# 光学多层薄膜反向工程中局部优化算法的性能分析

### 吴素勇 龙兴武 杨开勇 黄 云

(国防科学技术大学光电科学与工程学院光电工程系,湖南长沙 410073)

摘要 以锗基红外宽带增透膜(AR)为例,基于 Matlab 最优化工具箱,研究了多种局部优化算法在多层膜设计中的性能和反向工程算法开发中的可行性,并就数值实验中出现多解性问题的成因、分析及解决方案进行了探讨。 结果表明,Matlab 最优化工具箱中的导数算法在多层膜局部优化设计上具有更好的局部极值搜索性能和收敛速 度;非导数算法性能较差且收敛时间较长,但具有更多的搜索路径,较适用于设计初期开拓搜索方向。在多层膜反 演中,导数算法中的非线性最小二乘估计指令 lsqnonlin 和非线性方程求解指令 fsolve 的性能出色,建议作为多层 膜反向工程问题的主要算法。无约束优化指令 fminunc 性能次之,约束优化指令 fmincon 再次之,可作为备用反演 算法。而多目标优化指令 fminimax 和其余非导数算法由于算法的性能不足和自身内在多解性的原因,不利于多 层膜的反演,容易得到错误的结果,不建议作为反演算法使用,仅可作为可选算法以供对比参考。

关键词 薄膜光学;反向工程;局部优化算法;多解性;多层膜系设计

中图分类号 O484.4 文献标识码 A doi: 10.3788/AOS201131.0631001

## Performance Analysis of Local Optimization Algorithm in Reverse Engineering of Multilayer Optical Coatings

Wu Suyong Long Xingwu Yang Kaiyong Huang Yun

(Department of Optoelectronic Engineering, College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China)

**Abstract** An infrared antireflection (AR) coating for germanium is taken as an example to numerically analyze the performance of the local optimization algorithm which is based on Matlab optimization toolbox in the local optimal design of multilayer optical coatings and their application feasibility in the algorithm development of reverse engineering of multilayer optical coatings. The reasons and the solutions of the mutiple solutions in numerical experiments are discussed. The numerical optimization results show that the derivative algorithms of Matlab optimization toolbox have better local optimum point search ability and converging speed than reference methods. While the performance of non-derivative algorithms is poor but might be applicable in the initial local design stage to explore more search directions. In the reverse engineering of multilayer optical coatings, the algorithm lsqnonlin and fsolve are excellent in inversion which determines the quality of optical structural parameters. They are recommended to be the main reverse engineering algorithms. The fminunc and fmincon algorithms can be chosen as supplementary reverse engineering algorithms are poor in effectiveness and stochastic in final solutions, which can easily converge to wrong structural parameters and could not be used as reverse engineering algorithms.

Key words thin film optics; reverse engineering; local optimization algorithm; multiple solutions; multilayer optical coating design

OCIS codes 310.5956; 310.1210; 310.6805; 310.6805

引 言 自从采用数值优化方法进行光学薄膜设计的第 一个计算机程序开发出来<sup>[1]</sup>,已经过去了半个多世 纪。伴随着商业膜系设计优化软件在过去几十年的

作者简介:吴素勇(1984—),男,博士研究生,主要从事光学薄膜方面的研究。E-mail: sywu2001@163.com

导师简介:龙兴武(1958—),男,教授,博士生导师,主要从事激光与光电子技术等方面的研究。

1

收稿日期: 2010-12-20; 收到修改稿日期: 2011-01-25

巨大发展,近年来薄膜设计团体的研究主要集中在 反向工程算法和虚拟镀膜模拟的开发上<sup>[2~6]</sup>。不论 是反向工程还是虚拟镀膜,其核心问题都可归结为 已知初始膜系(即理论设计膜系)下偏差函数的最优 化问题,其中局部优化方法的性能和实施效果对最 终结果的质量起了关键作用。然而,由于表征多层 膜测量光谱与理论计算光谱差别的偏差函数的多元 多峰性,加上不同局部优化方法的搜索方式上的差 异,实际反演中常会出现多解的情形,这对分析和选 择最终的真实膜层参数带来了困难。为了能更清楚 地认识镀膜过程中膜层参数误差分布的规律,指导 镀膜工艺的改善,必须寻找到效果良好的反演结果, 因此有必要深入分析局部优化方法在解决给定初始 膜系下的最优化问题时的性能,如搜索能力、多解 性、跳出局部极值的可能性,约束条件的影响及其施 加策略等。本文以一个锗基红外宽带增透膜[7,8]的 设计实验为研究对象,横向研究比较基于 Matlab 最 优化工具箱的多种局部优化算法其他算法在指定初 始膜系下的局部优化能力,并就数值实验中出现的 多解性问题的原因及解决办法进行了探讨,最后以 人为扰动后膜系的理论计算光谱作为薄膜的真实光 谱数据进行反演计算来分析和验证不同局部优化算 法的能力。

