用激光散斑相关方法实时测量表面粗糙度

郑月明 王 策 凌德洪 (苏州大学激光研究室)

提 要

本文提出一种实时测量表面粗糙度的结构简单、光路调节方便的实验系统。 用双棱镜产生的两束不同方向的平面波同时照射粗糙表面,从散射光场的相关度得到表面粗糙度。结果表明,选择较小的棱镜角和入射角,可使粗糙度的测量范围达 $1\,\mu$ m~40 μ m;实验结果与泰勒雪夫-5 型粗糙度检查仪的测试值符合得较好。

一、引言

相干光从粗糙表面反射时,在空间会形成散斑,已有许多学者对散斑统计性质进行了研究,指出散斑统计性质与表面粗糙度有关,因而提出了几种表面粗糙度的测量方法 $^{\text{IZ}}$ 。本文的工作是在激光散斑相关测量表面粗糙度的理论基础上,对 $^{\text{Léger}}$ 所提出的测量 手段及实验光路进行简化。实验采用一只双棱镜来产生两束不同方向的平面波,并选择较小的棱镜角和入射角,不用任何补偿系统 光路简单、调节方便,而且粗糙度测量范围较大,达到 $^{\text{I}}$ $^{\text{I}$

二、原理

实验原理如图 1 所示。 当粗糙表面 S 被入射角为 θ_1 、 $\theta_1+\delta\theta_1$ 的两束相干平面波同时照明时, 遵照 Léger L6 的理论分析可知, 粗糙表面散射的光场分布之间的相关性质与光波入射角 θ_1 、 $\theta_1+\delta\theta_1$ 及粗糙表面的标准偏差 σ 有关。用迈克尔逊干涉仪来研究散射场的相关性质, 当干涉仪调节到 $\delta\theta_2$ 满足

$$\delta\theta_2 = \frac{\cos\theta_1}{\cos\theta_2} \cdot \delta\theta_1 \tag{1}$$

时,能使在 θ_2 、 θ_2 + $\delta\theta_2$ 两个方向散射的场分布进入干涉状态。两个场满足一定程度相关时,在干涉仪后焦面将出现干涉条纹。条纹对比度为

$$V = \frac{1}{2} \exp \left[-\frac{1}{2} \left(\frac{2\pi}{\lambda} \frac{\sin(\theta_1 + \theta_2)}{\cos \theta_2} \sigma \delta \theta_1 \right)^2 \right], \tag{2}$$

当 $\theta_1 = \theta_2$, 则

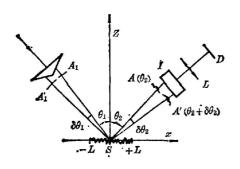


图 1 原理示意图

Fig. 1 Schematic diagram of principle

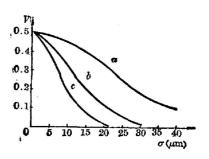


图 2 V-σ曲线

Fig. 2 V-σ curves

$$V = \frac{1}{2} \exp \left[-2 \left(\frac{2\pi}{\lambda} \sigma \sin \theta_1 \, \delta \theta_1 \right)^2 \right]_0 \tag{3}$$

图 2 给出了对比度 V 在 θ_1 和 $\delta\theta_1$ 不变的情况下随粗糙 度 σ 的 变 化规 律。 曲线 α 中 $\theta_1 = \theta_2 = 15^\circ$, $\delta\theta_1 = \delta\theta_2 = 30^\circ$; 曲线 b 中 $\theta_1 = \theta_2 = 30^\circ$, $\delta\theta_1 = \delta\theta_2 = 30'$; 曲线 c 中 $\theta_1 = \theta_2 = 45^\circ$, $\delta\theta_1 = \delta\theta_2 = 30'$ 。 从 V- σ 曲线可知,在其它条件不变的情况下,要扩大粗糙度测量范围必须减小光波的入射角。取 $\theta_1 = 15^\circ$,测量范围可达 $1 \mu m \sim 40 \mu m$ 。

三、实验装置及结果

测量表面粗糙度的实验光路如图 3 所示。

功率为 $6\,\mathrm{mW}$ 的氦氖激光器产生的光束通过扩束准直后经过双棱镜 P 分成两束夹角为 30' 的平面波同时照射粗糙表面 S。透镜 L_2 、 L_3 组成远焦系统,粗糙表面 S 成像于 L_3 的后焦面上。由迈克尔逊干涉仪来研究散射光。平面镜 M_1 、 M_2 设置在 L_3 的后焦面上,调节 M_1 或 M_2 ,则在透镜 L_4 的后焦面上可观察到任意两个不同散射方向散射的光场干涉结果。当调节到 $\delta\theta_2$ 满足关系式(1)时,出现的干涉条纹处于最佳状态。干涉条纹的对比度最大值不超过 0.5,在其它条件不变时,对比度随表面粗糙度的增加而减小。

本实验采用固定两束入射光夹角 $\delta\theta_1$ 的方法,同时使散射光在镜面反射方向被接收,即 $\theta_1 = \theta_2$ 。 这样调节迈克尔逊干涉仪的 M_1 或 M_2 ,使 $\delta\theta_2 = \delta\theta_1$,对比度处于最佳状态。 通过 测量干涉条纹对比度,利用公式(3)求得表面粗糙度参数 σ 。

