基于 Bregman 分离执行算法的稀疏角度 相位衬度计算层析重建

李镜李梦婕孙怡

(大连理工大学信息与通信工程学院, 辽宁 大连 116024)

摘要 相位衬度成像及其计算层析(CT)技术不同于传统的吸收衬度成像,是一种新型的 X 射线成像技术,因具有 高灵敏度、高衬度分辨率、能对软组织成像等特点而受到广泛关注。鉴于相位衬度 CT 往往导致非常长的辐射时间 和巨大的辐射剂量,而稀疏角度重建在降低辐射剂量方面又有着非常明显的优势,因此,研究针对相位衬度 CT 的 稀疏角度重建算法就变得非常有意义。近年来,针对解决稀疏重建的 Bregman 算法在图像处理方面被广泛应用。 将 Bregman 分离执行(BOS)算法引人到微分相位衬度 CT 中,提出了一种稀疏角度相位衬度 CT 的交替迭代重建 算法。数值模拟和实验表明,该方法可以在少量的投影数据下获得较好的重建效果。

关键词 图像处理;相位衬度计算层析;稀疏角度重建;Bregman 分离执行算法;交替迭代 中图分类号 O434.19 **文献标识码** A **doi**: 10.3788/AOS201333.1011001

Sparse Angular Differential Phase-Contrast Computed Tomography Reconstruction Using Bregman Operator Splitting Algorithm

Li Jing Li Mengjie Sun Yi

(School of Information and Communication Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China)

Abstract Phase-contrast computed tomography (CT), different from traditional absorption-contrast tomography, is a novel X-ray inspection method and has been widely used for it's high sensitivity, high resolution and better reconstructions for soft tissues. However, phase-contrat CT usually leads to unacceptably long exposure time and huge X-ray doses. Sparse angular algorithms show significant advantage over in reducing the X-ray doses. Thus, the study of sparse angular differential phase-contrast CT (DPC-CT) is particularly meaningful. After analyzing the characteristics of the DPC-CT, the Bregman operator splitting (BOS) algorithm is introduced into DPC-CT reconstruction and an alternating iteration algorithm for sparse angular DPC-CT is proposed. The numerical simulation and experiment results show that the proposed algorithm can obtain higher reconstruction quality in sparse angular condition.

Key words image processing; phase-contrast computed tomography; sparse angular reconstruction; split-Bregman algorithm; alternating iteration

OCIS codes 040.7480; 110.6955; 100.3010; 100.6950; 200.3050

1 引 言

目前的 X 射线医学成像技术是利用人体组织 器官对 X 射线的吸收差异作为图像衬度。然而,组 成人体的弱吸收物质对 X 射线的吸收不明显,而对 X 射线的相位改变幅度却很大。因此,利用相位信息发展的 X 射线相位衬度成像,特别适合观察由轻

作者简介:李 镜(1982-),男,博士研究生,主要从事计算层析算法和图像处理等方面的研究。

E-mail: dlutburnsky@yahoo.cn

导师简介:孙 怡(1964—),女,博士,教授,主要从事光电信息检测、图像处理与模式识别等方面的研究。 E-mail: lslwf@dlut.edu.cn(通信联系人)

收稿日期: 2013-04-10; 收到修改稿日期: 2013-05-15

基金项目: 国家自然科学基金(61071210)

元素构成的材料和生物组织,在生物学应用、医学临 床诊断和轻元素材料检测等方面具有广阔的应用前 景^[1]。目前比较成熟的 X 射线相衬成像技术主要 有:干涉仪成像法^[2]、类同轴成像法^[3]、衍射增强成 像法(DEI)^[4]和光栅成像法^[5-7]。但是,前三种方法 由于对射线源的要求较高很难用于工业无损检测和 临床医学诊断,而光栅成像法摆脱了对相干光源的 依赖,因而被广泛地应用于相衬成像领域。

但是光栅成像法需要对物体进行多次扫描来获 取折射信息,这必将导致过长的辐射时间和非常大 的辐射剂量,因此研究稀疏角度下的重建算法就显 得非常重要。目前,相位衬度重建算法主要可分为 两大类:第一类算法主张恢复出相位项梯度 $\nabla \delta^{[8-9]}$;第二类算法主张恢复出物体的相位项 $\delta^{[10-11]}$ 。在稀疏角度条件下,观测数据个数往往远 小于重建图像中的像素个数。求解该重建问题相当 于求解一个欠定的线性方程组。压缩感知(CS)理 论指出稀疏信号的重构问题可由最小化 L_0 范数解 决^[12],但最小化 L_0 范数是一个 NP-hard 问题,需要 通过穷举法解决,计算难度过大^[13]。因此,有学者

提出用 L_1 范数代替 L_0 范数求解 CS 类问题,如内 点法、梯度投影法(GPSR)和 Bregman 算法等。 GPSR 算法速度较快但精度稍低,Bregman 分离执 行(BOS)算法^[14]具有良好的"误差-遗忘"特性^[15], 但对参数的选择较为敏感。这些算法在求解 CS 类 问题时具有通用性,但在求解某个具体问题时未必 是最佳的。因此,根据微分相位衬度计算层析(DPC-CT)的特点,对 BOS 算法进行了改进,提出了 ART-BOS 算法,并将该算法用于相位项 δ 及其梯度 $\nabla \delta$ 的 重建。仿真实验和实际实验证明了本算法在精度和 重建速度上都优于 GPSR 算法和 Bregman 算法,并且 拥有比经典 ART-TV 算法^[16]更快的收敛速度。

