文章编号: 0253-2239(2010)03-0808-05

XeF 激光光谱研究

于力朱峰安晓霞易爱平马连英黄超刘晶儒

(西北核技术研究所,陕西西安 710024)

摘要 利用两种腔镜组合对 XeF 激光光谱进行了研究。在同一实验条件下,可同时获得 B-X 和C-A 两种跃迁的激光输出,XeF(B-X)激光比 XeF(C-A)激光早 800 ns 形成。详细研究了 XeF₂ 初始分子数浓度对 XeF 激光 光谱的影响,结果表明,低 XeF₂ 分子数浓度条件不利于 XeF(B-X)激光形成,随着 XeF₂ 分子数浓度增高,B-X 跃迁光谱呈现出多条分立谱线的特征。给出了两种腔镜组合条件下 XeF(C-A)激光光谱,XeF(C-A)激光光谱 特征是宽带连续谱,在光谱中可观察到 Xe 原子的吸收线。选用合适的腔镜组合可实现 XeF(C-A)激光的窄带输 出,带宽约为 7 nm。

关键词 激光光谱;XeF 激光;光谱探测;C-A 跃迁;B-X 跃迁 中图分类号 TN248.5 文献标识码 A doi: 10.3788/AOS20103003.0808

Study on the Spectrum of XeF Laser

Yu Li Zhu Feng An Xiaoxia Yi Aiping Ma Lianying Huang Chao Liu Jingru (Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024, China)

Abstract The spectrum of XeF laser has been studied using two kinds of resonator mirrors. Two kinds of lasers on B-X and C-A transitions can be obtained under the same experimental condition. The formation time of the XeF(B-X) laser is 800 ns earlier than that of the XeF(C-A) laser. The influence of the original XeF₂ concentration on XeF laser spectrum is studied in detail. The experimental results indicate that lower original XeF₂ concentration impedes the formation of the XeF(B-X) laser is studied in detail. The experimental results indicate that lower original XeF₂ concentration impedes the formation of the XeF(B-X) laser. With the XeF₂ concentration increasing, the XeF(B-X) laser presents the characteristic of a series of discrete line spectrum. The spectra of XeF(C-A) laser using two kinds of resonator mirrors are given. The XeF(C-A) laser spectrum is characterized by a continuous broadband spectrum and the absorption lines of atomic Xe can be observed in the spectrum. The narrow band XeF(C-A) laser can be obtained with the appropriate resonator mirrors. The bandwidth of the narrow band XeF(C-A) laser spectrum is 7 nm.

Key words laser spectrum; XeF laser; spectrum detection; C-A transition; B-X transition

1 引

言

XeF激光问世于 20 世纪 70 年代末,它是光化 学激光群体中引人注目的一种类型。XeF分子可以 在两个不同的跃迁上产生两种波长的激光,一个是 *B*-*X*跃迁,激光波长在紫外区域;另一个是*C*-*A* 跃迁,激光波长在可见光区域。其中 XeF(*C*-*A*)激 光由于具有辐射波长处于水下最佳传输窗口、激光 饱和能量密度高等特性备受科学界的关注和青睐。 1992年,俄罗斯列别捷夫物理研究所与天体物理研 究所合作采用三通道分段表面放电光抽运技术研制 XeF(C-A)激光器获得了 117 J的激光输出^[1]。 1997年,法国马赛大学 LP3 实验室 M. Sentis 等^[2] 利用铁氧体杆表面放电光抽运技术研制了小型化激 光器获得了 1.3 J的激光输出。2003年,美国伊利 诺伊大学的 B. A. Kaecht 等^[3]利用多间隙表面放电 技术研制成功了紧凑型激光器,可获得大于 50 mJ 的 XeF(C-A)激光脉冲。近年来,西北核技术研究 所在 XeF 激光研究方面开展了许多有益的工作,激

