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Abstract Harmonic generation in BBO by femtosecond laser pulses is studied, taking into account both
group velocity mismatch, lowest order group velocity dispersion (GVD) and second order GVD. The lowest
and second order GVD of BBO as a function of wavelength is calculated. Second and third harmonic
radiation with femtosecond laser pulses is computed by numerically solving the improved coupled wave
equations. The effects of the lowest oder GVD and second order GVD on fundamental and harmonic pulses
are analyzed. The compensation of group velocity mismatch for third harmonic generationis considered.
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1 Introduction

The experimental generation of femtosecond pulse from Ti : sapphire lasers has been of much

[1~4], The wave length range of such pulses is from 0. 67 um to 1. 1 um, and may be

interest recently
extended by using nonlinear frequency conversion. A new nonlinear crystal. (- Barium Borate (B-
BaB,O,, BBO) is very good to be used in second and third harmonic generation to extend the
wavelength of Ti : sapphire laser pulses to ultraviolet (UV) /blue because of its large nonlinear optical
coefficient and wide range of transparency from near infrared down to ultraviolet °~*l. The Ti :

sapphire laser system with BBO second and third harmonic up-conversion offers a tunable UV /blue
femtosecond coherent source and has several other advantages such as its high efficiency and structure
simplicity, comparing with the CPM laser system. However, a femtosecond pulse has a wide
bandwidth and BBO has a relatively large group velocity dispersion, which tend to broaden and distort
the incident fundamental and generated harmonic pulses. One must take into account not only phase
mismatch, group velocity mismatch but also the lowest- order even the second- order GVD for
femtosecond pulse harmonic generation. In this paper, The lowest and second order GVD of BBO as a
function of wavelength is calculated. Then we study harmonic generation of femtosecond pulses in
BBO, taking into account both group velocity mismatch, lowest order GVD and second order GVD.
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Second and third harmonic radiation in BBO with femtosecond pulses are computed by numerically
solving the improved coupled wave equations. The effects of the lowest order GVD and second order
GVD on fundamental and harmonic pulses are analyzed. The compensation of group velocity
mismatch of fundamental and second harmonic waves in sum frequency process for third harmonic
generation is considered. The possible influences of higher order nonlinear effects such as self-phase

modulation and cross-phase modulation are also discussed.

2 Dispersion feature of BBO crystal
When ultrashort pulses propagate in crystals, its propagation constant #(®) can be expended in a

Taylor series about the central frequency w, -**'%,
. 1 1
plw) = n(w) —? = fo + pi(ew — wp) + ?52(&} — a)® + gﬁa(w — wp)® e, )’

nere, Bo=nlwo)ws/c = 2an (i) /oy 1 = (dﬁ/dm)&,o = (n— ftdn/dl),-\ofc = 1/v,, v,is group velocity,
By = (dzﬂ/dwz}m{] = (Asdzn./d}tg);.o/ 2me* corresponds to the lowest order GVD coefficient, f; =
(43)‘}/:{@3)% the second order GVD coefficient, and 4, = 2mc/w, is the central wavelength in free

space. The first term in (1) gives a phase delay which is responsible for phase matching in harmonic
generation. The second term corresponds to the whole group delay of the pulse envelope, which is a
decisive factor in the performance of an optical converter when interactions between pulses shorter
than 100 fs are considered"'®). The group velocity index can be defined asm = ¢/v, = (n — Adn/dA),_
, which is analogous to the refractive index n = e/v, here » is the phase velocity. The third and the
forth terms describe the pulse spreading and distortion during propagation in a dispersive medium,
which generally lead to longer pulses to be generated in a parametric process. The refractive index » ,
group velocity index m , the lowest order and second order GVD coefficients of BBO can be calculated

by using Sellmeier’ s relations-??,

0.01878
e — o 2 -
nj = 2. 7359 + 0. 01823 0. 013544 (2)
) 0.01224 ‘
L [y a2
n? = 2.3753 + 7 0.01667 0. 015164 (3

where wavelength A is in microns. In Fig. 1, we show

the calculated wavelength dependence of refracive and
group indices n and m for ordinary and extraordinaty
waves in BBO. The group velocity indices exhibit
stronger dispersion than the refractive indices. The
conversion efficiency of a nonlinear process will be
optimized if both group and phase matching are
simultaneously achieved. i.e. k (20) — 2k(w) =0,
and (dk/dw), — (dk/dw):, = 0 or v,(w) — v,(20) =
Wavelength (um) 0. In general practical situations, however, this is