2 数学物理模型

通过二维 DPC-CT 模型来说明相位衬度的成 像模型,如图 1(a)所示。其中,*x*-o-y 为世界坐标系, *x*_r-o-y_r 为旋转坐标系,*x*_r 轴与射线的传播方向相 同,δ(*x*, y) 为物体相位项在二维平面 *x*-o-y 上的分 布函数,θ 为射线穿过物体后在二维平面内的折射 角,φ 为射线与*x* 轴正向的夹角。

图 1 物体对 X 射线的折射作用示意图。(a)几何关系;(b)离散图

Fig. 1 Sketch of the refraction effect of object on X-ray. (a) Geometry relation; (b) discrete diagram

根据图 1(a)所示的几何关系,射线经过物体后的折射角 θ 可以表示为相位项梯度 $\nabla \delta$ 沿射线传播方向 x_r 的积分:

$$\theta = \int \frac{\partial \delta(x, y)}{\partial y_{\rm r}} dx_{\rm r} = \frac{\partial \int \delta(x, y) dx_{\rm r}}{\partial y_{\rm r}}, \qquad (1)$$

同时,根据图1所示的几何关系还可以得到(2)式所示的两个导数关系:

$$\begin{cases} \frac{\partial \delta(x,y)}{\partial y} = \frac{\partial \delta(x,y)}{\partial x_{r}} \sin \varphi + \frac{\partial \delta(x,y)}{\partial y_{r}} \cos \varphi \\ \frac{\partial \delta(x,y)}{\partial x} = \frac{\partial \delta(x,y)}{\partial x_{r}} \cos \varphi - \frac{\partial \delta(x,y)}{\partial y_{r}} \sin \varphi \end{cases}$$

将(2)式的左右两边沿射线传播路径 x_r进行积分运算,可得

$$\begin{cases} \int \frac{\partial \delta(x,y)}{\partial y} dx_{r} = \sin \varphi \int \frac{\partial \delta(x,y)}{\partial x_{r}} dx_{r} + \\ \cos \varphi \int \frac{\partial \delta(x,y)}{\partial y_{r}} dx_{r} \\ \int \frac{\partial \delta(x,y)}{\partial x} dx_{r} = \cos \varphi \int \frac{\partial \delta(x,y)}{\partial x_{r}} dx_{r} - \\ \sin \varphi \int \frac{\partial \delta(x,y)}{\partial y_{r}} dx_{r} \end{cases}$$
(3)

式中 $\partial \delta(x,y) / \partial x_r$ 表示相位项沿着射线传播方向 x_r 的梯度,如将空气的折射系数认为是0.00有

(2)

$$\partial \delta(x,y) / \partial x_{\rm r} \mathrm{d} x_{\rm r} \equiv 0.$$
 (4)

将(4)式代入(3)式,可得

$$\begin{cases} \theta \cos \varphi = \int \frac{\partial \delta(x, y)}{\partial y} dx_{r} \\ \theta \sin \varphi = -\int \frac{\partial \delta(x, y)}{\partial x} dx_{r} \end{cases}$$
(5)

以相位项梯度 $\nabla \delta$ 为目标的重建算法是以(5) 式为基础的。将相位项水平方向的梯度 $\partial \delta(x,y) / \partial x$ 作为待重建图像 $u_{\partial \delta}$,将折射角 $\theta \sin \varphi$ 作为测量值 $p_{\sin \varphi}$;将待重建物体在二维平面离散化后,如 图 1(b) 所示,根据(5) 式中水平方向的梯度公式可 知,第 *i* 条射线穿过物体后的折射角 θ_i 满足

$$\theta_i \sin \phi_i = \sum_j^J r_{i,j} u_j, i = 1, 2, \cdots, I, \qquad (6)$$

其中 ϕ_i 为第 i 条射线与坐标系 x 轴的夹角, u_j 为待 重建图像的第 j 个像素,I 为射线总个数,J 为像素 值总个数, $r_{i,j}$ 表示第 j 个像素对第 i 条射线的贡献, 若穿过第 j 个像素的射线投影至第 i 个像元上,则 $r_{i,j} = 1$,反之为 0。根据(6) 式可建立起图像矢量 u_{ab} 和观测值 p_{sing} 之间的矩阵方程:

$$\boldsymbol{p}_{\sin\varphi} = \boldsymbol{R}\boldsymbol{u}_{\partial\delta} + \boldsymbol{e}. \tag{7}$$

以相位项 δ 为目标的重建算法是以(1)式为基础的。如果将相位项的分布 $\delta(x,y)$ 作为待重建图像 u_{δ} ,将折射角 θ 作为测量值 p_{φ} ,根据(1)式可建立起图像矢量 u_{δ} 和观测值 p_{δ} 之间的矩阵方程

$$\boldsymbol{p}_{\varphi} = \boldsymbol{D}\boldsymbol{R}\boldsymbol{u}_{\delta} + \boldsymbol{e}. \tag{8}$$

(7),(8)式中 R 为投影矩阵,D 为差分矩阵,e 为误差向量。(8)式中,Ru₈表示图像的像素点沿射线路径的累加,相当于(1)式中的" $\int \delta(x,y) dx_r$ ";差分矩阵D用于表示(1)式中的偏微分算子" $\frac{\partial}{\partial y_r}$ ",使用一

阶差分,**D**定义为

	[1,	-1,	0,	,	0	_	
	0,	1,	-1,	0,	•••		
D =	0,	,	1,	-1,	,	0	.(9)
	0,	,	,	0,	1,	-1	
	0,	0,	,	,	0,	1 _	

3 重建算法

3.1 Bregman 分离执行算法

Bregman 算法^[17] 是一种应用广泛的优化方法, 主要用于求解下式所示的优化问题:

$$\boldsymbol{u} = \arg\min_{\boldsymbol{u}} \sigma J(\boldsymbol{u}) + \frac{1}{2} \|\boldsymbol{R}\boldsymbol{u} - \boldsymbol{p}\|^{2}, \quad (10)$$

