电荷转移碰撞对 He--Cd+和 He--Zn+ 激光作用的反常贡献

林福成

(中国科学院上海光学精密机械研究所)

提 要

用交叉束技术研究了 He⁺-Od 和 He⁺-Zn 的电荷转移碰撞光谱。得到的结果可以分成两部分: 1. 证 实了在能量亏损小于 1eV 时存在着共振的碰撞截面,符合已有的理论计算; 2. 发现这种碰撞能强烈地激 发 Od⁺ 的 4d⁹5s⁹ 组态和 Zn⁺ 的 3d⁹4s² 组态,对应的能量亏损远大于 1eV。因此,电荷转移碰撞对 Cd⁺ 的 441.6 和 325.0 nm 及 Zn⁺ 的 747.9 和 589.4 nm 的激光谱线有重要的贡献。讨论了这种反 常 贡献 的 起 因,认为共振的电荷转移碰撞和接着的级联跃迁可能是主要的激发机构。

电荷转移碰撞是气体激光器的一种重要激发机构。 理论的计算表明,这种碰撞截面具 有尖锐的共振峰,峰值发生在能量亏损 <1 eV 以内^[1,2]。因此,电荷转移碰撞激发具有很强 的选择性,避免了电子碰撞激发对激光跃迁下能级的非选择性激发,大大地减轻粒子数反转 的泵浦强度。根据这一想法, Walther 等人曾对反应系统进行过广泛的研究^[3]。此外,与

Penning 电离不同,电荷转移碰撞不容易饱和^[53],有利 于紫外波段所需要的高强度激发。目前最短波长的连 续紫外 Ne-Cu⁺ 和 He-Ag⁺ 激光器,就是利用电荷转 移碰撞作为主要激发机构的^[53]。

在通常的气体放电过程中,各种激发机构都可能 同时存在。为了研究电荷转移碰撞单独所起的作用, 我们利用了交叉束装置^[3,4],见图1。惰性气体离子束 的加速电压为500V,中性原子束从垂直方向入射。在 与此两束垂直的方向上用单色仪和光子计数器记录荧 光强度。这时产生的反应为

$$A_g^+ + B_g \to A_g + B_m^+ + \Delta E, \qquad (1)$$

式中 A 为惰性气体原子, B 为金属蒸气原子, g 和 m分别代表基态和激发态, ΔB 为能量亏损。令反应(1) 的截面为 σ_m , 束的相对速度为 v, 自发辐射引起 B_{π}^{+} 的 寿命为 τ_m , 则描写 B_{π}^{+} 的速率方程为

图 1 电荷交换光谱的实验装置 Fig. 1 Experimental schema for charge transfer spectroscopy

 $d[B_m^+]/dt = [A_g^+][B_g]\sigma_m v - [B_m^+]/\tau_m, \qquad (3)$ 为简单起见, 假定原子束和离子束有锐利的边界。在束内的粒子数密度 $[A_g^+]$ 和 $[B_g]$ 恒定不

收稿日期: 1983年8月29日

变,在束外等于零。这个假定也隐含着反应(1)引起的 $[B_g]$ 的变化可以忽略。采用固定在 B 束上的运动坐标,令 B 束与 A^+ 束刚刚碰撞的时刻为 t=0, 微分方程(3)的解为

$$[B_m^+] = [A_a^+] [B_a] \sigma_m \tau_m v (1 - e^{-i/\tau_m}) , \qquad (4)$$

在实验中,原子束的速度为 10^4 om/s 量级,交叉束的相互作用区为 om 量级,所以相互作用 区的渡越时间为 10^{-4} s 量级。另一方面,对于较强的荧光谱线, τ_m 一般等于或小于 10^{-6} s。 所以在相互作用区的绝大部分,(4)式括号内的第二项可以忽略:

$$[B_m^+] = [A_s^+] [B_a] \sigma_m \tau_m R_{mn} v, \qquad (5)$$

(5)式也是(3)式的稳态解。令 B^+ 离子 $m \to n$ 跃迁的分支比为 R_{mn} ,则单位体积单位时间内 B 束的频率为 ν_{mn} 的自发辐射光子数为 $[B_m^+]R_{mn}/\tau_m$,所以单色仪-光子计数器接收系统测量到的信号强度 I_{mn} 为