#### 2 数值实验

为了比较评价不同局部优化方法在膜系设计中的性能,P. Baumeister于 1988 年邀请 9 位光学薄膜专家一同参加一项设计竞赛实验<sup>[7]</sup>,其设计目标为设计锗基上 7.7~12.3  $\mu$ m 红外波段的宽带增透膜,可用膜材料为锗(n=4.2)和硫化锌(n=2.2),不考虑色散和吸收,从空气中正入射。为了统一,评价函数 F 采用均方根容差型函数形式:

$$F = \left\{ \frac{1}{L} \sum_{l=1}^{L} \left[ \frac{R(\lambda_l) - \hat{R}(\lambda_l)}{\Delta R_l} \right]^2 \right\}^{1/2}, \quad (1)$$

式中  $R(\lambda_i)$ , $\hat{R}(\lambda_i)$  和  $\Delta R_i$  分别为波点 $\lambda_i$  处的理论计 算反射率、目标反射率和精度要求,L 为总波点数。 在实验中,采用均匀投点划分波段,波点间隔为 0.1  $\mu$ m,波点数为 47,目标反射率为 0,精度为 1%。 在该实验中,设计者被邀请进行 3 种不同的计算。 1)采用给定的标准初始膜系来测试不同优化程序的 能力;2)可自主选择初始膜系来测试最终解对初始 膜系的依赖关系;3)建议设计者采用全局优化方法 或其他技术设计出尽可能最好的数值解,膜层数不 限,厚度为正即可。前 2 种计算要求结果具有实际 意义,亦即膜层数不应太大且超薄膜应予以删除。 将该实验为实验1,其思路由J.A.Dobrowolski 等<sup>[8]</sup>进行推广,并对膜系设计中使用的主要局部优 化方法做出了相当优秀的评述和比较。

基于文献[7,8]中比较局部优化方法性能的成 功思路,仿照设计实验,在相同设计目标和标准初始 膜系下进行优化设计,所用的局部优化方法是 Matlab 最优化工具箱中的各种算法,包括无约束优 化指令中的 fminunc (quasi-Newton methods), fminsearch(Nelder-Mead simplex algorithm),非线 性方程求解指令 fsolve (Levenberg-Marquardt algorithm)以及非线性最小二乘估计指令 lsqnonlin (trust-region-reflective or LM algorithm),约束优 化指令中的 fmincon (active-set algorithm or interior-point approach),多目标优化指令 fminimax,模式搜索指令 patternsearch(generalized pattern search or mesh adaptive search algorithm), 模拟退火算法指令 simulannealbnd 等指令,以探索 其在解决这一类问题的性能及其与采用其他方法得 到结果的优劣程度进行比较,并对由此应用于多层 膜反演算法开发的可行性进行评价。

一般地,在优化过程中可能会出现负厚度层或 超薄膜的情况,为了确保所得结果具有实际意义,采 用的解决方法是删除负厚度层或超薄膜,同时将折 射率相同(或极相近)的膜层进行人为合并。这种情 况本质上是一种弱约束条件,并不要求优化过程中 所有维的变量同时为正,而允许在优化中降维,同时 从镀膜的角度来看,更少层数的膜系更有利于批量 生产和降低成本。另一方面,从解的数学最优性上 考虑,如果最优解趋向于降维解,那么对所有膜层施 加非负的强约束时得到的解必定在那些降维处非常 接近于零值。

实验 2 是为前述实验得到的一个 12 层的理论 设计红外增透膜的膜层结构参数的反演实验。从数 学上看,多层膜的结构参数反演是已知初始值(理论 设计)的偏差函数的最小化问题,这与膜系设计非常 相似,区别在于设计目标变为得到膜系的实测光谱 数据。但从物理的角度来看,反演问题还涉及到不 同工艺下多层膜的微结构,膜系光谱计算理论模型 修正以及实测光谱数据的误差处理等。

假设按所给的理论设计膜系实际镀膜,镀完膜 用分光光度计(或光谱仪等)扫描其光谱曲线,实测 光谱可能是宽带光谱,也可能是单波长宽角度光谱。 分光光度计(或光谱仪等)得到的扫描光谱除了实际 薄膜的真实光谱外,还包括分光光度计(或光谱仪 等)的本底噪声和光谱测量过程中的随机误差。1) 实际薄膜的真实光谱,与用实际薄膜结构参数理论 计算的光谱可能存在差异。其原因是,实际薄膜可 能不完全符合膜系光谱理论计算模型的前提假设, 即各项同性均匀膜系统假设,这主要是由镀膜工艺 造成的。其中最重要的3个影响因素是折射率不均 匀性<sup>[9,10]</sup>(体多孔性)、表面粗糙度<sup>[11,12]</sup>和折射率色 散模型。不恰当地选择光谱理论计算模型,往往会 造成膜系反演结果较大地偏离实际情况,甚至不具 物理意义。2)扫描光谱中的典型本底噪声来自光源 和光谱记录设备的不稳定性,典型的随机误差来自 测量系统的噪声和环境中的杂散光影响。一般地, 扫描光谱中的本底噪声可以通过仪器校准和标定等 硬件操作减小[13],也可能通过选择恰当的光谱范围 或入射角范围进行数据筛选,将扫描光谱系统误差 对膜系反演的影响降低[14]。而扫描光谱中的光谱 测量随机误差对膜系反演的影响,也可通过数据处 理予以降低,一种可行的方法是人为注入随机噪声 以抵消其影响,再利用统计平均将影响大幅降 低[14]。