_ impossiblel!'®,  The group velocity mismtch in
Fig. | Refractive n and group m indices in BBO . nic generation can lead to a walk-off, which
means that the fundamental and harmonic pulses will propagate with different velocities. In turn, it
may produce a lengthening of the generated harmonic pulses, limit the usable crystal length and reduce

the conversion efficiency!'!). In Fig. 2(a), the lowest order GVD coefficients of BBO for ordinary and
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extraordinary rays is plotted, and second-order GVD coefficients shown in Fig. 2(b). For an ordinary
ray with a wavelength longer than 1. 46 um, and an extraordinary ray with a wavelength longer than
1. 29 um, the lowest order GVD d’f/dw® is negative. The GVD’s have important effects on the
propagation of ultrashort pulses in the media. They lead to pulse reshaping and distortion. For
example, an unchirped pulse will increase its duration and generate chirp when it propagates through
an dispersive medium. It should be noted that the chirp may be compensated to Fourier transform limit
by propagating the pulse in a medium with GVD sign opposite to the sign of pulse chirp. This is also
the principle of ultrashort pulse compression. The lowest order GVD generally dominates, however,
for femtosecond pluses, second order GVD contributes to asymmetry in pulse power spectrum and
temporal shaping because of wide bandwidth['?],

.? 600y 240 —
e z

£ I\ @ . ‘
& \ £

& 300 + &

S \ < 120

E \\M ° S

8 RS it

s 0fF e TS B

g I ] ~ L% 0 1 1

2 0.2 0.8 i. 4 2.0 0.2 0.8 1. 4 2.0
S Wavelength (pm) Wavelength (pm)

Fig. 2 Lowest order GVD coefficient (a) and second order GVD coefficient (b) in BBO

3 fs Pulse-Coupled Wave Equations of SHG in BBO and the Solution

Theoretically, the coupled wave equations can be used to describe harmonic generation of
ultrashort pulise. Supposing quasi-monochromatic wave, the electric field of the pulses in the retarded
frame of the incident fundamental wave, ¢ = z, v = ¢t — B z/wi" is written

EM(r,z) = AP (7,2)exp [i(oiV1 — (B — B§V)z) ] (4)
where the envelope of the electric fields A" is assumed to be slowly varying compared to the phase
exp [1(0fr — (B — B§)z)]. of™ and B§" are the central frequency and wavevector,
respectively. N = 1,2,3 +-» mean the incident fundamental, second harmonic, third harmonic waves
««+ respectively. We further assume that the absorption of the fundamental and harmonic waves are
neglected and the cross section of the nonlinear medium is infinite relative to that of laser beam. Then,
the coupled wave equations of second harmonic generation (SHG) including group velocity mismatch,
lowest and second order GVD's, are written,

I AW W FAD 1 FPAD 187d, gp>

— L e __ LOTRefr @ 42y gDF —
PP 2 N 6/ 3 = o ATAT exp (— idfiz) ()
3,4‘” \aA“ 224 FAD i8ad 0™ 2
+ Aﬁtz 5(23 e Gﬁ(Z) P — cn"~2> A“’exp(zAﬁgz) (6)
Here, Aﬂ(z’ = B{® — ,B“’ is the group velocity mismatch, B, and f; are the lowest and second order
GVD coefficients, respectively, and Af, = 28§ — 7 is the phase mismatch. The condition of phase
match is Afy = 2850 — B =0,i. c. " = ‘. d,is the effective nonlinear optical constant, and 2"

and »*’ are the refractive indices of fundamental and second harmonic waves. The BBO is a negative
rl
uniaxial crystal with point symmetry 3 and its effective nonlinear optical constants are given by .
doys( 1) = (dycos 3¢ — dyocos 3¢)cos 8 + dysin (7



