

徐文刚 沈之烨 (中国科学院大连化学物理研究所)

提 要

用高分辨二极管激光光谱仪对乙炔 v₆ 区域的几个 Q 支作了 研究。在 725 cm⁻¹ 附 近观 察 到 (2v₄+ v₅)₁-2v₄ 的 Q 支。并对 (2v₅-v₅) 和 (v₄+v₅)-v₄ 的 Q 支进行了观察。观测到→些微扰现象。对观测到的 谱线利用最小二乘法进行了拟合,得到了部分分子常数。 关键词: 高分辨、乙炔的 Q 支,微扰效应。

一、引 言

乙炔分子是一种简单的有对称中心的四原子分子,属于 D_{oh} 群。研究这类分子可以得 到很多 $v_{2}y_{2}$ 分子内部结构信息^[1~4],特别是在高振动态,由于振-转相互作用引起的费米和 l共振,使人们对它更加注意^[5~6];早在 1928年 Levin 和 Meyer 就开始研究乙炔分子^[77],接 着又有不少学者对这种分子进行研究^[8~10],1965年 Scott 和 Rao 等人用分辨率为0.15 cm⁻¹ 真空光栅光谱仪对乙炔 v_{5} , $2v_{5} - v_{5}$, $(v_{4} + v_{5})^{0+} - v_{4}$, $(v_{4} + v_{5})^{2} - v_{4}$ 和乙炔同位素(¹²C¹³CH₂) 带进行了研究,得出了一些分子常数,但没有Q支报道^[11]。1972年 Palmer 等人用液氮冷却 的锗铜探测器提高光谱分辨率到 0.04 cm⁻¹,他们观测到一些 Scott 等人没有观测 到的 P支,R支谱线,同时还观测到一个新谱带 $(v_{4} + v_{5})^{0-} - v_{4}$ ^[22]。随着光谱技术不断发展,特别是 二极管光谱仪和高分辨傅里叶变换光谱仪的问世,使人们对乙炔光谱的观察更详细。1979 年 Reddy 等人利用分辨率高于 0.003 cm⁻¹的二极管光谱仪对乙炔分子 ($v_{4} + v_{5}$)⁰⁺ - v_{4} 谱 带Q支进行了研究^[11],得出了振转分子常数。接着 1980年 Das 等人又利用二极管光谱义 对乙炔 v_{5} , $(2v_{5} - v_{5})$ 和其同位素谱带Q支进行了研究^[12]。同年 Lietan 部和 Kauppinen 利用分辨率为 0.015 cm⁻¹的傅里叶变换光谱仪对乙炔分子 13.7 μ m 附近几个谱带进行了 较细致的观测,得出了一些新的分子常数^[53]。

本文在 Reddy, Das 和 Hietanen 等人观测的基础上,对乙炔($2v_5 - v_5$), ($v_4 + v_5$)^{o-} - v_4 及其同位素($^{12}C ^{13}CH_2$)带Q支进行了较详细的研究; 不但观测到一些Q支高分辨光谱,而且 还观测到一个新热带($2v_4 - v_5$)_I - $2v_4$ 的Q支光谱; 同时根据观测到的谱线位置,结合能级 间的关系,利用 Hietanen 等人的($2v_5^2 - v_5$)带的 P 支, R 支数据,对($2v_5^2 - v_5'$)Q 支谱线进

收稿日期: 1987年12月21日; 收到修改稿日期: 1989年1月29日

行了归属。确定了由于 2v³ 和 2v³ 振转能级间的相互作用,引起了(2v³ - v³)Q 支在 J-10 时谱线走向发生反转现象。

二、实 验

本文采用的 LS-3 型二极管光谱仪性能早有报道^[13]。它对 0.1~0.3 Torr 乙炔吸收峰分 辨可达 0.003 cm⁻¹, 而计算的多普勒加宽为 0.0018 cm⁻¹。实验中使用的样品来自沈阳机械 厂。采用的压力是 0.1~1.6 Torr, 多次反射样品池调整到 12 m 光程, 光谱采集用液氮冷却 的 MOT 探测器, 谱线定标用自由光谱程为 0.0483 cm⁻¹ 锗标准具, 并采用二氧化碳 v₂ 带, 乙 炔 v₅ 带谱线作参考线^[12,14]。文献 [14] 谱线线位精度可达 0.0045 cm⁻¹, 而文献 [12] 的线位 精度可达 ±0.0005 cm⁻¹, 估计我们观测到的谱线线位精度好于 0.004 cm⁻¹。这点可从数 据表中观察值和计算值之差得到证实。