由于镀膜过程中膜层厚度监控会产生误差,实 际镀制的薄膜厚度往往会偏离理论设计值,且由于 可能存在的色散效应和镀膜工艺的差异,膜层材料 的实际折射率也可能偏离理论值。设理论设计膜系 的几何厚度及折射率向量(从基底起至入射介质)分 别为 $d_0$ , $n_0$ ,镀膜过程中各膜层结构参数的误差向 量分别为 $\Delta d$ , $\Delta n$ ,则薄膜镀完后真实的几何厚度和 折射率向量分别为  $d_1 = d_0 + \Delta d_1 = n_0 + \Delta n_0$  薄膜 反向工程,就是根据分光光度计(或光谱仪等)得到 的扫描光谱,通过降低其本底噪声和随机误差的影 响,剥离出薄膜的真实光谱,然后选择合理的膜系计 算物理模型,以理论设计膜系结构  $d_0$ , $n_0$  为初值,运 用基于偏差函数最小化的最优化方法,反向确定已 镀薄膜的实际结构参数  $d_1, n_1$ ,进而得到镀膜过程 中的误差分布情况  $\Delta d = d_1 - d_0$ ,  $\Delta n = n_1 - n_0$ , 以用 于调整监控信号或改进镀膜工艺。实验的重点是局 部优化算法在理想条件下的极限性能,因此作以下 简化处理1)不考虑体不均匀性和表面粗糙度,即各 项均匀膜系假设成立;2)实测光谱不存在误差,即用 扰动后的膜系理论计算值做实际膜系的真实光谱: 3) 折射率不存在误差, 也不考虑色散, 只考虑膜层几 何厚度误差。

具体实施时,需要在 Matlab 中编写专门的光谱

系数理论计算和评价函数程序<sup>[15]</sup>。优化过程中,部 分算法还可能会需要光谱系数的导数及二阶 Hesse 矩阵的信息,这可以用有限差分近似或采用梯度和 Hesse 矩阵的解析计算模型来实现严格计算<sup>[16,17]</sup>。 以自制的基于 Matlab 的膜系设计和分析软件为基 础,运用 Matlab 最优化工具箱,对上述实验进行了 大量数值计算。

#### 3 结果及讨论

表1给出了实验1中所给锗基红外宽带增透膜 在标准初始膜系 I 下不同局部优化方法(A~L3)最 终优化解的膜层结构参数,其中 nt 为各层的光学厚 度,对应的反射率及其折射率轮廓图由图1和2给 出。其中,标准初始膜系 I 取自文献 [7],膜系 F,G 和H是文献[7]中最好的前三个代表性设计,列此 以作横向比较。从图1和表1数据可以看出,最优 化工具箱中基于导数的算法 fminunc、fsolve、 lsqnonlin、fmincon 和 fminimax 都搜索到同一个 12 层最优解,解的质量优于文献[7]中 F. Goldstein 用 单纯形法, P. Baumeister 用梯度法和 D. Custafson 用阻尼最小二乘法(DLS)所得的膜系,而彼此折射 率轮廓具有较明显的相似度,且最外5层几乎一样。 这一方面验证 Matlab 中的上述导数算法的有效性, 且对比之下其性能更甚一筹,搜索到更好的极小值 点。另一方面, Matlab 中的上述不同导数算法都收 敛到同一个局部极小值点,从侧面说明该极小值点 是给定标准初始膜系附近的最小值点。

从图 2 和表 1 数据可以看出,最优化工具箱中 非导数算法 fminsearch、patternsearch 和 simulannealbnd 都出现了明显的多解性,解的质量 较导数算法有优有劣,单纯形指令 fminsearch 和模 式搜索指令 patternsearch 搜索能力较优,模拟退火 较差,而其共性是搜索在后期变得很慢导致优化至 收敛的时间较长。这种多解性的出现,一方面侧面 反映了膜系评价函数的多峰性,另一方面也说明了 非导数算法具有一定程度的随机性和跳出局部极值 的能力,有可能在参数空间发生了大的变化导致搜 索朝更多的方向进行。从膜系设计的角度来讲,这 种算法本身的多重搜索特性导致的多解性是较有利 的,可以为镀膜工程师挑选更适合实际的可用镀膜 环境的理论设计进行生产。考虑到该类算法后期搜 索效率低的特性,该类算法适合于设计初期进行优 化,以开拓更多搜索方向,末期还是应辅以导数算法 来加速收敛过程,节省设计总时间。而从反向工程 的角度来看,这种算法本身的随机性或多解性是较 有害的,会给真实膜系结构参数的确定带来更多的 困扰和疑惑。