其中 $\sigma > 0, J(u)$ 为关于u的凸函数。Bregman 算法 通常将(10)式分解为两个或两个以上的迭代过程, 并交替进行。2005年,Combettes等^[18]提出了一种 近似点(PP)优化方法求解(10)式所示的无约束优 化模型,迭代流程为

$$\boldsymbol{u}^* = \boldsymbol{u}^k - \boldsymbol{\tau} \boldsymbol{R}^{\mathrm{T}} (\boldsymbol{R} \boldsymbol{u}^k - \boldsymbol{p}), \qquad (11a)$$

$$\boldsymbol{u}^{k+1} = \arg\min \sigma J(\boldsymbol{u}) + \frac{1}{2\tau} \| \boldsymbol{u} - \boldsymbol{u}^* \|^2.$$
 (11b)

2010 年, Zhang 等^[14]提出了一种 BOS 算法。 该方法与近似点迭代法的主要区别在于引入了对观 测值 *p* 的修正,迭代流程如下:

$$u^{*} = u^{k} - \tau R^{T} (Ru^{k} - p^{k}),$$

$$u^{k+1} = \arg \min_{\sigma} J(u) + \frac{1}{2\tau} || u - u^{*} ||^{2},$$

$$p^{k+1} = p^{k} + p - Ru^{k+1},$$
 (12)

其中 p 为观测值,u 为待重建图像, τ 为步长,取值范 围为 $0 < \tau < \frac{2}{\|R^T R\|}$,参数 σ 为非负参数。近似点 算法中小于 $\sigma \tau$ 的值会被置 0,因而门限参数 σ 和步 长 τ 的选择至关重要。而 BOS 算法由于采用了对 投影的更新,对门限参数 σ 依赖较轻,但如果参数选 择不当仍会导致收敛速度减慢。综上所述,具有较 好性能的迭代算法应至少满足三个要求:1)收敛速 度快;2)避免大型矩阵的求逆;3)门限参数可以在迭 代当中自适应地调节。近似点法和 BOS 法具有普 适性,但未考虑 DPC-CT 中投影矩阵 R 的高维数、 高稀疏性和近似正交性的特点。因此,在考虑了投 影矩阵 R 的特点后,提出了满足上述三个要求的迭 代算法,即 ART-BOS 算法。

3.2 相位项梯度重建方法

根据上述讨论可知,BOS 算法和近似点算法最显著的区别在于BOS 算法引入了对观测值的修正, 而这种修正往往可以取得出人意料的效果。在 ART 算法的基础上引入对观测值的修正,提出 ART-BOS 算法。

1) 初始化:

 $u^{0} = 0$, $\tilde{p} = p$, n = 1

其中, *n* 为迭代次序, $p = [p_1, p_2, \dots, p_I]$ 为实际观 测值向量, 向量 $\tilde{p} = [\tilde{p}_1, \tilde{p}_2, \dots, \tilde{p}_I]$ 为修正后的观 测值向量, *I* 为观测数据个数。

2) ART 迭代:

$$oldsymbol{u}^* = oldsymbol{u}^{n-1}$$

 $oldsymbol{u}^* = oldsymbol{u}^* + au oldsymbol{k}_m rac{\widetilde{oldsymbol{p}}_m^{n-1} - oldsymbol{k}_m oldsymbol{u}^*}{oldsymbol{k}_m oldsymbol{k}_m}, \quad m = 1, 2, \cdots, I$

其中, m为 ART 迭代次序, 向量 r "为投影矩阵的

第 m 行, \tilde{p}_m^{n-1} 为向量 r_m 对应的修正观测值,I 为观 测数据总个数。

3) 由梯度下降法在 *u*^{*} 的某个邻域内搜索 *L*₁ 范数最小的解:

$$u^{n} = u^{*}$$
while $|| u^{n} - u^{n-1} ||_{1} < \lambda$

$$u^{n} = u^{n} - \eta \frac{\partial || u ||_{1}}{\partial u} \Big|_{u=u^{n}}$$

end

其中 λ 为搜索半径, η 为迭代步长。考虑到在迭代 初期,图像矢量 u^* 与真实值的差距比较大,应当给 予一个比较大的搜索半径 λ 以增大 L_1 范数对图像 的约束。随着迭代的进行,逐步逼近精确解,此时应 当减小搜索半径 λ 。换句话说,搜索半径 λ 应当在 迭代过程中自适应地调整。在迭代总次数 N 预先 设定的情况下,仅给出下列自适应调整方式作为 参考:

$$\lambda(n) = a \left(1 - \frac{n}{N} \right) \| \boldsymbol{u}^* \|_1, \qquad (13)$$

其中,n为迭代次序,N为迭代总次数,0 < a < 1 应当 根据经验选择,建议该参数取为略小于1的数值。如 果迭代步长η选择过大,则很难搜索到令人满意的 解;反之,则搜索过程会过于缓慢。在实际应用中,应 当根据经验选择,仅给出一种选择方式作为参考:

 $\eta = 0.1 \times || u^* ||_1 / J,$ (14) 其中, || u^{*} ||_1 / J 表示图像矢量 u^{*} 所有像素绝对值 的平均值, J 为像素值总个数。

4) 对投影值进行修正:

 $\widetilde{p}_m = \widetilde{p}_m + p_m - \boldsymbol{r}_m \boldsymbol{u}^{k-1}, \quad m = 1, 2, \cdots, I$