三、几个Q支归属

1. (2v5-v5)Q支光谱

乙炔在 13.7 µm 附近,除了 v_5 Q 支外,还有几个热带的 Q 支,这些 Q 支距离很近,很多 谱线互相重叠,给谱线辨认带来困难,如图 1 所示,图 1 也列出了我们观测到的几个 Q 支光 谱。图 2 示出本文研究的几个谱带能级位置。由于振转相互作用,引起 l 分裂。在振动量 子数为 2 时, $l=0, \pm 2$ 。这时($2v_5 - v_5$)可产生三个谱带: $2v_5^{2i} - v_5^{1i}$, $2v_5^{2i} - v_5^{1i}$ 和 $2v_5^{0i} + v_{55}$ 。 由于非谐性影响,在这三个分量中, $2v_5^{2i}$ 和 $2v_5^{0i} + 2iin = l$ 型共振。这种振动现象首先由 Checkland 和 Thompson 等人在 DCN 和 C_2D_2 分子中观测到^[15],随后 Amat 和 Nielson 等 人在理论上作了解释^[16]。共振引起的变化如图 3 所示。

为了归属谱线,我们根据能级的关系:

$$R_{e-e}(J) - Q_{e-f}(J) = Q_{f-e}(J+1) - P_{f-f}(J+1) = \Delta, \\R_{f-f}(J) - Q_{f-e}(J) = Q_{e-f}(J+1) - P_{e-e}(J+1) = \delta, \end{cases}$$
(1)

式中 Δ 和 δ 的如图 4 所示。利用(1),(2)式和文献[5]的数据以及观测到的谱线线位,可以 推导出 Q_{f-e} 的数据,这就可对复杂的光谱进行较准确的辨认。从表 1 可以看到用关系式(1) 得到的线位和我们的观测符合很好。从图 1 可见 Q_{f-e} 在 J=10 谱线走向反转;J<10 时随 J 的增高,谱线走向低频;J>10 转向高频。

在有 *l* 共振和 *l* 分裂的情况下, Nielson 认为利用通常含有(*J*+1)*J* 的多项式来拟合高 *J* 支谱线线位是不可靠的。 但本文观测的谱线仅为低 *J* 支(*J*<20), 不需要很精确的处理, 故仍采用了(*J*+1)*J* 的多项式来拟合。以下就是采用的计算公式。线性分子的转动项 *F*(*J*) 和振转频率分别为

$$F(J) = B[J(J+1) - l^{2}] - D[J(J+1) - l^{2}]^{2},$$

$$Av = G(v') + F(v', J') - G(v'') - F(v'', J''),$$
(2)

 $\mathbf{x}(2v_{5}^{2}-v_{5}^{1})$ 和 $(2v_{5}^{2}-v_{5}^{1})Q$ 支跃迁频率可写成下式

Fig. 1 The spectrum of acetylene in the v_5 region. Path length: 12(M); Pressure: 0.1~0.3 Torr; Temperature: 296 K; The assignment of Q branchs is presents as follow:

Fig. 2 Energy levels in the region of v_5 band of acetylene

Fig. 3 The resonance between $2v_5^{0+} - v_5$ and $2v_5^{2e} - v_5^{1f}$ have produced the change of Q branch lines

Fig. 4 The relation of energy levels in $2v_5 \sim v_5$

Table 1 Calculate frequency (cm⁻¹) in which has used equation (1) compare observed Q branch lines of $2v_5^{2e} - v_5^{1f}$

J	Calc	Caleobs
10	729.1267	0.0022
11	729.1312	0.0004
12	729.1387	0.0002
13	729.1509	-0.0006
1.4	729.1657	-0.0011
15	729.1861	-0.0028
16	729,2132	-0,0010
17	729.2468	0.003
18	729.2854	0.0008
19	729 . 3 68	-0.0006
20	729.3941	-0.0003

$$\begin{aligned} Q(J)_{2f-e} &= v_0 + F(v', J') - F(v'', J'') \\ &= (v_e - 4B'_f - 16D'_f - 64H'_f + B''_e + D''_e + H''_e) + (B'_f + 8D'_f + 48H'_f - B''_e) \\ &- 2D''_e - 3H''_e) (J+1)J + (D''_e - D'_f - 12H'_f + 3H''_e) (J+1)^2 J^2 \\ &+ (H'_f - H''_e) (J+1)^3 J^3, \end{aligned}$$
(3)
$$\begin{aligned} Q(J)_{2e-f} &= (v_f + B''_f + D''_f + H''_f - 4B'_e - 16D'_e - 64H'_e) \\ &+ (B'_e + 8D'_e + 48H'_e - B''_f - 2D''_f - 3H''_f) (J+1)J \\ &+ (D''_f - D''_e - 3H''_f - 12H'_e) (J+1)^2 J^2 + (H'_e - H''_f) (J+1)^3 J^3, \end{aligned}$$
(4)