在数值实验的初期,假定将另一种膜厚约束处 理方式自动引入优化程序中,即允许算法优化过程 中出现非正厚度,直至一定代数再进行非正厚度膜 层删除合并处理。这时出现了一个令人意外的情 况,即导数算法也产生了可以重复出现的多种设计 结果,解的质量也不优于非正厚度膜层即时删除处 理的解。经过对优化过程中删除合并操作前后膜系 结构的仔细对比发现,这种多解性正是膜系非正厚 度膜层删除位置不同造成的,这种删除操作在参数 空间中发生了大的跳跃,从而导致算法收敛点呈现 较明显的区别,往往同时删除临近的非正厚度膜层 会产生更差的解。因此,即时删除非正厚度膜层的 约束处理方式,对导数算法优化得到的设计膜系的 唯一性和质量都是更有利、更可取的。

表 1 标准初始膜系下不同局部优化方法所得红外增透膜解的结构参数 Table 1 Structural parameters of infrared AR solutions by different methods from the standard design initial

|             |               | Ι                  | А          | В       | С         | D             | Е        | F       | G              | Н       |  |
|-------------|---------------|--------------------|------------|---------|-----------|---------------|----------|---------|----------------|---------|--|
| algorithm   |               | starting<br>design | fminunc    | fsolve  | lsqnonlin | fmincon       | fminimax | simplex | gradient       | DLS     |  |
| Layer       | п             | nt                 | nt         | nt      | nt        | nt            | nt       | nt      | nt             | nt      |  |
| air         | 1             | _                  | _          | _       | _         | _             | _        | —       | _              | —       |  |
| 1           | 2.2           | 2.7975             | 2.8423     | 2.8421  | 2.8423    | 2.8423        | 2.8423   | 2.8327  | 2.8500         | 2.8525  |  |
| 2           | 4.2           | 1.3875             | 1.1905     | 1.1906  | 1.1905    | 1.1905        | 1.1905   | 1.1704  | 1.1825         | 1.1775  |  |
| 3           | 2.2           | 6.0125             | 5.7162     | 5.7157  | 5.7162    | 5.7162        | 5.7162   | 5.7109  | 5.7250         | 5.7500  |  |
| 4           | 4.2           | 0.5825             | 0.9131     | 0.9131  | 0.9131    | 0.9131        | 0.9131   | 0.8829  | 0.9025         | 0.8950  |  |
| 5           | 2.2           | 4.3250             | 5.3586     | 5.3575  | 5.3586    | 5.3586        | 5.3586   | 5.4334  | 5.3450         | 5.5000  |  |
| 6           | 4.2           | 0.1450             | 2.7182     | 2.7141  | 2.7182    | 2.7182        | 2.7182   | 1.6761  | 2.8675         | 2.1200  |  |
| 7           | 2.2           | 1.1000             | 0.4813     | 0.4807  | 0.4813    | 0.4813        | 0.4813   | 0.6342  | 0.4275         | 0.6650  |  |
| 8           | 4.2           | 0.3050             | 1.1293     | 1.1241  | 1.1293    | 1.1293        | 1.1293   | 0.8723  | 1.0925         | 1.1275  |  |
| 9           | 2.2           | 1.6450             | 2.8044     | 2.8374  | 2.8045    | 2.8045        | 2.8045   | 4.1323  | 3.1150         | 3.1900  |  |
| 10          | 4.2           | 0.3050             | 0.6937     | 0.6893  | 0.6937    | 0.6937        | 0.6937   | 5.0790  | 0.6125         | 0.6275  |  |
| 11          | 2.2           | 1.1000             | 0.7783     | 0.7740  | 0.7783    | 0.7783        | 0.7783   | 1.2174  | 0.8250         | 0.8225  |  |
| 12          | 4.2           | 0.1450             | 3.8767     | 3.8630  | 3.8766    | 3.8766        | 3.8766   | 1.1320  |                |         |  |
| 13          | 2.2           | 1.1000             |            |         |           |               |          | 0.7831  |                |         |  |
| 14          | 4.2           | 0.7675             |            |         |           |               |          |         |                |         |  |
| 15          | 2.2           | 0.7150             |            |         |           |               |          |         |                |         |  |
| 16          | 4.2           | 0.7675             |            |         |           |               |          |         |                |         |  |
| 17          | 2.2           | 0.7300             |            |         |           |               |          |         |                |         |  |
| 18          | 4.2           | 0.7825             |            |         |           |               |          |         |                |         |  |
| 19          | 2.2           | 0.7300             |            |         |           |               |          |         |                |         |  |
| 20          | 4.2           | 0.7675             |            |         |           |               |          |         |                |         |  |
| 21          | 2.2           | 0.7150             |            |         |           |               |          |         |                |         |  |
| Substrate   | 4             | —                  | _          | —       | —         | —             | —        | _       | —              | —       |  |
| $\sum (nt)$ | $/\mu { m m}$ | 26.9250            | 28.5025    | 28.5017 | 28.5025   | 28.5025       | 28.5025  | 31.5567 | 24.9450        | 24.7275 |  |
| F           | F             |                    | 1.346      | 1.346   | 1.346     | 1.346         | 1.346    | 1.3498  | 1.3592         | 1.3764  |  |
| Optimiza    | ation         | J1                 | J2         | J3      | K1        | K2            | K3       | L1      | L2             | L3      |  |
| algoritim   |               |                    | fminsearch |         |           | patternsearch |          |         | simulannealbnd |         |  |
| Layer       | п             | nt                 | nt         | nt      | nt        | nt            | nt       | nt      | nt             | nt      |  |
| air         | 1             | —                  | —          | —       | —         | —             | —        | —       | —              | —       |  |
| 1           | 2.2           | 2.8423             | 2.7989     | 2.8504  | 2.8002    | 2.8201        | 2.8479   | 2.9032  | 2.8580         | 2.9059  |  |
| 2           | 4.2           | 1.1905             | 1.2757     | 1.1812  | 1.2674    | 1.2444        | 1.1865   | 1.1117  | 1.1594         | 1.1121  |  |
| 3           | 2.2           | 5.7162             | 5.6289     | 5.7346  | 5.6311    | 5.6718        | 5.7297   | 5.8638  | 5.8065         | 5.9481  |  |
| 4           | 4.2           | 0.9131             | 1.0096     | 0.9037  | 1.0075    | 0.9705        | 0.9085   | 0.8003  | 0.8303         | 0.7440  |  |
| 5           | 2.2           | 5.3586             | 5.2480     | 5.3992  | 5.2978    | 5.2719        | 5.3774   | 5.8895  | 5.7816         | 6.0856  |  |