作者简介:于 力(1969—),男,博士,副研究员,主要从事激光技术及脉冲功率技术等方面的研究。

收稿日期: 2009-02-23; 收到修改稿日期: 2009-05-11

基金项目:国家 863 计划(AA809510)资助课题。

光输出能量达到了10J水平^[4~7]。

在激光通信领域,提高激光光谱功率密度对提高传输信号的信噪比、降低误码率至关重要。然而, *C*-A跃迁的特点是具有连续的荧光谱,在形成激光 过程中存在 *B*-X 跃迁竞争。因此,研究 XeF 激光 光谱特征及其影响因素,分析两种跃迁形成激光的 特性,探索获得窄谱带 XeF(*C*-A)激光输出的方 法,对 XeF(*C*-A)激光未来在通信领域的应用具有 现实意义。本文主要通过光谱探测方法,讨论 XeF 激光的光谱特征以及腔镜组合、XeF₂ 浓度等因素对 激光光谱的影响。

2 XeF 分子能级

XeF 分子是一种准分子,它的势能曲线如图 1 所示,箭头所指示的是 B(1/2)-X(1/2)和 C(3/2)-A(3/2)跃迁,这些跃迁可用于获得激光。

图 1 XeF 准分子的势能曲线

Fig. 1 Curve of potential energy of the XeF excimer

一系列的低能级如 X(1/2),A(1/2)和 A(3/2)态 的准分子是由未激发的 $Xe({}^{1}s_{0})$ 原子和 $F({}^{2}p)$ 原子相 互作用形成的,这些态的特点是分子由共价键结合。 A(1/2)和 A(3/2)态是排斥态;X(1/2)是弱束缚态, 其结合能大约是 1200 cm⁻¹。激发态如 B(1/2),C(3/2)和 D(1/2)态准分子是由 $Xe^{+}({}^{2}p)$ 离子和 $F^{-}({}^{1}s_{0})$ 离子相互作用形成的离子键的分子^[8]。

B-*X* 跃迁是束缚态向弱束缚态的跃迁,其特征 是在 350 nm 附近形成一系列分立的对应各个振动能 级间跃迁的线谱。对于较高的振动能级,*B* 态的寿命 τ_B =14 ns;对应最强的 *B*(ν'=0)-*X*(ν''=3)激光跃迁 的受激辐射截面 σ_{BX} =1.2×10⁻¹⁵ cm^{2[1]}。*C*-*A* 跃迁 是束缚态与排斥态之间的跃迁,*C*-*A* 跃迁的特点是 以 480 nm 为中心形成大约 100 nm 宽度的连续荧光 谱。*C*(3/2)态的寿命 τ_C =100 ns,对应 481 nm 波长 的最大受激截面 σ_{CA} =9×10⁻¹⁸ cm^{2[8]}。

3 实验设计与条件

实验所用的激光器为自行研制的焦耳级 XeF 激 光器^[4],谐振腔采用平凹稳定腔,腔镜采用了两种组 合,组合后的腔内反射率曲线如图 2 所示。腔镜组合 1 在可见光波段只有 470~482 nm 区域反射率高于 90%,目的是获得窄带 C-A 激光输出;在 350 nm 附 近的反射率约 4%,目的是抑制 B-X 跃迁形成振荡。 腔镜组合 2 是为了获得宽带 XeF(C-A)激光辐射,可 看到从 450~530 nm 区域的反射率均高于 90%。谐 振腔腔长为 130 cm。

图 2 两种谐振腔镜组合的腔内反射率曲线 Fig. 2 In-cavity reflectivity curves of two kinds of resonator mirrors

光学参数测量的光路布局如图 3 所示,473 nm 的激光器用作调腔准直,He-Ne 激光器用作测量光路 准直。输出激光经过两块光楔后被分为三路,一路入 射到 HR4000 光谱仪用来测量激光光谱,光谱仪的分 辦率为 0.15 nm;一路进入光电管 PD1 用来测量激光脉冲;一路进入到前面加有 400~700 nm 带通滤波片的光电管 PD2 用以测量 C-A 跃迁产生的激光信号, 光电管型号均为 GD51Q。

Fig. 3 Schematic diagram of the experimental arrangement for optical parameter measuring

激光器运行条件如下:工作电压 24~26 kV,总 储能电容量为 8 μ F,单向抽运,光轴距放电基板距 离为 12 mm,气室内总气压 100 kPa,Ar 和 N₂ 物质 的量比为 3:2,XeF₂ 初始分子数浓度在 0.2×10¹⁷~ 1.1×10^{17} cm⁻³范围内可调。

