engineering Research Center, Chengdu, Sichuan 610091, China)

Abstract A method is proposed to compensate intrinsic error in mirror symmetry absolute measurement. Because of the limitation of rotation times in mirror symmetry absolute measurement, intrinsic error of $cN\theta$ terms occurs in reconstructed wavefronts of three flats. By adding a rotation with a different angle, the wavefront difference between two measurements before and after rotation is calculated, and the Zernike coefficients of $cN\theta$ terms can be obtained by coefficient equations due to rotation invariability of the form of Zernike polynomials in polar coordinates. Therefore the intrinsic error of $cN\theta$ terms may be compensated. Because the amount of $cN\theta$ terms is infinite, the compensated terms are decided in terms of the balance between accuracy and computing capacity. Computer simulation proves the validity of the proposed method.

Key words measurement; error compensation; Zernike polynomials; mirror symmetry; absolute measurement; measurement accuracy

OCIS codes 120.6650; 120.4630; 120.3180

1 引

言

光干涉方法是检测光学平面面形时普遍采用的 一种方法,但当所检平面与参考平面精度在同一量级 时,测试精度将受到参考平面精度的制约。将所检平 面与参考平面分离的方法称为绝对检验,其中研究最 多的是 Schulz 等^[1,2]提出的三板互检法。传统的三板 互检法通过三次测量只能获得一条线上的轮廓,后来 借助于旋转、平移测量能够检测到整个面上的轮 廓^[3~16],具有代表性的方法有 Fritz^[5]提出的 Zernike 多项式拟合方法,Ai 等^[7]提出的奇偶函数法,Evans 等^[9]提出的旋转对称法以及 Griesmann^[13]提出的镜 面对称法等。

镜面对称法在传统三板互检法的基础上新增一 组旋转测量,旋转的角度呈等差数列分布并恰好组 成一个周期,对测量的波前结果取平均可以消去旋 转平板的旋转非对称部分^[13]。在数据处理上将所 测的波前分解成奇、偶分量,分别解奇、偶分量方程 可以获得三块平板波前的奇、偶成分,叠加后获得三

作者简介:何宇航(1981—),男,博士,助理研究员,主要从事光学精密测量和光电信息处理等方面的研究。

E-mail: hang_yu_he@163.com

收稿日期: 2012-11-12; 收到修改稿日期: 2012-11-27

板的波前。镜面对称法由于数据处理简单、计算量 少、测量精度较高,被认为是三板互检法中最简单有 效的方法之一。

在镜面对称法绝对测量中,理论上需要将一个 被测面旋转无数次,实际操作中的有限次旋转将造 成缺失 $cN\theta$ 项的原理性误差。本文在镜面对称法 的基础上,通过增加一次不同角度的旋转,根据 Zernike 多项式在极坐标系中形式的旋转不变性,对 旋转前后的波前差值求解 Zernike 多项式系数方 程,获得了 $cN\theta$ 项的 Zernike 系数,进而对缺失的 $cN\theta$ 项进行了误差补偿。

2 镜面对称法的测量原理

镜面对称法在传统三板互检法的基础上增加了 一组旋转测量^[13]。在传统的三板互检法中^[1,2],三 块平板 A、B 和 C 通过测量序列(BA、CA、CB)相互 比较测量,如图 1(a),(c)和(d)所示;由于 B 板既要 作为参考面又要作为被测面,三次测量只能得到 y 轴上的轮廓。新增的旋转测量如图 1(b)所示,将板 A 等间隔旋转(N-1)次,旋转的角度间隔为 $\Delta \phi = 2\pi/N$ 。对 N 次测量波前结果取平均,可以获得波 前值 $W_2(x,y)$:

$$W_{2}(x,y) = \frac{1}{N} \sum_{k=0}^{N-1} \{W_{\mathrm{B}}(-x,y) + [W_{\mathrm{A}}(x,y)]^{k \Delta \phi}\} \approx$$

$$W_{\rm B}(-x,y) + W_{\rm A}^{\rm R}(x,y), \qquad (1)$$

式中[•]⁴⁴ 表示旋转角度 k如 后的波前,W^R_A(x,y) 表示波前 W_A 的旋转对称部分^[13]。通过等间隔的旋转测量,就消去了 A 板的旋转非对称部分。这样四组