其中,I为观测数据总个数, p_m 为第m条射线对应的实际观测值。

5)判断不等式 || p̃ − p || 2 ≥κ || p || 2 是否成 立。成立,则执行 p̃ = p 并转第 6)步;如不成立,则 直接执行第 6)步。该步骤主要是为了防止因参数 选择不当等原因导致修正投影 p̃ 偏离原始投影 p 过大,并从而导致重建结果不精确。

6) 判断是否满足终止条件:

将终止条件设定为迭代次序 n 大于等于预先设定的迭代总次数 N_{\circ} 如果 $n \ge N_{\circ}$ 则输出 u^{n} 作为最终结果;否则,令 n = n + 1并转步骤 2),启动下一轮迭代。

3.3 相位项直接重建方法

与 3.2 节不同,本节将 ART-BOS 算法推广至 相位项的重建中。与相位项梯度 ∇δ 不同,相位项 δ 本身不能认为是稀疏的;因此, L_1 范数不能直接作 用在相位项 δ 上。但相位项分布 δ 的边沿依然具有 良好的稀疏性,而总变分(TV)范数是一种良好的描 述图像边沿的数学工具。因此,可以用 TV 范数作 为相位项的代建函数。对于任一二维图像 f,图像 的梯度稀疏性是由 TV 来衡量的,TV 指的是图像 梯度的 L_1 范数。

$$V_{\rm T}(u) = \sum_{s,t} \sqrt{(u_{s,t} - u_{s-1,t})^2 + (u_{s,t} - u_{s,t-1})^2},$$
(15)

其中,s和t是二维图像像素点的坐标。根据第2节的描述可知,图像相位项的重建是以(2)式为基础的。为了便于叙述,用矩阵 K 代替(5)式中的矩阵乘积 DR。考虑到δ的非负性,相位项的重建可归结为下式所示的优化问题:

$$\boldsymbol{u} = \arg \min \mathrm{TV}(\boldsymbol{u})$$
,

s. t
$$\mathbf{K}\mathbf{u} = \mathbf{p}, \mathbf{u} \ge 0.$$
 (16)

2006年,Sidky等^[16]针对(16)式提出了一种自 适应的优化算法,将其称为ART-POCS-TV算法。 该算法的基本思想是通过ART算出一个近似解, 再经过非负约束和TV修正,并将修正后的值作为 下一次迭代的初始值。虽然,文献[16]中并未给出 严格的数学证明,但结合上述的讨论可知,该算法是 一种近似点算法。在ART-POCS-TV算法的基础 上,根据Bregman算法的思想引入观测值的修正, 提出了有更好效果的ART-BOS算法。

1) 初始化:

 $\boldsymbol{u}^{\scriptscriptstyle 0}=0$, $\widetilde{\boldsymbol{p}}=\boldsymbol{p}$, n=1

其中, *n* 为迭代次序, $p = [p_1, p_2, \dots, p_I]$ 为实际观 测值向量, 向量 $\tilde{p} = [\tilde{p}_1, \tilde{p}_2, \dots, \tilde{p}_I]$ 为修正后的观 测值向量, *I* 为观测数据个数。

2) ART 迭代:

$$u^* = u^{n-1}$$

 $u^* = u^* + \tau k_m \frac{\widetilde{p}_m^{n-1} - k_m u^*}{k_m k_m}, m = 1, 2, \cdots, L$

其中, m 为 ART 迭代次序; 向量 k_m 为投影矩阵 K 的第m 行; \tilde{p}_m^{n-1} 为向量 k_m 对应的修正观测值; I 为 观测数据总个数; τ 为预先设定的收缩因子, 其作用 相当于减小步长以获得更加精确的解。

3) 正项约束:

$$\boldsymbol{u}^{\text{postive}} = \max(\boldsymbol{u}^*, 0)$$
$$\boldsymbol{d} = \| \boldsymbol{u}^{\text{postive}} - \boldsymbol{u}^* \|_2$$

其中,max(•)表示取最大值运算; d 为正项约束前 后差值的二范数。

4) TV 修正:

$$\boldsymbol{u}^{\text{TV}} = \boldsymbol{u}^{\text{positive}}$$

for $i = 1, 2, \cdots, L$
 $\boldsymbol{u}^{\text{TV}} = \boldsymbol{u}^{\text{TV}} - \frac{ad}{\|\partial \text{TV}(\boldsymbol{u}^{\text{TV}})/\partial \boldsymbol{u}^{\text{TV}}\|_{2}^{2}} \cdot \frac{\partial \text{TV}(\boldsymbol{u}^{\text{TV}})}{\partial \boldsymbol{u}^{\text{TV}}}$
 $\boldsymbol{u}^{\text{TV}} = \max(\boldsymbol{u}^{\text{TV}}, 0)$

end

其中,L为TV修正的循环次数,将其选为20;a为 调节因子,将其选为0.2;d由第3步给出。沿用文 献[16]中的思路,使用正项约束前后的差值d来调 节TV的修正步长。u^{TV}按照其梯度下降最快的方 向来更新,式中<u>∂TV(u^{TV})</u>的具体计算公式为