4 实验结果与分析

4.1 谐振腔选用组合1

在 XeF₂ 初始分子数浓度 0.96×10¹⁷ cm⁻³ 情况 下,获得的激光光谱如图 4 所示。可以看到同时获 得了 XeF(B-X)和 XeF(C-A)激光。由图 2 可 知,对于腔镜组合 1,在 350 nm 附近的腔镜反射率 仅为 4%,对 B-X 跃迁而言输出损耗非常大;而在 475 nm 附近的反射率高达 91.5%。即使在这种条 件下,B-X 跃迁仍然有激光输出,其主要原因是 B-X跃迁的受激截面比 C-A 跃迁的高出两个量 级,可见 B-X 跃迁远比 C-A 跃迁的高出两个量 输出。

图 4 XeF 激光光谱

Fig. 4 XeF laser spectra

由于腔镜组合 1 的使用,*C*-A 激光为窄带输出, 谱宽从 473.4~480.6 nm。图 5 给出 350 nm 附近 XeF (*B*-*X*)激光光谱的精细图,可以看到存在三条分立的 线谱,其中,351.1 nm 波长对应 *B*(*v*'=0)-*X*(*v*'=2)跃

图 5 B-X 跃迁激光光谱精细图

Fig. 5 B-X laser spectrum at higher resolution 迁,353.1 nm 波长对应 $B(\nu'=0) - X(\nu''=3)$ 跃迁, 353.6 nm波长对应 $B(\nu'=1) - X(\nu''=6)$ 跃迁^[9,10]。

激光脉冲波形和放电电流波形如图 6 所示,曲 线 1 为光电管 1 测得信号,显示有两个脉冲;曲线 2 是光电管 2 测量的 C-A 跃迁形成的激光信号。曲 线 3 是放电电流波形。比较两个激光脉冲波形可 知,曲线 1 中的第一个脉冲应为 B-X 跃迁形成的 激光信号。XeF(B-X)激光比 XeF(C-A)激光形 成得早,形成时间约在放电开始后 600 ns。之后, XeF(B-X)激光从最大幅值到逐渐熄灭,取而代之 的是 XeF(C-A)激光。XeF(C-A)激光是在放电 开始后 1400 ns 左右开始形成,比 XeF(B-X)激光

图 6 激光脉冲波形和放电电流波形 Fig. 6 Laser pulse and discharge current waveforms

滞后 800 ns。

XeF₂ 初始分子数浓度对 XeF 激光光谱的影响 如图 7 所示。XeF₂ 分子数浓度较低时(分子数浓度 为 0.3×10¹⁷ cm⁻³)没有出现 XeF(B-X)激光辐 射,只有 XeF(C-A)激光输出。随着 XeF₂ 分子数 浓度的增加,在紫外区域首先是出现了 353.1 nm 对应最强的 $B(\nu'=0)-X(\nu''=3)$ 跃迁的辐射;继续 增加 XeF₂ 分子数浓度,出现了第二条对应 $B(\nu'=0)-X(\nu''=2)$ 跃迁的 351.1 nm 谱线;进一步增加 XeF₂ 浓度,第三条对应于 $B(\nu'=1)-X(\nu''=6)$ 跃 迁的 353.6 nm 谱线也出现了。B-X 跃迁辐射强 度也随着 XeF₂ 分子数初始浓度的增加而增大。 C-A跃迁辐射强度在 XeF₂ 分子数浓度较低时随 XeF₂ 初始分子数浓度的增加而增加,但当 XeF₂ 分 子数浓度大于 1.0×10^{17} cm⁻³ 后, C-A跃迁辐射强 度会有所下降。这是因为由于 B-X跃迁与C-A跃 迁的竞争,率先形成激光振荡的 B-X 跃迁会消耗 上能级的反转粒子数,从而使后起振的 C-A 跃迁 辐射减弱。另外,B-X 跃迁产生的光解离产物 Xe 原子也会对 C-A 跃迁的产生起到猝灭作用。上述 研究结果表明,高的 XeF₂ 分子数浓度有利于 B-X跃迁形成激光。

4.2 利用谐振腔组合 2

在 XeF₂ 初始分子数浓度 0.51×10^{17} cm⁻³条件下,获得的 C-A 跃迁激光光谱如图 8 所示。光谱

图 8 宽带 C-A 激光光谱 Fig. 8 Broadband C-A laser spectrum

特征为宽带辐射,底宽从 468.5~501.5 nm 。光谱 曲线中的一些向下的裂隙对应着 Xe 原子从 6s 态向 7p 态跃迁的吸收线,分别是 480.7,483.0,484.3, 491.6 和 492.3 nm^[3,8]。在 482 nm 和 490 nm 两处 较宽的吸收尚不能确定原因。