图 1 镜面对称法的测量序列 Fig. 1 Measurement sequence of mirror symmetry method

测量获得的波前写成矩阵方程为

$$\begin{bmatrix} W_{1}(x,y) \\ W_{2}(x,y) \\ W_{3}(x,y) \\ W_{4}(x,y) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} W_{A}(x,y) \\ W_{B}(x,y) \\ W_{B}(-x,y) \\ W_{C}(-x,y) \\ W_{A}(x,y) \end{bmatrix}.$$
(2)

将(2)式中的波前分解为奇偶两个分量,分别解 奇偶分量方程可以得到平板 A、B、C 的波前^[13]:

$$\begin{bmatrix} \mathbf{W}_{\mathrm{A}} \\ \mathbf{W}_{\mathrm{B}} \\ \mathbf{W}_{\mathrm{C}} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 & 2 & -2 & 0 & 0 \\ 1 & -1 & 1 & 2 & -2 & -2 & 2 \\ -1 & 1 & 1 & 2 & -2 & -2 & 0 \end{bmatrix} \times$$

$$\begin{bmatrix} \mathbf{W}^{\mathrm{e}} & \mathbf{W}^{\mathrm{e}} & \mathbf{W}^{\mathrm{e}} & \mathbf{W}^{\mathrm{o}} & \mathbf{W}^{\mathrm{o}} & \mathbf{W}^{\mathrm{o}} \end{bmatrix}^{\mathrm{T}} \quad (3)$$

 $[W_1^{\circ} W_3^{\circ} W_4^{\circ} W_1^{\circ} W_2^{\circ} W_3^{\circ} W_4^{\circ}]^1$, (3) 式中 $(W_1 \sim W_4)$ 的奇、偶分量可以通过在 *x* 方向做镜 像操作得到^[13]。镜面对称法由于只需要在一个方向 对波前数据做镜像操作,数据处理简单,计算量小。

3 误差补偿方法

3.1 原理性误差分析

对于(1)式中的 $W^{R}_{A}(x,y)$,满足

$$W_{\mathbf{A}}^{\mathbf{R}}(x,y) = \lim_{N \to \infty} \left\{ \frac{1}{N} \sum_{k=0}^{N-1} \left[W_{\mathbf{A}}(x,y) \right]^{k \Delta \phi} \right\}.$$
(4)

理论上讲,旋转的次数越多,由(3)式得到的结 果精度越高;但在实际测量中,太多的旋转次数必然 使得测量时间大量增加,这时环境变化引入的重复 性误差也会增大;因此,实际的旋转次数是一个平衡 考虑的结果。

当 N 为有限数量时,将(1) 式中的波前 W₂(x,y) 代入(3) 式会存在误差。实际上,当 N 为有限数量时, 存在^[13]

$$W_{2}(x,y) = W_{B}(-x,y) + W_{A}^{R}(x,y) + \Omega_{A}^{cN\theta}(x,y).$$
(5)

如果将一个波前函数在极坐标系中拟合成 Zernike 多项式,(5)式中的 $\Omega_A^{R\theta}(x,y)$ 等于多项式 中所有幅角为 $cN\theta$ 的项的和,c为正整数,N为旋转 次数, θ 为角变量。因此,只需要找到 $\Omega_A^{cN\theta}(x,y)$,将 (3)式中的 $W_2(x,y)$ 用 $W_2(x,y) - \Omega_A^{cN\theta}(x,y)$ 替换, 即可以消除旋转次数的有限性造成的误差。

3.2 误差补偿

对于一个在圆域内的波前函数 W,极坐标系中可以表示成 Zernike 多项式的叠加:

 $W(r,\theta) = \sum_{n,l} R_n^l [z_n^l \cos(l\theta) + z_n^{-l} \sin(l\theta)], (6)$ 式中 z_n^l, z_n^{-l} 为多项式系数。将波前顺时针旋转一个

角度
$$\varphi$$
, 得到的波前可以表示为
 $[W(r,\theta)]^{\varphi} = W(r,\theta-\varphi) =$
 $\sum_{n,l} R_n^l [z_n^{\varphi,l} \cos(l\theta) + z_n^{\varphi,-l} \sin(l\theta)], (7)$
 $z_n^{\varphi,l} = z_n^l \cos(l\varphi) - z_n^{-l} \sin(l\varphi), (8)$

$$z_n^{\varphi,-l} = z_n^{-l} \cos(l\varphi) + z_n^l \sin(l\varphi). \tag{9}$$

对旋转前后的波前差值 $E(r,\theta)$ 做 Zernike 多项式拟合,可以表示为

$$E(r,\theta) = W(r,\theta) - [W(r,\theta)]^{\varphi} = \sum_{n,l} R_n^l [e_n^l \cos(l\theta) + e_n^{-l} \sin(l\theta)].$$
(10)

由(6)~(10)式可以得到

$$z_{n}^{l} = \frac{1}{2} \bigg[e_{n}^{l} - \frac{e_{n}^{-l} \sin(l\varphi)}{1 - \cos(l\varphi)} \bigg], \qquad (11)$$

$$z_n^{-l} = \frac{1}{2} \bigg[e_n^{-l} + \frac{e_n^l \sin(l\varphi)}{1 - \cos(l\varphi)} \bigg].$$
(12)

因此,在使用镜面对称法测量时,通过在图 1(b) 中对 A 板多旋转一个角度,可以得到(5)式中 $\Omega_{A}^{N\theta}(x,y)$ 各 Zernike 项的系数,也就是幅角为 $cN\theta$ 项 的系数;但是旋转的角度 $\varphi \neq 2\pi/(cN)$,否则将会使 得(11)、(12)式右边的分母为 0。由于 Zernike 多项 式在单位圆内正交,可以使用(10)式直接对幅角为 $cN\theta$ 的项进行拟合,直接解这些项的系数方程,不需 要其他项参与。

由(3)式和(5)式可以看到,对A、B、C板的波前 都应该给予[$\Omega_A^{eN\theta}(x,y)$][°]的补偿,

$$\left[\Omega_{\mathbf{A}}^{cN\theta}(x,y)\right]^{\circ} = \frac{1}{2} \left[\Omega_{\mathbf{A}}^{cN\theta}(x,y) - \Omega_{\mathbf{A}}^{cN\theta}(-x,y)\right],$$
(13)

在极坐标中,(13)式可以写成

$$\left[\Omega_{\mathbf{A}}^{cN\theta}(\mathbf{r},\mathbf{k}N\theta)\right]^{\circ} = \frac{1}{2} \left\{\Omega_{\mathbf{A}}^{cN\theta}(\mathbf{r},cN\theta) - \Omega_{\mathbf{A}}^{cN\theta}\left[\mathbf{r},cN\left(\pi-\theta\right)\right]\right\} = \frac{1}{2} \sum_{n,cN} R_{n}^{cN} \left\{a_{n}^{cN}\left[\cos(cN\theta) - \cos(cN\pi - cN\theta)\right]\right\} + \frac{1}{2} \sum_{n,cN} R_{n}^{cN} \left\{a_{n}^{-cN}\left[\sin(cN\theta) - \sin(cN\pi - cN\theta)\right]\right\}.$$
(14)

当 c 为奇数时,(14)式可以写成 $\left[\Omega_{A}^{cN\theta}(r,cN\theta)\right]^{\circ} = \sum_{n,cN} R_{n}^{cN} a_{n}^{cN} \cos(cN\theta); (15)$

当 c 为偶数时,(14)式可以写成

$$\left[\Omega_{\mathbf{A}}^{cN\theta}(\mathbf{r},cN\theta)\right]^{\circ} = \sum_{n,cN} R_{n}^{cN} a_{n}^{-cN} \sin(cN\theta).$$
(16)