吴素勇等: 光学多层薄膜反向工程中局部优化算法的性能分析

|              |                                             |                                    |             |                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |         | 买衣.     |  |
|--------------|---------------------------------------------|------------------------------------|-------------|----------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------|---------|--|
| Optimiza     | tion                                        | J1                                 | J2          | J3                   | K1                                          | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L1                               | L2      | L3      |  |
| algoritim    |                                             |                                    | fminsearch  |                      |                                             | patternsearch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | simulannealbnd                   |         | nd      |  |
| 6            | 4.2                                         | 2.7182                             | 2.6804      | 2.6499               | 2.6486                                      | 2.6334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.7447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2940                           | 1.4048  | 1.0277  |  |
| 7            | 2.2                                         | 0.4813                             | 0.5597      | 0.4939               | 0.7389                                      | 0.4491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3372                           | 1.1578  | 1.5446  |  |
| 8            | 4.2                                         | 1.1293                             | 0.7131      | 1.1983               | 0.8401                                      | 0.8286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7416                           | 0.7223  | 0.5208  |  |
| 9            | 2.2                                         | 2.8045                             | 3.5144      | 2.7329               | 2.6297                                      | 3.7659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.8843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.8860                           | 3.4217  | 4.3287  |  |
| 10           | 4.2                                         | 0.6937                             | 5.0428      | 0.7274               | 1.6860                                      | 4.7287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8151                           | 0.6650  | 0.5043  |  |
| 11           | 2.2                                         | 0.7783                             | 1.3942      | 0.8355               | 0.1756                                      | 5.3543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7343                           | 0.7779  | 1.6166  |  |
| 12           | 4.2                                         | 3.8766                             | 1.0411      | 9.7559               | 2.5755                                      | 1.0514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | 1.1961  | 1.2267  |  |
| 13           | 2.2                                         |                                    | 0.8504      |                      | 4.5717                                      | 0.5733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | 0.2899  | 0.67345 |  |
| 14           | 4.2                                         |                                    |             |                      | 0.7418                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | 1.8908  |         |  |
| 15           | 2.2                                         |                                    |             |                      | 0.4242                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | 0.2101  |         |  |
| Substrate    | 4                                           | —                                  | —           | —                    | —                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                | _       | _       |  |
| $\sum(nt)$ / | μm                                          | 28.5025                            | 31.7571     | 34.4630              | 33.0360                                     | 35.3634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.8165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.3766                          | 28.1720 | 28.2396 |  |
| F            |                                             | 1.346                              | 1.1277      | 1.3193               | 1.1075                                      | 1.1821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.3562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5325                           | 1.5017  | 1.7504  |  |
|              | 0.02                                        | .02 A-fminunc<br>0<br>.02 B-fsolve |             | F: 1.346<br>F: 1.346 |                                             | $\begin{array}{c} 4.2 \\ 2.2 \\ 1 \\ 2.2 \\ 1 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |         |         |  |
|              | C-lsqnonlii                                 | C-lsqnonlin                        |             |                      | $\begin{array}{c}1\\4.2\\2.2\\1\end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |         |         |  |
| υ            | 0.02                                        | D-fmincon                          |             | F: 1.346             |                                             | $\begin{array}{c} 4.2 \\ 2.2 \\ 1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\sum_{n=1}^{n} \sum_{i=1}^{n} \sum_{i$ | t)=28.5025 μr                    | n,      | -       |  |
| Reflectance  | 0.02                                        | E-fminimax<br>F-simplex            |             | F: 1.346             |                                             | 4.2<br>2.2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 4.2 \\ 2.2 \\ 1 \end{array}  \Sigma(nt) = 28.5025 \ \mu \text{m} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |         |         |  |
|              | 0.02                                        |                                    |             | F: 1.3498            |                                             | 4.2<br>2.2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 4.2 \\ 2.2 \\ 1 \end{array} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |         |         |  |
|              | 0.02                                        | G-gradient                         |             | F: 1.3592            |                                             | $\begin{array}{c} 4.2\\ 2.2\\ 1\\ 1 \end{array} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |         | -       |  |
|              | 0.02                                        | H-DLS                              |             | F: 1.3764            |                                             | $\begin{array}{c}4.2\\2.2\\1\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$ | t)=24.7275 μr                    | n į     | -       |  |
|              | $\begin{array}{c} 0.4\\ 0.2\\ 0\end{array}$ | I-starting d                       | esign<br>10 | F: 10.631            | 12                                          | $\begin{array}{c}4.2\\2.2\\1\\0\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $t)=26.925 \ \mu m$<br>$15 \ 20$ |         | 35      |  |
|              |                                             |                                    | Wavelength  | ı/um                 |                                             | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Optie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | al thickness                     | /um     | -       |  |