644 3 ¥ = # 15 &

dess( 1) = (dy1sin 3¢ + daz2cos 3¢)cos?d (8)
where @ and ¢ are polar coordinates referring to z(= c¢) and z(= a) , respectively, d;; =1. 6 pm/v,
and the values of ds, and d,, are two orders smaller than that of d;, "\, For type- I SHG (o(w) + o(w)
— ¢(2w)) , at a central wavelength of 0. 8 um which can be generated by a Ti : sapphire laser, the
phase matching angle is acquired to be 29. 2° by using the phase matching condition. If selecting ¢ =
180° in crystal cut, d.yis 1. 4 pm/v.

Conside;ing that the incident pulses are unchirped hyperbolic secant pulses generated by a Ti
sapphire the coupled wave equations do not lend themselves to analytical solutions, we use numerical
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Fig. 3 SHG of 30 fs pulse (peak intensity 1. 03X 10%* W /em?) (a) incident fundamental pulse, (b) and (c)
SHG pulse using 0. 1 mm (b) and 0. 4 mm (c¢) BBO crystals
approach to solve them on computer!'?). Fig. 3(a)

. shows the incident fundamental pulse shape for
& 180 comparison, Fig. 3 (b) and Fig. 3 (¢) show the
El ook generated harmonic pulse shapes with a BBO crystal
E of 0. 1 mm and 0. 4 mm, respectively. The incident
§ 60F pulses are 30 fs (FWHM) with a wavelength centered
g 0 | . at 0. 8 um, a pulse repetition rate of 88 MHz, a
2 0.0 0.4 0.8 focused beam cross sectional area of 1 mm?, and an
% 7 Crystal Thickness (mm) .
A average power of 300 mW, which corresponds to

pulse peak intensity Py of 1. 0 X 10" w/cm? The

" Fig. 4 The relation between pulse duration
FWHM (fs) and crystal thickness
(mm) (input pulse 30 fs)

walk-off and duration of the second harmonic pulse
increase with increasing crystal thickness because of
We show that
the pulse duration as a function of the thickness of BBO in Fig. 4. The group velocity mismatch is

group velocity mismatch and GVD's.

dominant, however, GVD’s have an effect to increase the pulse duration and distortion in femtosecond
pulse harminic generation because of its wide bandwidth, and generating chirps in the fundamental and
second harmonic pulses. As matter of fact, the higher order nonlinear effects such as self-phase
modulation and cross- phase modulation may also contribute to pulse chirp and broadening of their
spectra, but they can be neglected here because the incident fuundamental pulses are not amplified,
their peak intensity is not high enough, and the crystals is very thin in our case. '

4 fs Pulse-Coupled Wave Equations of THG in BBO and the Solution

The third harmonic can be generated with the sum frequency process by passing the generated
second harmonic and remaining fundamental waves through another BBO crystal. The coupling wave

equations of sum frequency can be written,
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where AB{Y = p{¥ — ﬁf“ and AP = g — ﬁi” are velocity mismatches between second harmonic and
fundamental waves, and between third harmonic and fundamental waves, respectively. The phase
match condition is A, = B§" + B2 — B = 0,i. e. 2 4+ 20P = 3@,
necessary to solve these equations. The fundamental wave pass through a BBO then the generated
second harmonic and remaining fundamental wave propagates through the second 'BBO. The
polarizations of output second harmonic and fundamental waves from the first BBO are pérpendicular
for type- I SHG, but we can insert a A/2 wave plate to make them have the same direction of
polarization , then use type- I sum frequency process [o(®) + 0(2w) — e(3w) | in the second BBO
due to its much higher nonlinear optical constant than that of type- I sum frequency. The phase
match angle is 44. 2° from phase matching condition and d.;; =1