对比度测量是将光电倍增管中输出的电信号经光子计数器显示强度,用函数记录仪所

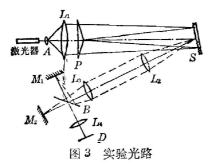


Fig. 3 Experimental set-up

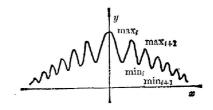


图 4 信号对比度曲线 Fig. 4 Curve of signal visibility

记录下的条纹对比度曲线(如图 4 所示)。对比度的数据处理采用下面的计算公式:

$$V = \frac{1}{N} \sum_{i=1}^{N} \frac{y_{\text{max}_{i}} - y_{\text{min}_{i}}}{y_{\text{max}_{i}} + y_{\text{min}_{i}}} \circ$$

在本实验中,取N=10,在y轴左右各取五个峰谷值。

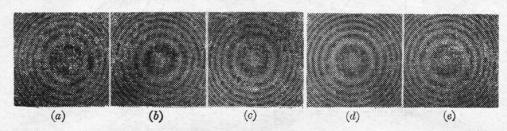


图 5 干涉条纹照片

Fig. 5 Photograph showing interference fringes

表 1 $\theta_1 = \theta_2 = 30^\circ$ 、 $\delta\theta_1 = 30'$ 时的实验数据

Table 1 Experimental data for $\theta_1 = \theta_2 = 30^{\circ}$, $\delta\theta_1 = 30'$

光洁度样板		▽ 7	√6	▽5	$\nabla 4$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
$R_q(\mu \mathbf{m})$		1.54~1.70	2.3~2.7	4.8~5.1	9.1~9.4	14.1~14.4
$\theta_1 = \theta_2 = 30^\circ$	V	0.495	0.488	0.477	0.330	0.235
	$\sigma(\mu \mathbf{m})$	1.63	2.53	5.43	10.5	14.1
$\theta_1 = \theta_2 = 15^{\circ}$	V	0.499	0.497	0.487	0.456	0.402
	$\sigma(\mu \mathbf{m})$	1.41	2.45	5.13	9.60	14.8

实验对光洁度从 ▽7~▽3 的平铣样板进行了粗糙度的测量。光电倍增管电压 1100 V,

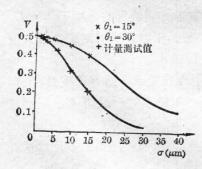


图 6 实验结果 Fig. 6 Experimental results

光子计数器的积分时间取 5 秒, 道宽 0.91 V, 阈值 0.09 V。图 $5(a) \sim (e)$ 给出了相应于 $\nabla 7 \sim \nabla 3$ 五种不同粗糙表面在 $\theta_1 = \theta_2 = 30^\circ$, $\delta \theta_1 = 30'$ 的条件下产生的干涉条纹图的照片。显然,对比度随粗糙度的增大而减小。表 1 给出了测量数据。

表 $1 + R_q$ 是泰勒雪夫-5 型粗糙度检查仪给出的计量值, R_q 和 σ 都代表粗糙表面轮廓的均方根偏差。表 1 也证实了理论分析所得的结论, 减小入射角 θ_1 可扩大粗糙度的测量范围。

Fig. 6 Experimental results 图 6 给出了理论曲线和相应的实验值 σ 与计量值 R_{σ} 的比较。实验结果与计量值符合得较好。

四、结论

本文提出的用激光散斑技术测量表面粗糙度的方法具有以下特点: 在光路设计上用一只双棱镜代替了Léger实验中照明部分的迈克尔逊干涉仪和远焦系 统,使实验装置和光学元件都比较简单,而且光路调节也比较方便。

光路排列时,适当地选择了入射角 θ_1 和 $\delta\theta_1$,使光路中不需要补偿系统就能得到较理想的干涉条纹,而且具有较大的粗糙度测量范围。

在测量上,本文所做的工作不用进行象 Fujii^[23]、Goodman^[33] 等用散斑强度来研究表面粗糙度时所必须的那种大量测量,而是通过测量几条有规则的条纹对比度来计算粗糙度值。如果用计算机处理系统,则能直接读出粗糙度值。

参考文献

- [1] W. B. Riddens; Appl. Opt., 1969, 8, No. 11 (Nov), 2173.
- [2] H. Fujii, T. Asakura et al.; J. O. S. A., 1976, 66, No. 1 (Jan), 11.
- [3] J. W. Goodman; Opt. Commun., 1975, 14, No. 3 (Jul), 324.
- [4] 程路,张炳泉; «物理学报», 1980, 29, No. 12 (Dec), 1570.
- [5] D. Leger, J. C. Perrin; J. O. S. A., 1976, 66, No. 11 (Nov), 1210.
- [6] J. C. 丹蒂;《激光斑纹及有关现象》,(科学出版社,1980)。

Determination of surface roughness by correlation of laser speckle in real time

ZHENG YUEMING WANG CE AND LING DEHONG (Laser Research Section, Suzhou University)

(Received 17 July 1984; revised 19 September 1984)

Abstract

This paper proposes and discusses a new set-up for realtime measurement of surface roughness by correlation of laser speckle patterns. The rough surface is illuminated simultaneously by two plane waves which are obtained from a laser after angular spliting by a biprism. Selecting a small angle of biprism and small angle of incidence, the measurement of roughness covers a dynamic range of 1μ m. Finally, the experimental results thus obtained are compared with metrological measurement by TALYSURF-5, the agreement of the data is well.