$$I_{mn} \propto [A_g^+] [B_g] \sigma_m \nu_{mn} v_o \qquad (6)$$

因此,量 I_{mn}/ν_{mn} 标志着电荷转移碰撞激发速率 $[A_{\sigma}^{+}][B_{\sigma}]\sigma_{m}v$ 的大小,其比例系数则与光谱分支比 R_{mn} 有关。类似地,如果 B^{+} 离子的 m态的激发,主要是从级联跃迁 $k \rightarrow m$ 来的, 而 k态是通过电荷转移碰撞激发的,则

$$I_{mn} \propto \sum [B_k^+] R_{km} / \tau_k R_{mn} \nu_{mn}, \qquad (7)$$

多次的级联跃迁引起的自发辐射,也可用(7)式。如果同时存在着碰撞激发和级联跃迁激发,则信号强度为(6)式与(7)式之和。

利用这台交叉束装置研究了 He⁺-Cd 和 He⁺→Zn 的碰撞光谱。选择这两个研究对象 是因为 He-Cd⁺ 激光器是最重要的金属离子激光器之一,Cd 和 Zn 的外电子壳层非常相 象,它们的激发机理曾经进行过详细的研究^[71, 63]。接收系统用标准的钨丝灯定标,波段为 230~850 nm。表1和表2分别是 Cd 和 Zn 的实验结果。图2和图3分别是有关的能级 和观察到的荧光谱线。量 *I*/v 不仅正比于电荷转移碰撞激发率与光谱分支比的乘积,也正 比于这个跃迁的每秒光子数目。从实验结果看出,电荷转移碰撞激发了能量亏损<1eV 的 那些能级,再由这些能级向下级联辐射跃迁,激发下面有关的能级。这个激发机构是 He-Cd⁺ 和 He-Zn⁺ 空心阴极激光器大多数激光谱线的主要激发方式,和前人在放电管中观察 放电余辉得到的结论相同^[77]。但是,对于 Zn⁺ 的 3d⁹s² 组态和 Cd⁺ 的 4d⁹s² 组态,能量亏损 远大于 1eV,却有最强的荧光强度,并且在我们所用的探测波段内,也观察不到任何来自上 面的级联跃迁。这个组态与 Cd⁺ 激光器最重要的紫色和紫外激光谱线(441.6 和 325.0 nm) 有关。

长期以来, Cd⁺ 的这两根激光谱线被认为是由 Penning 电离所激发的。最近, Goto 等人作了大量的工作, 证实了在正柱放电的 He-Od⁺ 激光器中, 441.6 nm 的谱线是由电子 碰撞引起的分步电离-激发引起的^[8]。根据我们上述的实验结果, 在空心 阴极 放 电中, 电 荷转移碰撞应当有非常重要的贡献。这个结论,也为下列两个与本实验类似的工作所证 实。Soskida 等人^[5] 用交 叉束实验研究了 He⁺, Ne⁺, Ar⁺和 Cd, Zn 碰撞时 441.6 nm、 325.0 nm(Cd⁺)和 589.4 nm(Zn⁺)的荧光光谱,离子束的能量为 2~400 eV,发现电荷转移 碰撞确实对这些谱线的激发有贡献。Ranjbar 等人^[10] 研究了 能量 为 1~500 eV 的 He⁺ 束 和 He[‡] 束与 Cd 束的碰撞,得到类似于本文图 2 的结果。在他们的 2 eV 束的结果中,各个 荧光线的每秒量子数目与本文有很大的不同。