Numerical methods are also

. 15 pm/v from (7). There is also a
walk-off between second harmonic wave and fundamental wave from the first BBO crystal. In
experiments, we can easily change the optical distances of these two waves to the second BBO to
compensate the walk-off. The second harmonic pulse is behind of the fundamental pulse for 10 fs for
0. 1 mm BBO and for 44 fs for 0. 4 mm BBO, respectively. Fig. 5 shows the shapes of the generated
third harmonic pulses by numerically solving the above coupled wave equations. The thicknesses of the
first BBO and second BBO are both 0. 1 mm in Fig. 5(a), 0. 4 mm and 0. 1 mm, respectively, in
Fig. 5(b) and both 0. 4 mm in Fig. 5(c). The solid curves in Flg. 5 are those which there are no
walk-off compensation of second harmonic and fundamental waves before entering the second BBO. If
we make the peaks of second harmonic and fundamental pulses overlap at the front of the second BBO
by compensation, the third harmonics are shown in dashed curves of Fig. 5. However, their group
velocities are also different in the second BBO, and the second harmonic pulse will delay about 33 fs
and 133 fs at the output of 0. 1 mm BBO and 0. 4 mm BBO, respectively , comparing with
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Fig. 5 Third harmonic pulse shapes generated by sum frequency mixing of second harmonic and
fundamental pulses using both BBOs thickness (. 1 mm (a) the first BBO 0. 1 mm and second BBO

0.4 mm (b) and both BBOs 0. 4 mm for no group velocity compensation (solid curves)

conipensation (dashed curves), and over compensation (dash-dot-dashed curves)
fundamental pulse if their peaks are overlapped when they enter the second BBO. We can solve this
problem by over compensation before the second BBO. The dash-dot-dashed curve show the third
harmonic pulses when the walk-off is compensated and the second harmonic pulses are ahead of
fundamental pulses for half of possible walk-off in the second BBO. As shown in Fig. 5., The

, just
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broadening and distortion in the third harmonic generation are much greater that those in the second
harmonic generation becaure there are group velocity mismatches not only between the second
harmonic and fundamental waves but also between the third harmonic and fundamental waves, and
between the third and second harmonic wave, and GVD’s for the third harmonic pulses are much
larger. The limitation on the crystal thickness is more strict in the third harmonic generation.
Compared Figs. 5(a). (b) and (c), the thickness of the first BBO does not affect the duration of the
third harmonic pulses very much, but the thickness of the second BBO is dominant 0. 4 mm for the
BBO and 0. 1 mm for the second BBO is a good combination in the third harmonic generation by
considering the power, duration, and conversion efficiency. The duration of the output third harmonic
pulse is 160 fs, with a peak intensity of 1. 5X 10®* W /cm?in this combination. A shorter pulse could
be generated if the thinner BBO crystal were used. Fig. 6 shows the power spectrum of fundamental
wavea (a, b) and second harmonic waves (¢,d) for Ly =0. 1 mm (a,c¢) and 0. 5 mm (b,d) BBO
crystals with GVD by Fourier trasformation of intensity-time feature.
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Fig. 6 The power spectrum of fundamental wave (a-7b) and second harmonic wave (c,d) for Ly =0. 1
mm (a,c) and 0. 5 mm (b,d) BBO crystals with GVD ( Ty =50 fs)

In summary, we studued harmonic generation in BBO by femtosecond laser pulses, taking into
account both group velocity mismatching, lowest order GVD and second order GVD. The wavelength
dependence of the-lowest and second order GVD's of BBO is calculated. The pulse shapes of second
and third harmonic radiation is computed by numerically sclving the improved coupled wave
equations. The effects of the lowest crder GVD and second order GVD on fundamental and harmonic
pulses are analyzed. The thickness of the second BBO dominates the duration of the third harmonic,
and the compensation of group velocity mismatch for third harmonic generation is found to be
important.
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