5 结 论

利用两种腔镜组合均获得了 XeF 激光。B-X 跃迁与C-A 跃迁在激光形成过程中存在互相竞 争,由于B-X 跃迁的受激截面较大,既使在腔内损 耗较大的条件下,也能容易地获得激光输出。在同一 激励条件下,B-X 跃迁先于C-A 跃迁形成激光, 超前约 800 ns。XeF₂ 初始分子数浓度对 XeF 激光

报

光谱有显著的影响,低浓度条件不利于 XeF(B-X) 激光形成,随着 XeF₂ 分子数浓度的提高,B-X 跃 迁辐射增强,B-X 跃迁光谱呈现出多条分立谱线 特征。提高 XeF₂ 分子数浓度同样会增强 C-A 跃 迁辐射强度,但浓度过高,会对 C-A 跃迁造成抑 制。选用腔镜组合 1,可得到窄带的 XeF(C-A)激 光,带宽约为 7 nm;选用腔镜组合 2,可获得宽带的 XeF(C-A)激光,光谱底带为 33 nm。在宽带C-A激光光谱中可观察到 XeF₂ 光解离产物 Xe 原子对 XeF(C-A)跃迁辐射的吸收。

参考文献

- 1 V. S. Zuev, G. N. Kashnikov, S. B. Mamaev. XeF laser with optical pumping by surface discharge [J]. Sov. J. Quant. Electron, 1992, 22(11): 973~979
- 2 M. L. Sentis, V. I. Tcheremiskin, Ph C. Delaporte. XeF (C-A) laser pumped by formed-ferrite open discharge radiation [J]. Appl. Phys. Lett., 1997, 70(10): 1198~1200
- 3 B. A. Kaecht, R. D. Fraser, D. J. Wheeler *et al.*. Optical pumping of the XeF(C-A) and iodine 1. 315 μm lasers by a compact surface discharge system [J]. Opt. Engng., 2003, 42(12): 3612~3621

4 Yu Li, Liu Jingru, Ma Lianying *et al.*. Joule level XeF laser operating in the blue-green region [J]. *Acta Optica Sinica*, 2005, **25**(7): 930~934

于 力,刘晶儒,马连英等. 焦耳级光抽运 XeF 蓝绿激光器 [J]. 光学学报,2005,**25**(7):930~934

- 5 Yu Li, Yi Aiping, Liu Jingru *et al.*. Temporal and spatial characteristics of XeF₂ photodissociation wave [J]. *High Power Laser and Particle Beams*, 2005, **17**(2): 177~180
 于 力,易爱平,刘晶儒等. XeF₂ 光解离波时空特性研究[J]. 强激光与粒子束, 2005, **17**(2): 177~180
- 6 Yu Li, Liu Jingru, Ma Lianying *et al.*. XeF(C-A) laser enhanced by two pump sourses [J]. *High Power Laser and Particle Beams*, 2005, **17**(12): 1765~1768 于 力,刘晶儒,马连英等.双向光泵浦 XeF(C-A)激光[J]. 强激光与粒子束, 2005, **17**(12): 1765~1768
- 7 Li Yu, Jingru Liu, Lianying Ma *et al.*, Jenergy-level optically pumped XeF(C - A) laserwith repetition mode [J]. Opt. Lett., 2007, **32**(9): 1087~1089
- 8 L. D. Mikheev, D. B. Stavrovskii, V. S. Zuev. Photodissociation XeF laser operating in the visible and UV regions [J]. J. Russian Laser Reserch, 1995, 16(5): 427~475
- 9 Joel Tellinghuisen, Patricia C. Tellinghuisen. Spectroscopic studies of diatomic noble gas halides. III. Anlaysis of XeF 3500 Å band system. [J]. J. Chem. Phys., 1978, 68(11): 5177~5186
- 10 Allan L. Smith, Peter C. Kobrinsky. Flash photolysis absorption spectroscopy of xenon fluoride vibrational analysis of the B-X transition [J]. J. Molecular Spectroscopy, 1978, 69(1): 1~10