根据跃迁频率公式,利用最小二乘法拟合得到分子常数。其常数列于表2,观察和计算 的 Q 支频率列于表3。

Table 2	Molecular constants	(cm^{-1})	get partial	of	band of	acetylone
---------	---------------------	-------------	-------------	----	---------	-----------

constants	Transition					
constants	$2v_5^{2f} - v_5^{1o}$	$2v_5^{2^{o}}-v_5^{1f}$	$(2v_4 + v_5)_1 - 2v_4$	$(v_4+v_5)^{0-}-v_4$	$^{12}\!\mathrm{C}\ ^{13}\!\mathrm{CH}_2 v_5$	
V _{BO}	729.1544(4)	729.1 3 59(3)	725.2380(4)	728.8683 (6)	728.2282(3)	
ΔB	4.834(2)×10 ⁻³	-3.894(1)×10-8	$4.236(1) imes 10^{-3}$	4.632(2)×10-8	4.235(1)×10-3	
ΔD	-1.73×10-6	3.71(8)×10 ⁻⁶	-5.6×10^{-7}	3.92×10-7	5.3(9)×10-8	
ΔH		1.68(1)×10-9	1.13(5)×10-9			
standard deviation	1.2×10 ⁻⁸	8.4×10 ⁻⁴	4.3×10 ⁻⁴	2.2 ×10 ⁻³	$5.3 imes 10^{-4}$	

Table 3 Observed and calculated line frequency (cm⁻¹) of Q branches of the $(v_4 + v_5)^{0^-} - v_4$ band of ${}^{12}C_2H_2$ and the v_5 band of ${}^{12}C^{19}CH_2$

J	$(v_4+v_5)^{0-}-v_4$ Observed	Cale-Obs	v ₅ (¹² C ¹³ CH ₂) Observed	Calc-Obs
1	728.8771	-0.0001	728.2361	0.0001
2	728.8961	-0.0003	728.2361	-0.0006
3	728.9217	0.0023	728.2791	0.0000
4	728.9623	-0.0009	728.3125	0.0001
5	729.0099	-0.0018	728.3557	0.0001
6	729.0669	-0.0029	728 4065	0.0001
7	729.1245	0.0046	728.4660	-0.0003
8	729.2020	0,0016	728.5337	-0.0005
9	729.2901	0.0030	728.6091	0.0002
10	729.3817	0.0003	728.6935	0.0005
11	729.4868	0,0003	728.7890	-0.0002

在表 2 可看到($2v_5^{\circ} - v_5^{\circ}$)的离心畸变常数 $\Delta D = D'_e - D''_f = -3.71(8) \times 10^{-6} \text{ cm}^{-1}$; 文献 [13] 在分析($2v_5^{\circ} + -v_5$)时得到 $\Delta D = 3.535 \times 10^{-6} \text{ cm}^{-1}$, 二者相当一致。 这正象 Nielson 和 Amat 指出:非谐性的影响对两个微扰能级有近似相等的 ΔD , 但有不同的符号。 说明在低 J 值时 J(J+1)多项式是可用的。

2. [(v₄+v₅)-v₄]Q支光谱

(v₄+v₅)能级对应振动量子数 v₄=1, v₅=1,这时 l=±2,0⁺,0⁻。这样(v₄+v₅)-v₄ 就 有四个分量: (v₄+v₅)⁰⁺-v₄, (v₄+v₅)⁰⁻-v₄, (v₄+v₅)^{2'}-v^{1e}₄ 和 (v₄+v₅)^{2e}-v^{1f}₄。在本文二 极管激光器扫描区域只能看到前两个 Q 支,其中(v₄+v₅)⁰⁺-v₆ 的 Q 支已有 Reddy 等人利 用二极管激光光谱仪研究过。故本文仅讨论(v₄+v₅)^{o-}-v₄的Q支。