$\frac{\partial \mathrm{TV}(\boldsymbol{u}^{\mathrm{TV}})}{\partial \boldsymbol{u}^{\mathrm{TV}}} \approx$
$2\boldsymbol{u}_{s,t}^{\mathrm{TV}} - \boldsymbol{u}_{s-1,t}^{\mathrm{TV}} - \boldsymbol{u}_{s,t-1}^{\mathrm{TV}}$
$\sqrt{(\boldsymbol{u}_{s,t}^{\mathrm{TV}} - \boldsymbol{u}_{s-1,t}^{\mathrm{TV}})^2 + (\boldsymbol{u}_{s,t}^{\mathrm{TV}} - \boldsymbol{u}_{s,t-1}^{\mathrm{TV}})^2 + \epsilon}$
$\boldsymbol{u}_{s+1,t}^{\mathrm{TV}} - \boldsymbol{u}_{s,t}^{\mathrm{TV}}$
$\sqrt{(\boldsymbol{u}_{s+1,t}^{\mathrm{TV}}-\boldsymbol{u}_{s,t}^{\mathrm{TV}})^2+(\boldsymbol{u}_{s+1,t}^{\mathrm{TV}}-\boldsymbol{u}_{s+1,t-1}^{\mathrm{TV}})^2+\varepsilon}$
$- \underbrace{\boldsymbol{u}_{s,t+1}^{\mathrm{TV}} - \boldsymbol{u}_{s,t}^{\mathrm{TV}}}_{*} $
$\sqrt{(\boldsymbol{u}_{s,t+1}^{\mathrm{TV}} - \boldsymbol{u}_{s,t}^{\mathrm{TV}})^2 + (\boldsymbol{u}_{s,t+1}^{\mathrm{TV}} - \boldsymbol{u}_{s-1,t+1}^{\mathrm{TV}})^2 + \varepsilon},$

其中 ε 是一个足够小的正整数, π $ε = 10^{-8}$, 用于避免分母为 0 的情形。

5) 对投影值进行修正:

 $p_m = p_m + p_m - r_m u^{k-1}, m = 1, 2, \dots, I$ 其中, I 为观测数据总个数, p_m 为第 m 条射线对应的实际观测值。

6) 判断不等式 $\|\tilde{p} - p\|_{2}^{2} \ge \kappa \|p\|_{2}^{2}$ 是否成立。

成立,则执行 $\tilde{p} = p$ 并转第7)步;不成立,则直接执行第7)步。 κ 为预先设定的小于1的正数。该步骤主要是为了防止因参数选择不当等原因使得修正投影 \tilde{p} 偏离原始投影p过大,并从而导致重建结果不精确。

7) 判断是否满足终止条件:

将终止条件设定为迭代次序 n 大于等于预先设定的迭代总次数 N_{\circ} 如果 $n \ge N_{\circ}$ 则输出 u^{n} 作为最终结果;否则,令 n = n+1并转第 2)步,启动下一轮迭代。如果去掉第 5)步和第 6)步,则上述算法将退化为 ART-POCS-TV 算法。

4 仿真实验与结果分析

4.1 相位项梯度重建仿真方法实验与分析

通过理想条件下和噪声条件下两组仿真实验来 验证所提算法的有效性与稳定性。在仿真实验中, 用 256 pixel×256 pixel 的 Shepp-Logan 模型模拟 一个边长为 8 mm 的正方形纯相位物体 $\delta(x,y)$,如 图 2(a)所示;为了能更简便快捷地体现出算法对图 像边缘的重建效果,只取相位项的水平方向梯度作 为待重建图像。采用下式所示的滤波器与 Shepp-Logan 模型进行卷积运算即可得到相位项水平方向 的梯度 $\frac{\partial \delta}{\partial x}$ 图像:

$$h = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix},$$
 (18)

如图 2(b)所示^[13]。

图 2 Shepp-Logan 模型与原始数据。(a) Shepp-Logan 模型; (b)待重建图像; (c)待重建图像绝对值 Fig. 2 Shepp-Logan model and original data. (a) Shepp-Logan model; (b) original image; (c) absolute value of original image

待重建图像的绝对值 $\left| \frac{\partial \delta}{\partial x} \right|$ 如图 2(c)所示,其中

非零元个数为4659,约为像素总个数的7.1%。在 第一组实验中,不考虑任何误差和噪声。在采样过 程中,重建物体以6°为间隔旋转30次,将第3)步中 (13)式的参数 *a* 设为 0.9。在第二组实验中,在每 个角度下均加入均值为 0,噪声标准差 ν_e 为观测值 标准差 ν_a 0.2 倍的高斯噪声,然后仍选用第一组实 验中的参数进行重建。两组实验在得到观测数据之 后,分别采用 ART 算法,GPSR 算法,BOS 算法和 所提出的 ART-BOS 算法进行重建。为了更方便地 评价图像重建的质量,定义评价标准[均方误差 (MSE)]为

$$E_{\text{image}}(n) = \frac{\| \boldsymbol{u}^{n} - \boldsymbol{u}^{\text{exact}} \|_{2}^{2}}{\| \boldsymbol{u}^{\text{exact}} \|_{2}^{2}}, \quad (19)$$

其中 u^{exact}表示真实图像向量,uⁿ 表示第 n 次迭代后 的图像向量。(19)式给出重建图像与真实图像之间 的均方误差,它表示重建图像与真实值的接近程度, 同时曲线变化的趋势也反映了算法的收敛速度,为 了便于后续重建图像的讨论,首先给出各算法重建 结果的收敛曲线,如图 3(a)~(e)所示。根据不同 算法的收敛趋势,设定对应算法的迭代次数,其中, GPSR 算法迭代次数为 100;BOS 算法的迭代次数 为 200;ART 算法和 ART-BOS 算法的迭代次数均 为 15。

图 3 各重建算法关于图像均方误差的收敛性曲线对比。(a) ART 算法收敛性曲线;(b) GPSR 算法收敛性曲线; (c)理想条件下 BOS 算法收敛曲线;(d)噪声条件下 BOS 算法收敛曲线;(e)为 ART-BOS 算法收敛曲线

Fig. 3 Comparison of the convergence curves of some algorithms. (a) Convergence curve of ART algorithm; (b) convergence curve of GPSR algorithm; (c) convergence curve of BOS algorithm in ideal condition; (d) convergence curve of BOS algorithm in noisy condition; (e) convergence curve of ART-BOS algorithm

