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Fig.2 Electric-field distribution in the plane
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Fig.4 Electric-field distribution of uncoated fiber-optic probe along

x and y axis in the plane of * =0 and 2= — 10 nm
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Fig. 5 Electric-field distribution of metal-coated probe in the
planeof xt=0 a and y=0 b
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Abstract The near-field distribution of uncoated and metal-coated fiber-optic probes were
characterized by the method of three dimensional finite-difference time-domain FDTD . The
result reveals that for an uncoated probe propagating wave emitting from the conic side
dominates the near-field distribution while a film of metal is coated the coated probe can confine
the wave more strictly inside it. Second the polarized incident wave becomes depolarized after
emitting from the small aperture of two kinds of probes. In other words there are two electric-
field components whose polarization direction is perpendicular to that of the incident one.
Accordingly the image contrast can be improved if the polarized components instead of the total
field are detected. The relationship between the distribution characteristics of near-field
distribution and the phenomenon of depolarization is analyzed in detail.
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