也就是说,当 c 为奇数时,补偿余弦项;当 c 为 偶数时,补偿正弦项。在由(11)、(12)式获得(15)、 (16)式中的 a_n^{eN} 和 a_n^{eN} 后,对A、B、C板的波前进行 补偿。应当看到:Zernike 多项式中幅角为 $cN\theta$ 的 项数目是无穷的,而波前的能量主要集中在低频部 分, $cN\theta$ 前面项的系数一般大于后面项,可以根据精 度的需要和计算开销决定补偿的项数,对多项式前面 的项先进行补偿。这样,在镜面对称法中使用较少的 旋转次数,仅仅通过增加一次旋转测量(此时增加的 重复性误差也较小),就能实现测量精度的提升。

4 模拟实验

以两块直径为 100 mm、标称精度为 λ/20(λ= 632.8 nm)的标准镜作为参考面和被测面在干涉仪 上测量所获得的波前数据作为 A 板的波前,如图 2 所示。以两个理想平面作为 B 板和 C 板的波前。 由(3)式可以看到,A、B、C 板存在相同的原理性误 差,因此在实验中只需要比较误差补偿前后 A 板的 误差大小。模拟实验中将 A 板连续旋转 4 次(N=5),每次旋转的角度为 72°,新增一次旋转的角度为 30°,所使用的像素分辨率为 600 pixel×600 pixel。

图 2 A 板波前 Fig. 2 Original wavefront of flat A

图 3 为采用镜面对称法重构的 A 板的波前, 图 4显示了其误差分布,从中可以看到明显的 5 θ 项 频率成分,计算其峰谷(PV)值为 0.0042 λ ,均方根 (RMS)值为 5.5893×10⁻⁴ λ 。采用补偿方法对误差 进行补偿,图 5 显示了所补偿的误差分布,补偿的项 数为 12 项。图 6 显示了补偿后 A 板的误差分布, 从中只能看到高频的随机成分,计算其 PV 值为 0.0032 λ ,RMS 值为 3.5832×10⁻⁴ λ 。可见补偿后误 差的 RMS 值减少了约 2×10⁻⁴ λ ,约 0.13 nm。

图 3 重构的 A 板波前 Fig. 3 Reconstructed wavefront of flat A

图 4 补偿前的 A 板波前 Fig. 4 Wavefront of flat A before compensation

图 5 补偿波前 Fig.5 Wavefront of compensation

图 6 补偿后的 A 板波前 Fig. 6 Wavefront of flat A after compensation

表1显示了误差与补偿项数的关系,可以看到 随着补偿项数的增加,误差的 PV 值减少到一定程 度后不再变化,而 RMS 值不断减少。当补偿到一 定项数后,PV 值主要受高频随机噪声影响;另外随 着补偿项数的增加,对于相同的补偿项数,减少的 RMS 值越来越小,这说明原理性误差主要集中在低 频部分。由于随着补偿的项数增加,计算开销也越 来越大,因此应该在精度和计算量之间寻求平衡来 决定补偿的项数。

表1 A 板波前误差与补偿项数之间的关系

Table 1 Relationship between wavefront error of flat A and compensated Zernike terms

Number of compensated terms	$\mathrm{PV}\ /\lambda$	RMS / $(10^{-4} \lambda)$
0	0.0042	5.5893
3	0.0036	4.0364
6	0.0033	3.8129
9	0.0032	3.6727
12	0.0032	3.5832
15	0.0032	3.5539
18	0.0032	3.5419
21	0.0032	3.5063

为了保证补偿的 $cN\theta$ 项的准确性,应该控制旋转中的偏心和角度误差。通过计算机仿真表明,给 予补偿的 $cN\theta$ 项对角度误差不太敏感,对偏心比较敏感;在可以实现的情况下,偏心距在 3 pixel 以内,旋转角度误差在 2°以内,此时给予补偿的 $cN\theta$ 项相 对误差在 7%以内。