在 CPU 为 Intel Core 2 Dual E5700, 2 G 内存 的 PC 机上,采用 Matlab(2010b)软件分别对本节涉 及的算法进行仿真。ART 算法迭代 15 次的 *E*_{image} 曲线如图 3(a)所示。从图 3(a)中可以看出 ART 算 法在迭代 1~2 次便达到稳定,但给出的结果与待重 建图像差距比较大,*E*_{image}最小为 0.5579。从图 3(b) 中可以看出 GPSR 算法在迭代 25 次左右可以给出距 离真实值最近,即 *E*_{image}最小的重建结果,之后随着 迭代的进行逐渐远离真实值。从图 3(c)和(d)中可 以看出 BOS 算法非常依赖于参数的选择,且受噪声 的影响比较大。从图 3(e)中可以看出 ART-BOS 算法的重建误差较小,且收敛速度比较快,只需 15 次迭代。

下面给出在上述两种实验条件下,ART 算法, GPSR 算法,BOS 算法和提出的 ART-BOS 算法的 重建结果,分别如图 4(a)~(e),图 5(a)~(e)所示。

从图 4 和图 5 中可以看出,ART 算法的重建结 果中含有大量的放射状伪影;GPSR 算法对弱小边 沿恢复效果不佳,如图 4(b)和图 5(b)中红色箭头指 向的位置所示;BOS 算法的仿真中,步长 τ 选为 6× 10^{-5} ,门限参数 σ 分别选为 5×10⁴ 和 5×10⁵ 进行 重建, σ 为 5×10⁴ 的重建结果如图 4(c)和图 5(c)所 示, σ 为 5×10⁵ 的重建结果如图 4(d)和图 5(d)所 示,可见,BOS 算法通过引入投影修正减轻了算法 对门限参数的依赖,但重建效果仍在很大程度上受 到门限参数的影响;ART-BOS 算法的重建结果如 图 4(e)和图 5(e)所示。在取得与 BOS 算法相近的 重建效果时,ART-BOS 算法的收敛速度远远快于 BOS 算法。

图 4 理想条件下的重建结果。(a) ART 算法; (b) GPSR 算法; (c) BOS 算法(σ=5×10⁴); (d) BOS 算法($\sigma = 5 \times 10^5$); (e) ART-BOS 算法

Fig. 4 Reconstruction images in ideal condition. (a) ART algorithm; (b) GPSR algorithm; (c) BOS algorithm $(\sigma = 5 \times 10^4)$; (d) BOS algorithm $(\sigma = 5 \times 10^5)$; (e) ART-BOS algorithm

图 5 噪声条件下的重建结果。(a) ART 算法; (b) GPSR 算法; (c) BOS 算法($\sigma=5\times10^4$); (d) BOS 算法(σ=5×10⁵); (e) ART-BOS 算法

Fig. 5 Reconstruction images in noisy condition. (a) ART algorithm; (b) GPSR algorithm; (c) BOS algorithm $(\sigma = 5 \times 10^4)$; (d) BOS algorithm $(\sigma = 5 \times 10^5)$; (e) ART-BOS algorithm

算法的迭代次数为 50 次,BOS 算法的迭代次数均

ART 算法、GPSR 算法、BOS 算法与 ART- 为 200 次; ART 和 ART-BOS 算法的迭代次数均为 BOS 算法的精度与执行时间见表 1。其中, GPSR 15 次。模拟试验中, ART 算法和 ART-BOS 算法 中的逐线迭代部分按并行方式计算,即传播方向相 同的射线对应的迭代过程同时执行。

结合图 3 和表 1 可知,BOS 算法所需的时间与 参数 σ 无关。GPSR 算法的重建结果还受到正则化 因子的影响,若将 GPSR 算法中的正则化因子的数 值调小,则有可能改善对弱小边缘的恢复效果,但重 建速度也会变慢,这一点 Figueiredo 等^[19]已经论述 过,ART-BOS 算法在重建速度上与 GPSR 算法相 当,在重建精度上优于 GPSR 算法,和 BOS 算法相 当,但 ART-BOS 算法的收敛速度较快。

表 1	算法执行时间与	$E_{ m image}$

Table 1 Computational time and E_{image}							
	Evaluation standard	$E_{ m image}$	CPU computation time /s				
	ART	0.5579	0.7356				
	GPSR	0.2780	4.5200				
In ideal condition	BOS ($\sigma = 5 \times 10^4$)	0.1264	21.205				
	BOS ($\sigma = 5 \times 10^5$)	0.2209					
	ART-BOS	0.1233	1.4981				
	ART	0.5731	0.7356				
	GPSR	0.3134	4.5200				
In noisy condition	BOS ($\sigma = 5 \times 10^4$)	0.2478	21 205				
	BOS ($\sigma = 5 \times 10^5$)	0.4652	21.205				
	ART-BOS	0.2421	1.4981				

4.2 相位项直接重建方法仿真实验与分析

本节通过两组仿真实验验证算法的有效性与稳定性。在仿真实验中,依然选用 256 pixel×256 pixel 的 Shepp-Logan 模型模拟一个边长为 8 mm 的正方形 纯相位物体 $\delta(x,y)$,如图 6(a)所示;再采用(1)式中 所示的数学模型生成折射角投影。在第一组实验中,不考虑任何误差和噪声。在采样过程中,重建物 体以 6°为间隔旋转 30 次;将 3.3 节中步骤 2)的收

缩因子 τ 设为 1,将步骤 6)中参数 κ 设为 0.2;再将 经典的 ART-POCS-TV 算法和 ART-BOS 算法分 别迭代 300 次,重建结果如图 6(b)和(c)所示。可 见在理想条件下,ART-POCS-TV 算法和 ART-BOS 算法在迭代足够多次之后的重建结果与原始 图像已几乎没有分别。该实验证明了 ART-BOS 在 理论上的正确性。