表1 He⁺-Cd 的实验结果

λ(nm)	跃	迁	$\Delta E (\mathrm{cm}^{-1})$	Ι/ν	机	理
231.3	$5d {}^{2}D_{5/2} - 5p$	${}^{2}P^{0}_{3/2}$	35922	26	CR	
257.3	$6s {}^{2}S_{1/2} - 5p$	${}^{2}P_{1/2}^{0}$	42775	12	CR	
274.8	6s 2S1/2-5p	${}^{2}P^{0}_{3/2}$	42775	31	OR	
325.0*	s ² ² D _{3/2} 5p	${}^{2}P^{0}_{1/2}$	50873	227		
349.5	$5f {}^{2}F^{0}_{7/2} - 5d$	$^{2}D_{5/2}$	7322	8	CT	
353.6	$s^{2} {}^{2}D_{3/2} - 5p$	${}^{2}P^{0}_{3/2}$	50873	36		
413.5	$7d {}^{2}D_{5/2} - 6p$	${}^{2}P^{0}_{3/2}$	6204	6	CT	
441.6*	$s^{2} {}^{2}D_{5/2} - 5p$	${}^{2}P^{0}_{3/2}$	56507	1000		
488.2	$sp {}^{4}F_{5/2}^{0} - 5d$	$^{2}D_{3/2}$	19577	3		
533.7*	$4f {}^{2}F_{5/2}^{0} - 5d$	$^{2}D_{5/2}$	17347	17	CR	
537.8*	$4f {}^{2}F_{7/2}^{0} - 5d$	$^{2}D_{5/2}$	17334	26	CR	
588.0	$7f {}^{2}F^{0}_{7/2} - 6d$	$^{2}D_{5/2}$	1483	5	CT	
635.5*	$6g^2G_{7/2}-4f$	${}^{2}F_{5/2}^{0}$	1615	12	CT	
636.6*	$6g^2G_{9/2}-4f$	$F_{7/2}^{0}$	1615	12	CT	
646.5	$6d^2 D_{3/2} - 6p$	${}^{2}P^{0}_{1/2}$	15592	13	CR	
672.6	$6d {}^{2}D_{5/2} - 6p^{4}$	$^{2}P_{3/2}^{0}$	15518	25	CR	
723.7*	$6f^{2}F_{5/2}^{0}-6d$	$^{2}D_{3/2}$	1778	7	CT	
728.4*	$6f {}^{2}F_{7/2}^{0}-6d$	² D _{5/2}	1794	10	CT	
806.7*	$6p {}^{2}P^{0}_{3/2} - 6s$	${}^{2}S_{1/2}$	30382	40	CR	
853.0*	$6p^2 P_{1/2}^0 - 6s^2$	S1/2	31056	31	CR	
	1	-, -, -, -, -, -, -, -, -, -, -, -, -, -		100 C C C C C C C C C C C C C C C C C C		

Table 1 Experimental results of He⁺-Cd collision

* 激光谱线; CB 级联辐射; CT 电荷转移。

表 2 He⁺-Zn 的实验结果

Table 2 Experimental results of He⁺-Zn collision

$\lambda(nm)$	跃	£	$\Delta E(\mathrm{cm}^{-1})$	Ι/ν	机	理
250.2	5s 2S1/2-	$4p {}^{2}P_{1/2}^{0}$	34, 101	9	CI	3
255.8	58 2S1/2-	$4p {}^{2}P^{0}_{3/2}$	34,101	86	CI	3
384.2	$6d \ ^{2}D_{3/2}$	$-5p {}^{2}P^{0}_{3/2}$	- 5092	8	C'	ſ
411.9	7s 2S1/2	$-5p {}^{2}P^{0}_{3/2}$	-3342	20	C	Г
491.2*	$4f {}^{2}F^{0}_{5/2}$	$-4d {}^{2}D_{3/2}$	5275	37	C.	Г
492.4*	$4f {}^{2}F_{7/2}^{0}$	$4d \ ^{2}D_{5/2}$	5275	58	C.	Г
589.4*	s ^{2 2} D _{3/2}	$4p \ ^{2}P_{1/2}^{0}$	57,097	573		
602.1*	5d 2D _{3/2}	$5p {}^{2}P^{0}_{1/2}$	4569	15	C.	C
610.2*	$5d \ ^2D_{5/2}$	$5p {}^{2}P^{0}_{3/2}$	4545	27	C'.	Г
621.5	s ² ² D _{3/2} —	$4p \ ^{2}P_{3/2}^{0}$	57,097	127		
747.9*	$s^2 {}^2D_{5/2}$ —	$4p \ ^2P^0_{3/2}$	59,816	1000		
758.9*	$5p {}^{2}P^{0}_{3/2}$	$5s {}^{2}S_{1/2}$	20, 927	1.62	CI	3
761.3*	6s ² S _{1/2}	$5p {}^{2}P^{0}_{1/2}$	8039	32	07	r.
773.3*	$5p {}^{2}P_{1/2}^{0}$	5s 2S1/2	21, 173	- 83	CI	R
775.8*	$6s {}^2S_{1/2} - 5$	$5p \ ^2P^0_{3/2}$	8039	45	C.	Ľ
	l <u> </u>				1	

* 激光谱线; CR 级联辐射; CT 电荷转移。

图 2 He⁺-Cd 碰撞光谱(数字为相对光子数/秒) Fig. 2 Fluorescence observed in He⁺-Cd collision (the numbers are the relative number of photon/second)

4 d10n!