图 1 标准初始膜系下导数优化方法得到的红外-增透膜光谱反射率和折射率轮廓 Fig. 1 Spectral reflectance and refractive index profiles of infrared antireflection coatings

obtained with derivative-optimization algorithms from the standard initial design

实验2以实验1导数算法收敛到的12层结构 为对象来调查不同局部优化方法在膜系反向工程中 的性能。为了突出局部优化方法在膜系反演中的性 能,假设镀膜过程中所有膜层厚度镀制后都增厚了 5%,即真实膜层厚度向量为理论设计的1.05倍,且 设该增透膜的实测反射率光谱不存在误差,即用真 实膜系结构参数下的理论计算光谱作为待反演增透 膜的真实反射率光谱来进行反演计算。通过比较不 同局部优化方法所得的膜系结构与扰动后的理论设 计接近程度的差别,可以比较其有效性。衡量算法 有效性的另一个间接指标是偏差评价函数值,其中 精度 Δ*R*<sub>l</sub> 反映了光谱记录设备的反射率测量水平, 统一设为 0.1%。当偏差评价函数值小于 1 时,其 物理意义为反演得到的膜系的光谱均方根反射率与 膜系的真实光谱的偏差小于光谱测量仪器的极限水 平。由于光谱测量设备误差的影响,如果实测光谱 数据直接用作反演计算中的目标光谱,那偏差评价 函数值小于1以下的反演优化就变得缺乏物理实际



图 2 标准初始膜系下非导数优化方法得到的红外增透膜的光谱反射率和折射率轮廓

Fig. 2 Spectral reflectance and refractive-index profiles of infrared antireflection coatings obtained with

non-derivative-optimization algorithms from the standard initial design

表 2 不同局部优化方法反演所得红外增透膜解的结构参数

Table 2 Structural parameters of infrared AR solutions reverse-determined by different local optimization algorithms

| Optimization<br>algorithm |     | Ι       | J       | А       | В       | С       | D       | Е       | F       | G        | Н        |
|---------------------------|-----|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|
|                           |     | design  | real    | fminunc | fsolve  | lsq-    | fmin-   | fmini-  | fmin-   | pattern- | simulan- |
|                           |     |         |         |         |         | nonlin  | con     | max     | search  | search   | nealbnd  |
| Layer                     | п   | nt       | nt       |
| air                       | 1   | _       | —       | _       | _       | _       | _       | _       | _       | _        | _        |
| 1                         | 2.2 | 2.8423  | 2.9844  | 2.9844  | 2.9844  | 2.9844  | 2.9844  | 2.8881  | 2.9862  | 2.9844   | 2.8031   |
| 2                         | 4.2 | 1.1905  | 1.2500  | 1.2500  | 1.2500  | 1.2500  | 1.2499  | 1.2535  | 1.2452  | 1.2500   | 1.3789   |
| 3                         | 2.2 | 5.7162  | 6.0020  | 6.0020  | 6.0020  | 6.0020  | 6.0018  | 5.8746  | 6.0102  | 6.0020   | 5.7511   |
| 4                         | 4.2 | 0.9131  | 0.9587  | 0.9587  | 0.9587  | 0.9587  | 0.9583  | 1.0265  | 0.9480  | 0.9589   | 1.0750   |
| 5                         | 2.2 | 5.3586  | 5.6265  | 5.6261  | 5.6265  | 5.6265  | 5.6174  | 5.5526  | 5.6374  | 5.6281   | 5.5261   |
| 6                         | 4.2 | 2.7182  | 2.8541  | 2.8573  | 2.8541  | 2.8541  | 2.9325  | 3.0085  | 2.7604  | 2.8394   | 2.8343   |
| 7                         | 2.2 | 0.4813  | 0.5053  | 0.5048  | 0.5053  | 0.5053  | 0.4938  | 0.5625  | 0.4619  | 0.5077   | 0.7121   |
| 8                         | 4.2 | 1.1293  | 1.1858  | 1.1856  | 1.1858  | 1.1858  | 1.1817  | 0.9792  | 1.1969  | 1.1857   | 0.9572   |
| 9                         | 2.2 | 2.8044  | 2.9446  | 2.9416  | 2.9446  | 2.9446  | 2.8622  | 3.3390  | 3.6541  | 2.9628   | 2.8813   |
| 10                        | 4.2 | 0.6937  | 0.7284  | 0.7289  | 0.7284  | 0.7284  | 0.7422  | 0.8482  | 0.6540  | 0.7259   | 0.9420   |
| 11                        | 2.2 | 0.7783  | 0.8172  | 0.8174  | 0.8172  | 0.8172  | 0.8222  | 0.6721  | 0.8370  | 0.8154   | 0.5987   |
| 12                        | 4.2 | 3.8767  | 4.0705  | 4.0707  | 4.0705  | 4.0705  | 4.0773  | 3.2280  | 0.8135  | 4.0656   | 3.7905   |
| Substrate                 | 4   | _       | _       | _       | _       | _       | _       | —       | _       | —        | _        |
| $\sum (nt) / \mu m$       |     | 28.5025 | 29.9276 | 29.9275 | 29.9276 | 29.9276 | 29.9235 | 29.2328 | 27.2049 | 29.9259  | 29.2502  |
| F                         |     | 106.71  | 0       | 0.0002  | 0       | 0       | 0.0035  | 0.7349  | 0.2297  | 0.0039   | 4.8273   |