图 6 Shepp-Logan 模型与理想条件下的重建结果。(a) Shepp-Logan 模型; (b) ART-POCS-TV 算法;(c) ART-BOS 算法

Fig. 6 Shepp-Logan model and reconstructed images in ideal condition. (a) Shepp-Logan model; (b) ART-POCS-TV algorithm; (c) ART-BOS algorithm

在第二组实验中,在每个角度下加入均值为 0, 噪声标准差 ν_e 为该角度观测值标准差 ν_θ 的 0.2 倍 的高斯噪声。仍选用第一组实验中的参数进行重 建,重建结果如图 7(a)~(d)所示。对比图 7(a)与 (c),(b)与(d)可知,ART-BOS 算法对伪影具有更 强的抑制作用,基本消除了 ART-POCS-TV 重建结 果中的污渍型伪影,如红色箭头所指的区域,并将其 中一处放大,以示抑制伪影的效果。此处仍选用4.1 节中定义的评价标准 *E*_{image}评价算法的重建结果,如 图 8 所示。ART-POCS-TV 在迭代 30 次时,消耗 时间约为 18.35 s,重建结果与真实值之间的均方误 差 *E*_{image}为 0.0778; ART-POCS-TV 在迭代 40 次 时,消耗时间约为 24.64 s,重建结果与真实值之间 的均方误差 *E*_{image}为 0.0570。ART-BOS 在迭代 30 次时,消耗时间约为 19.56 s,重建结果与真实值之 间的均方误差 E_{image} 为 0.0499; ART-BOS 在迭代 40 次时,消耗时间约为 25.95 s,重建结果与真实值之间 的均方误差 E_{image} 为 0.0415。可见, ART-BOS 算法由 于加入了投影更新的过程,在迭代次数相同时消耗的时间略大于 ART-POCS-TV 算法,但 ART-BOS 算法收敛速度更快,在迭代 30 次时的均方误差 *E*_{image}小于 ART-POCS-TV 算法迭代 40 次时的均方误差。

图 7 噪声条件下的重建结果。(a) ART-POCS-TV 算法迭代 30 次时重建效果;(b) ART-POCS-TV 算法迭代 40 次时重建效果;(c) ART-BOS 算法迭代 30 次时重建效果;(d) ART-BOS 算法迭代 40 次时重建效果 Fig. 7 Reconstruction images in noisy condition. (a) ART-POCS-TV (iteration 30 times); (b) ART-POCS-TV (iteration 40 times); (c) ART-BOS (iteration 30 times); (b) ART-BOS algorithm (iteration 40 times)

4.3 实验

本实验是在北京同步辐射装置 4W1A 束线站根 据衍射增强成像原理完成的。实验所用的两块晶体 为 Si[111]晶体,X 射线能量为 10 keV,探测器像素大 小为 11 μm。实验样品为密封在胶囊中的蜜蜂,如 图 9(a)所示,其中胶囊外圈直径约为 8 mm^[13]。

实验中,对蜜蜂样品进行 180°的 CT 扫描,扫描 间隔为 0.5°;利用信息分离的方法在位移曲线左右 腰处分别采集 360 幅投影图像,并采用 GOA 方法 提取出 360 幅折射角图像,每个投影图像的大小为 1030 pixel×1300 pixel,如图 9(a)所示。在实际实验 中,不可能给出待重建图像的真实值。为了便于比

图 9 蜜蜂样品的投影与断层图像。(a)折射角图像;(b) FBP 算法给出的重建断层;(c)重建断层的边沿 Fig. 9 Projection and reconstruction of bee sample. (a) Refraction-angle image; (b) reconstructed slice provided by FBP algorithm; (c) edge of reconstruction slice

较,采用经典 FBP 算法给出图 9(a)中红线处的断层 作为参考,如图 9(b)所示。在获得断层图像后,采用 一阶差分算子提取出图像的边沿,如图 9(c)所示。

进行两组实验,第一组实验验证提出的相位项 梯度重建算法;第二组实验验证相位项直接重建算 法。在第一组实验中,等间隔选取 60 幅折射角图像 分别使用 GPSR 算法、BOS 算法和 ART-BOS 算法 对于图 9(a)中红线所示的断层进行重建。为便于 观察,分别重建出相位项水平方向导数 $\partial \delta / \partial x$ 和垂 直方 向 导 数 $\partial \delta / \partial y$ 并 给 出 二 者 绝 对 值 之 和 $|\partial \delta / \partial x| + |\partial \delta / \partial y|$ 作为重建结果,它代表图像的边 沿,在理想情况下应为若干条极细的线。GPSR 算 法迭代 50 次的结果如图 10(a)所示; ART-BOS 算 法迭代 15 次的重建结果如图 10(b)所示;BOS 算法 的仿真中,步长 τ 仍选 6×10⁻⁵,门限参数 σ 分别选 为 5 和 1,迭代次数为 200,重建结果如图 10(c)和 (d)所示。从实验结果中可以看出,GPSR 算法对弱 小边沿重建效果较差;BOS 算法仍依赖于门限参数 σ 的选择,如果选择过小则缺乏对重建结果的修正 作用,如图 10(d)所示。对比 4.1 节的仿真实验和 本节的实验可知,门限参数 σ 通常需要根据相位项 梯度的具体数值选取。而在实际应用中,相位项梯 度的具体数值是不易提前获知的。相比之下,ART-BOS 算法克服了上述两个缺陷,取得了视觉上较好 的重建结果且速度较快。