27)

5d

nd

np

电荷转移碰撞对 nd^9s^2 组态的激发作用,可能来自两方面。文献[10]的作者认为,由 Cd 原子的基态 $4d^{10}s^2$ 直接碰撞出一个 d 电子的可能性比碰撞出一个 5s 电子再激 发另一个 5s电子的几率要大。这个观点显然也适用于 Zn 的 $3d^{10}s^2$ 的情况。众所周知, Zn 和 Cd 都是 紧接着 3d 过渡族和 4d 过渡族的元素。在这两个过渡族中, nd 电子的组态能量同 (n+1)s的组态能量十分接近,单电子离化与双电子的离化-激发^[11]过程可能有相当大的不同,这需 要进一步的理论和实验的证实。 特别是,在低能碰撞时能量亏损必然要分配到碰撞产物中 去,这在原则上是可以测量出来的。另一个可能性是电荷碰撞激发仍有尖锐的共振特性,但 是接着观察到 nd^9s^2 的级联幅射落在真空紫外波段,而在实验中没有观察到。在 Zn⁺的情 况,这些态可能是 $3d^9sp$ 组态或者是 $3d^{10}4f$, $3d^{10}6p$ 等组态;在 Cd⁺的情况,则可能是 $4d^9sp$ 组态或者 $4d^{10}5f$, $4d^{10}8p$, $4d^{10}6f$ 和 $4d^{10}9p$ 等组态。这些组态都满足共振的要求和宇称的 选择定则。这也需要进一步的实验证实。

本文的实验测量是在西德 Max-Planck 协会的量子光学研究所进行的,作者对 H. Walther 教授和 K. Gnädig 博士的有益的讨论和合作表示感谢。

参考文献

- [1] В. И. Былкин; Опт. и Спектр., 1970, 29, Вып. 6 (Дек), 1036.
- [2] A. R. Turner-Smith, J. M. Green et al.: J. Phys. (B) Atom. Molec. Phys., 1973, 6, No. 1 (Jan), 114.
- [3] K. Gnädig, Lin Fucheng, Mo Yang, H. Walther; «Laser pumping by quasi resonaut energy and charge exchange processes», in Symposium on atomic and surface physics, p. 70, (Maria Alm/Sbg. Austria Feb. 10~16, 1980).

103cm-1

140

130

120

110 100

90

70

60

50

40 0

80 - 68

4 卷

- [4] K. Gnädig, Lin Fucheng; et al.; «Laseranregung durch Ladungsaustausch», 西德物理学会年会上的报告, 1980, Bielfeld.
- [5] J. A. Piper, P. Gill; J. Phys. (D) Appl. Phys., 1975, 8, No. 1 (Jan.), 127.
- [6] D. C. Gerstenberger, R. Solanki et al.; IEEE J. Quant. Electron, 1980, QE-16, No. 8 (Aug) 820.
- [7] G. J. Collins; J. Appl. Phys., 1973, 44, No. 10 (Oct), 4633
- [8] T. Goto, 私人通信, 即将发表于 Oyo Buturi, 1983, 52, No. 10, 里面有关于这一工作的大量文献。
- [9] M-T. I. Soskida, V. S. Shevera; JETP Lett., 1975, 22, No. 11 (Dec), 269
- [10] F. Ranjbar, H. H. Haris et al.; etal.; Appl. Phys. Lett., 1979, 31, No. 6 (Sep), 385.

The anomalous contribution of charge-transfer collision to the laser action of He-Cd+and He-Zn+ lasers

LIN FUCHENG

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

(Received 29 August 1983)

Abstract

The charge-transfer collision spectroscopy of He⁺-Cd and He⁺-Zn were studied by using crossed-beam technique. The results may be divided into two parts: (1) The resonant collision cross-sections for the energy defect less than 1 eV, which are consistent with the known theory; (2) The $4d^9s^2$ configuration in Cd⁺ and $3d^9s^2$ in Zn⁺ are strongly excited and it means that CT collision has important contribution to the population inversion mechanism of 441.6 and 325.0 nm laser lines in Cd⁺ and of 747.9 and 589.4 nm lines in Zn⁺. The resonant CT collision followed by cascade radiation may be responsible to this contribution.