意义。只有对实测光谱数据进行数据筛选或误差处 理后,反演偏差评价函数值越小,才表示反演得到的 膜系越接近真实的膜层结构。 表 2 和图 3 给出了用 Matlab 最优化工具箱中 各局部优化算法反演得到的膜系结构数据和光谱反 射率及折射率轮廓与真实解对比情况。其中,I 为





实验1得到的最优理论设计解,J为按理论设计镀 制的膜的数值模拟真实结构,其厚度向量值为 I 结 构的 1.05 倍,A~H 分别为最优化工具箱中上述各 局部优化算法以理论设计 I 为初值,以模拟真实膜 J 的理论光谱为反演逼近光谱得到的数值解,F~H 为非导数算法多个解中的最优情况。从表 2 的数据 和图 3 的对比图可以看出, Matlab 最优化工具箱中 各局部优化算法在多层膜结构反演中性能开始出现 明显差别,其中以非线性方程求解指令 fsolve 和非 线性最小二乘估计指令 lsqnonlin 的性能最佳,得到 与模拟真实膜一样的反演解,无约束优化指令 fminunc 也以很高的精度非常接近真实解,约束优 化指令 fmincon 和模式搜索指令 patternsearch 的 最优解稍次之,但都可接受。而多目标优化指令 fminimax、无约束优化指令 fminsearch 和模拟退火 指令 simulannealbnd 的反演解与真实解相比出现 显著偏差,特别是在靠近基底的膜层偏差已超出误 差范围,可认为反演失效。

除了折射率轮廓图的直观比较,为了确保所得 反演解能较好地接近真实解,间接判据偏差评价函 数 F 必须足够小,而不仅仅小于单位1就可以,这 主要是多层膜偏差评价函数的极多峰性造成反演算 法容易过早收敛到其他局部极值点。这一多层膜反 演数值计算上的特性,使得当光谱测量数据中的误 差存在时,挑选反演结果时要注意满足偏差评价函 数值足够小这一内在约束要求。一般地,偏差函数 值应低于单位1至少1个数量级。尽管上面提到的 偏差评价函数小于单位1的优化缺乏实际的物理意 义,但偏差评价函数数学上的多元多峰性内在要求 其值足够小,这对于确保反演解的可靠性和数学上 的唯一性十分重要。不理解这一点,极有可能挑选 一个错误的反演解作为多层膜的真实结构,夸大了 镀膜过程中的误差,而不符合实际镀膜过程。

从实验1和2可以看出,Matlab最优化工具箱 在处理多层膜设计局部优化和反向工程两类问题上 的确很有效。比较已发表的其他结果<sup>[7,8]</sup>,其中的 导数算法在设计上具有更好的局部极值搜索性能, 非导数算法具有更多的搜索路径,有利于得到一系 列设计解,供镀膜工程师挑选最符合自身镀膜环境 的实际最优解进行镀膜。在多层膜反演中,导数算 法中以非线性最小二乘估计指令 lsqnonlin 和非线 性方程求解指令 fsolve 的性能最佳,建议作为多层 膜反向工程问题的主要算法。无约束优化指令 fminunc性能次之,约束优化指令 fmincon 再次之, 可作为备用反演算法。而多目标优化指令 fminimax和其余非导数算法由于算法的性能和多 解性的原因,不利于多层膜的反演,容易得到错误的 结果,不建议作为反演算法使用,仅可以作为可选算 法以供对比参考。而其中多解性的产生主要有3个 成因,分别是算法本身的内在随机性、膜厚约束处理 的施加方式和评价函数的极多峰性。通过选择性能 好的算法作为主要反演算法,采用恰当的膜厚约束 施加方式,同时数学上内在要求偏差评价函数足够 小以删除次峰,从而确保反演解准确地逼近待反演 膜的真实结构参数。