图 10 蜜蜂样品的重建断层。(a) GPSR 算法; (b) ART-BOS 算法; (c) BOS 算法(σ =5); (d) BOS 算法(σ =1) Fig. 10 Reconstruction slices of the bee sample. (a) GPSR algorithm; (b) ART-BOS algorithm; (c) BOS algorithm (σ =5); (d) BOS algorithm (σ =1)

在第二组实验中,等间隔选取 30 幅折射角图像 分别使用 ART-POCS-TV 算法和 ART-BOS 算法 对图 9(a)中红线所示的断层进行重建。在实验中, 将 3.3 节中步骤 2)的收缩因子 τ 设置为 0.05,步骤
6)中的参数 κ 设定为 0.8,迭代次数设定为 150,重
建结果如图 11(a)和(b)所示。对比图中红色方框

图 11 蜜蜂样品的重建断层。(a) ART-POCS-TV 算法;(b) ART-BOS 算法 Fig. 11 Reconstruction slices of the bee sample. (a) ART-POCS-TV algorithm; (b) ART-BOS algorithm 所示的位置可知,ART-BOS 算法对伪影有更强的 抑制作用。

5 结 论

将压缩感知理论引入 DPC-CT 重建当中,并测 试了 经典的 压缩感知算法如 GPSR 算法和 Bregman 算法在 DPC-CT 中的重建效果。在此之 后,将经典的 ART 算法融入 Bregman 迭代当中,提 出了适合相位项梯度重建的 ART-BOS 算法。仿真 实验表明,该算法在精度和重建速度上都优于 GPSR 算法和 Bregman 算法。随后,又将 ART-BOS 算法推广至相位项重建当中,仿真实验表明, ART-BOS 算法拥有比经典的 ART-POCS-TV 算 法更快的收敛速度。最后,通过实验证明了上述算 法的有效性。综上所述,ART-BOS 算法为 DPC-CT 的实际应用提供了一种有效的解决方案。

参考文献

- 1 Zhu Peiping, Wu Ziyu. X-ray phase contrast imaging [J]. Physics, 2007, 36(6): 443-451.
- 朱佩平,吴自玉.X射线相位衬度成像[J].物理,2007,36(6): 443-451.
- 2 U Bonse, M Hart. An X-ray interferometry with long interfering beam paths[J]. Appl Phys Lett, 1965, 7(4): 99-101.
- 3 A Snigirev, I Snigireva, V Kohn. On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation [J]. Rev Sci Instrum, 1995, 66(12): 5486-5492.
- 4 D Chapman, W Thomlinson, R E Johnston, *et al.*. Diffraction enhanced X-ray imaging [J]. Phys Med Biol, 1997, 42(11): 2015-2025.
- 5 F Pfeiffer, T Weitkamp, O Bunk, *et al.*. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources [J]. Nature Phys, 2006, 2(4): 258-261.
- 6 Z Huang, K Kang, L Zhang, *et al.*. Alternative method for differential phase-contrast imaging with weakly coherent hard X-

rays [J]. Phys Rev A, 2009, 79(1): 013815.

- 7 I Jerjen, V Revol, C Kottler, *et al.*. Phase contrast cone beam tomography with an X-ray grating interferometer [C]. International Conference on Advanced Phase Measurement Methods in Optics and Imaging, 2010, 1236: 227-231.
- 8 J Fu, P Li, Q L Wang, et al.. A reconstruction method for equidistant fan beam differential phase contrast computed tomography [J]. Phys Med Biol, 2011, 56(14): 4529-4538.
- 9 Z T Wang, Z Li, Z Huang, *et al.*. An ART iterative reconstruction algorithm for computed tomography of diffraction enhanced imaging [J]. Chin Phys C, 2009, 33(11): 975-980.
- 10 P P Zhu, K Zhang, Z L Wang. Low-dose, simple, and fast grating-based X-ray phase-contrast imaging [J]. Proc Natl Acad Sci USA, 2011, 107(31): 13576-13581.
- 11 G Chen, Z Qi. Image reconstruction for fan-beam differential phase contrast computed tomography [J]. Phys Med Biol, 2008, 53(4): 1015-1025.
- 12 D Donoho. Compressed sensing [J]. IEEE Trans Information Theory, 2006, 52(4), 1289-1306.
- 13 Li Jing, Sun Yi. Sparse angular differential phase-contrast CT reconstruction using L₁ norm[J]. Acta Optica Sinica, 2012, 32 (3): 0311002.
 李 镜,孙 怡. 基于 L₁ 范数的微分相位衬度 CT 稀疏角度重

建算法[J]. 光学学报, 2012, 32(3): 0311002. 14 X Zhang, M Burger, X Bresson, *et al.*. Bregmanized nonlocal

- 14 X Zhang, M burger, A bresson, *et al.*. bregmanized nonlocal regularization for deconvolution and sparse [J]. SIAM J Imaging Sciences, 2010, 3(3): 253-276.
- 15 W T Yin, S Osher. Error forgetting of Bregman iteration [J]. J Sci Comput, 2013, 54(2): 684-695.
- 16 W Yin, S Osher, D Goldfarb, *et al.*. Bregman iterative algorithms for L₁-minimization with applications to compressed sensing [J]. SIAM J Imaging Sciences, 2008, 1(1): 143-168.
- 17 P Combettes, V Wajs. Signal recovery by proximal forwardbackward splitting [J]. Multiscale Modeling & Simulation, 2005, 4(4): 1168-1200.
- 18 E Y Sidky, C M Kao, X C Pan. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT [J]. X-Ray Sci Tech, 2006, (14): 119-139.
- 19 M A T Figueiredo, R D Nowak, S J Wright. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems [J]. IEEE J Sel Top Signal Processing, 2007, 1(4): 586-597.

栏目编辑:韩 峰