 $(v_4+v_5)^{o_-}-v_4$ 谱带最早由 Palmer 等^[2]人观测到, 后来 Hietanen 等^[5]人在傅里叶变 换光谱仪上也观测到了这个 Q 支。这个 Q 支和 $(v_4+v_5)^{o_+}-v_4$ 的 Q 支有不同的谱线走向, 一个向高频。一个向低频。 从图 2 可知 $(v_4+v_5)^{o_-}$ 更接近于 $(2v_4+v_5)^{2e}$ 能级, 但却不产生 共振, 这说明 l 共振是有条件的, 不仅共振的能级产生是来自 l 分裂, 同时要求振动波函数 宇称要一致。实验中观测到的 Q 支频率在表 4 列出。 $(v_4+v_5)^{o_-}-v_5$ Q 支跃迁频率可由下 式表示:

$$Q(J) = (v_0 + B''_e + D''_e + H''_e) + (B'_f - B''_e - 2D''_e - 3H''_e)(J+1)J + (D''_e - D'_f - 3H''_e)(J+1)^2 J^2 + (H'_f - H''_e)J^3(J+1)^3,$$
(5)

3. $[(2v_4+v_5)_I-2v_4]$ 和 $[({}^{12}C {}^{13}CH_2)v_5]Q$ 支光谱

在 725 cm⁻¹ 附近看到另一个 Q 支。根据振动能级间距,选择定则和谱线的结构。作者确认它是 [(2v₄+v₅)₁-2v₄] 谱带 Q 支。跃迁带源 v_{B0}=725.2380。在试验 中采用 1.6 Torr 压力获得了较强的吸收。这个 Q 支可由图 5 看到。

Fig. 5 $F:(2v_4+v_5)_I - 2v_4 Q$ branch of ${}^{12}C_2H_2$ Path leneth: 12(M); Pressure: 1.6 Torr; Temperature: 296 K *: This is a *B* line (J = 3) of $(v_4+v_5)^{0+}-v_4$

在实验中作者还观察到(¹²O ¹³CH₂) v_5 带 Q 支。这个 Q 支最早由 Hietanen 等人在 1981 年用傅里叶变换光谱仪观测到,并对观察的 8 条谱线进行了拟合,得到 光谱 常数: v_{BO} = 728.2267(5) cm⁻¹, $\Delta B = 4.27$ (2) ×10⁻³ cm⁻¹, $\Delta D = 5.3(75) \times 10^{-8}$ cm⁻¹。本人作者观测到 18 条谱线,拟合时采用 11 条,得到的光谱常数列于表 2。从表 2 可以看到我们得到的光谱 常数和 Hietanen 等人符合得很好。由关系式: $\Delta v = q(J+1)J + \mu(J+1)^2 J^2$ 利用最小二乘 法拟合得到 J 分裂常数: $q = 4.52 \times 10^{-3}$ cm⁻¹。

¹²C ¹³CH₂ 谱线并没因 J 的不同而引起强度变化。这是因为它属于 G_∞, 群, 不会因本征 函数变化引起强度的交替变化; 而 C₂H₂ 谱线就不同, 对称的部反对称的波函数引起强度变

Fig. 6 The odd and even J have different intensity

化为1:3,这种吸收强度交替变化如图6所示。

在谱带的辨认过程中,利用了 Palmer 和 Plíva^{mn}的工作,同时也利用了谱线的强弱变化,给谱线辨认带来了很大方便。这两个 Q 支频率见表 3 和表 4, 拟合的多项式如下:

$$Q(J) = (v_0 - B'_f - D'_f - H_f) + (B'_f + 2D'_f + 3H'_f - B''_e)J(J+1) + (D''_e - D'_f - 3H'_f)J^2(J+1)^2 + (H'_f - H''_e)J^3(J+1)^3,$$
(6)

拟合的光谱常数列于表2。

Table 4 Observed and calculated line frequency (cm⁻¹) of Q branches in the $2v_5^{2f} - v_5^{1s}$, $(2v_4 + v_5)_I - 2v_4$, $2v_5^{2s} - v_5^{1f}$ of ${}^{12}C_2H_2$