5 结 论

镜面对称法绝对测量中,存在旋转次数的有限 性造成的原理性误差。本文通过增加一次旋转,求 解旋转前后波前差值的 Zernike 多项式系数方程, 获得了缺失掉的 *cNθ* 项的波前,从而对三板的原理 性误差进行了补偿。在补偿计算中,根据精度的需 要和计算开销决定补偿的项数,对多项式前面的项 先进行补偿。计算机仿真证明了该方法的有效性。

参考文献

- 1 G. Schulz, J. Schwider. Precise measurement of planeness [J]. *Appl. Opt.*, 1967, **6**(6): 1077~1084
- 2 G. Schulz, J. Schwider. Establishing an optical flatness [J]. Appl. Opt., 1971, 10(4): 929~934
- 3 Xu Yang, Tang Feng, Wang Xiangzhao *et al.*. Measurement error analysis of absolute flatness test [J]. *Chinese J. Lasers*, 2011, **38**(10): 1008009

徐 洋,唐 峰,王向朝等.平面面形绝对检验技术测量误差分 析[J].中国激光,2011,38(10):1008009

4 Jügen Granna. Absolute testing of optical flats at points on a

square grid: error propagation [J]. *Appl. Opt.*, 1994, **33**(28): 6654~6661

- 5 B. S. Fritz. Absolute calibration of an optical flat [J]. Opt. Eng., 1984, 23(4): 379~383
- 6 Günter Schulz. Absolute flatness testing by an extended rotation method using two angles of rotation [J]. Appl. Opt., 1994, 32(7): 1055~1059
- 7 C. Ai, J. C. Wyant. Absolute testing of flats by using even and odd functions [J]. Appl. Opt., 1993, 32(25): 4698~4705
- 8 R. E. Parks, L. Z. Shao, C. J. Evans. Pixel-based absolute topography test for three flats [J]. *Appl. Opt.*, 1998, **37**(25): 5951~5956
- 9 C. J. Evans, R. N. Kestner. Test optics error removal [J]. *Appl. Opt.*, 1996, **35**(7): 1015~1021
- 10 Lin Weihao, Luo Hongxin, Song Li *et al.*. Absolute flatness measurement of optical elements in synchrotron radiation [J]. *Acta Optica Sinica*, 2012, **32**(9): 0912005 林维豪,罗红心,宋 丽等,同步辐射用光学元件面形绝对检测

你维蒙, 歹红心, 木 丽寺. 问步辐射用元子几件间形把对检测 方法的研究[J]. 光学学报, 2012, **32**(9): 0912005

11 Michael F. Küchel. A New approach to solve the three flat

problem [J]. Optik, 2001, 112(9): 381~391

- 12 Klaus R. Freischlad. Absolute interferometric testing based on reconstruction of rotational shear [J]. Appl. Opt., 2001, 40(10): 1637~1648
- 13 U. Griesmann. Three-flat test solutions based on simple mirror symmetry [J]. Appl. Opt., 2006, 45(23): 5856~5865
- 14 U. Griesmann, Q. Wang, J. Soons. Three-flat tests including mounting-induced deformations [J]. Opt. Eng., 2007, 46(9): 093601
- 15 Song Weihong, Wu Fan, Hou Xi. Study on the absolute testing of rotationally asymmetric surface deviation with the method of single rotation [J]. Acta Optica Sinica, 2012, **32**(9): 0912006 宋伟红,伍凡,侯溪. 基于单次旋转的旋转非对称面形误差 绝对检测技术研究[J]. 光学学报, 2012, **32**(9): 0912006
- 16 Chen Xu, Yuan Wenquan, Feng Yutao *et al.*. Study of the error of the reference lens in absolute spherical testing and the thermal deformation model establishment [J]. *Acta Optica Sinica*, 2011, **31**(2): 0212002

陈 旭,袁文全,冯玉涛等.绝对检验参考镜误差分析与热变形 模型建立[J].光学学报,2011,**31**(2):0212002

栏目编辑: 何卓铭