#### 4 结 论

以锗基红外宽带增透膜为例,基于 Matlab 最优 化工具箱,研究了多种局部优化算法在多层膜设计 局部优化中的性能和反向工程算法开发中的可行 性,并就数值实验中出现多解性问题的成因、分析及 解决方案进行了探讨。结果表明, Matlab 最优化工 具箱中的导数算法在多层膜局部优化设计上具有更 好的局部极值搜索性能和收敛速度,非导数算法性 能较差且收敛时间较长,但具有更多的搜索路径,较 适用于设计初期开拓搜索方向,有利于得到一系列 设计解。在多层膜反演中,导数算法中的非线性最 小二乘估计指令 lsqnonlin 和非线性方程求解指令 fsolve 的性能出色,建议作为多层膜反向工程问题 的主要算法。无约束优化指令 fminunc 性能次之, 约束优化指令 fmincon 再次之,可作为备用反演算 法。而多目标优化指令 fminimax 和其余非导数算 法由于算法的性能不足和自身内在多解性的原因, 不利于多层膜的反演,易得到错误的结果,不建议作 为反演算法使用,仅可作为可选算法以供对比参考。 多层膜反向工程内部核心算法的科学开发,可望在 多层膜镀制误差分析和工艺改进中发挥重要作用。

- 参考文献
- 1 P. Baumeister. Design of multilayer filters by successive approximations[J]. J. Opt. Soc. Am., 1958, 48(12): 955~958
- 2 N. Kaiser, C. J. Stolz. Optical Society of America's 2007 Topical Meeting on Optical Interference Coatings: overview[J]. *Appl. Opt.*, 2008, **47**(13): OIC1~OIC7
- 3 A. V. Tikhonravov, M. K. Trubetskov. On-line characterization and reoptimization of optical coatings[C]. SPIE, 2004, 5250: 406~413

- 4 A. V. Tikhonravov, M. K. Trubetskov. Computational manufacturing as a bridge between design and production [J]. *Appl. Opt.*, 2005, **44**(32): 6877~6884
- 5 A. V. Tikhonravov. Virtual deposition plant[C]. SPIE, 2005, **5870**: 0D1~0D13
- 6 K. Fiedrich, S. Wilbrandt, O. Stenzel *et al.*. Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment[J]. *Appl. Opt.*, 2010, **49**(16): 3150~3162
- 7 J. A. Aguilera, J. Aguilera, P. Baumeister *et al.*. Antireflection coatings for germanium IR optics: a comparison of numerical design methods [J]. *Appl. Opt.*, 1988, 27 (14): 2832~2840
- 8 J. A. Dobrowolski, R. A. Kemp. Refinement of optical multilayer systems with different optimization procedures [J]. *Appl. Opt.*, 1990, **29**(19): 2876~2893
- 9 J. P. Borgogno, P. Bousquet, E. Pelletier. Automatic determination of optical constants of inhomogeneous thin films [J]. Appl. Opt., 1982, 21(22): 4020~4029
- 10 A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan et al.. Influence of small inhomogeneties on the spectral characterisitics of single thin films[J]. Appl. Opt., 1997, 36(28): 7188~7198
- 11 A. V. Tikhonravov, M. K. Trubetskov, A. A. Tikhonravov*et al.*. Effects of interface roughness on the spectral properties of thin films and multilayers [J]. *Appl. Opt.*, 2003, **42** (25): 5140~5148
- 12 C. K. Carniglia, D. G. Jensen. Single-layer model for surface roughness[J]. Appl. Opt., 2002, 41(16): 3167~3171
- 13 A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev *et al.*. Effect of systematic errors in spectral photometric data on the accuracy of determination of optical parameters of dielectric thin films[J]. *Appl. Opt.*, 2002, **41**(13): 2555~2560
- 14 Wu Suyong, Long Xingwu, Huang Yun *et al.*. Methods for decreasing optical parameters reverse determination uncertainty of thin films caused by spectral mearement errors[J]. *Chinese J. Lasers*, 2009, **36**(8): 2171~2177
  吴素勇,龙兴武,黄 云等. 减小由光谱测量数据误差造成的薄膜光学参数反演不确定度的方法[J]. 中国激光, 2009, **36**(8): 2171~2177
- 15 Wu Suyong. Application of genetic algorithm in the design of optical coatings[D]. Changsha: National University of Defense Technology, 2007. 22~32 吴素勇.遗传算法在膜系设计中的应用[D]. 长沙: 国防科学技 术大学, 2007. 22~32
- 16 Wu Suyong, Long Xingwu, Huang Yun et al.. Calaulation model for spectral coefficient's first and second order partial derivatives of multilayer optical coatings with respect to layer parameters[J]. *High Power Laser and Particle Beams*, 2010, 22(1): 83~90 吴素勇,龙兴武,黄 云 等. 膜系光谱系数对膜系数参数的一阶 和二阶偏导数的计算模型[J]. 强激光与粒子束, 2010, 22(1): 83~90
- 17 Wu Suyong, Long Xingwu, Yang Kaiyong. Accurate calculation and Matlab based fast realization of merit function's Hesse matrix for the design of multilayer optical coating [J]. Optoelectronics Letters, 2009, 5(5): 359~363