J	$\left \begin{array}{c} 2v_5^{2f}-v_5^{1e}\\ \text{Observed} \end{array}\right $	Calc-Obs	$(2v_4+v_5)_I-2v_4$ Observed	Calc-Obs	$2v_5^{2s} - v_5^{1f}$	Cale-Obs
1			725.2464	0,0000		
2	729.1668	0.0021	725.2634	0.0000	1	5
3	729.1933	-0.0004	725.2891	-0.0004	729.1367	-0.0022
4	729.2270	-0.0005	725.3228	-0.0003		
5	729.2709	-0.0015	725.3641	0.0005	729,1313	0.0005
6	729.3225	-0.0011	725.4143	0.0007	729 ,∋ 2 79	0.0015
7	729.3814	-0.0010	725.4730	0.0006	729.1267	0.0006
8	729.4514	-0.0003	5.725412	-0.0007	729.1260	-0.0002
9	729.5311	-0.0011	725.6159	-0.0004	729.1253	0.0003
10	729.6137	0.0023	725.6991	-0.0004	729.1262	0.0005
11	729.7091	0.0005	725.7091	-0.0001	729.1317	0.0001
12	729.8113	-0.0010	725.8890	0.0005	729.1387	-0.0001
13			725.9971	0.0002	729.1509	-0.0013
14			726.1137	-0.0002	729.1657	-0.0004
15					729.1861	0.0001
16					729.1232	-0.0001

在整个研究工作中朱清时同志给了热情指导并仔细审阅了全稿。张宝书等同志在仪器 的使用上给了有益的帮助,在此深表感谢。

参考文献

- [1] J. F. Scott, K. Narahari Rao; J. Mol. S pectry., 1965, 15, No. 4 (Apr), 15~23.
- [2] Kent F. Palmer et al.; J. Mol. Spectry., 1972, 44, No. 1 (Oct), 131~144.
- [3] Josef Pliva; J. Mol. Spectry. 1972, 44, No. 1 (Oct), 145~164.

- [4] Walter J. Lafferty et al.; J. Mol. Spectry., 1964, 14, No. 1 (Sep), 79~86.
- [5] J. Hietanen, J. Kauppinen; Molcular. Physics., 1981, 42, No. 2 (Feb), 411~423.
- [6] Harald H. Nielson et ol.; J. Chem. Phys., 1957, 26, No. 5 (May).

8期

- [7] P. Varansi et al.; J. Quant. Spectrosc. Radiat. Transfer., 1983, 30, No. 6 (Dec), 497~504.
- [8] A. Levin, C. F. Meyer; J. Opt. Spc. Amer., 1928, 16, No. 3 (Mar), 137~173.
- [9] S. Bhayavantan, A. V. Rao; J. Chem. Phys., 1936, 4, No. 4 (Apr), 293.
- [10] Ta-You Wu, A. T. Kiang; J. Chem. Fhys., 1939, 7, No. 3 (Mar), 178~186.
- [11] T. J. Coburn et al.; J. Chem. Phys., 1956, 25, No. 3 (Sep), 607.
- [12] S. Paddi Reddy et al.; J. Mol. Spectry., 1979, 74, No. 2 (Feb), 217~223
- [13] Palash P. Das et al.; J. Mol. Spectry., 1980, 84, No. 1 (Nov), 313~317.
- [14] 张宝书等;《物理学报》,1982, 31, No. 10 (Oct), 1354~1351.
- [15] R. S. Eng et al.; Optical. Enginnering., 1980, 19, No. 6 (Dec), 945~960.
- [16] J. Jolma et al.; J. Mol. Spectry., 1983, 101, No. 2 (Oct), 300~305
- [17] P. B. Checkland, H. W. Thompson; Trans. Faraday. Soc., 1955, 51, No. 1 (Jan), 1~8.
- [18] Gilbert Amat, Harald H. N. elsen; J. Mol. Spectry., 1958, 2, No. 2 (Apr), 163~172.
- [19] Josef Pliva; J. Mol. Spectry., 1972, 44, No. 1 (Oct), 165~182.

$(2v_5-v_5)$, $(v_4+v_5)-v_4$ and $(2v_4+v_5)_I-2v_4 Q$ branches of high resolution diode laser spectra of acetylene

XU WENGANG AND SHEN ZHIYE (Dalian Institute of Chemical Physics, Academia Sinica)

(Received 21 December 1987; revised 29 January 1989)

Abstract

This artical presents the high resolution study of several Q branches of acetylene in region of v_5 band by means of a diode laser spectrometer. The Q branch of $(2v_4 + v_5)_I - 2v_4$ band next to $725 \,\mathrm{cm}^{-1}$ has been observed for the first time. The $(v_4 + v_5) - v_4$ and $2v_5 - v_5 Q$ branches have been investigated. Some effects of perturbation have been observed. The obtained lines have been least-squares fitted and molecular constants have been obtained.

Key words: high resolution; Q branches of acetylene; effects of perturbation.