晶体非线性系数测量及 BNN 晶体 的非线性光学性质

王文澄 王恭明 章志鸣 (复旦大学物理系)

提 要

本文叙述了一种测量晶体非线性系数的方法和实验装置。以 KDP 晶体的 $d_{\rm M}^{\rm NP}$ 为标准,我们测量了 ADP 晶体的 $d_{\rm M}^{\rm NP}$ 和 BNN 晶体若干样品的 $d_{\rm M}^{\rm NN}$ 和 $d_{\rm M}^{\rm NN}$ 。测量结果表明:BNN 晶体的 $d_{\rm M}^{\rm NN}$ 明显与其化学组份比有关。此外,本文还对 BNN 晶体的非线性光学性质进行了讨论。

一、引言

倍频晶体在激光技术中有着重要的应用。国内有许多单位已生长了各种倍频晶体,其中,BNN(p) $Ba_2NaNb_5O_{16}$)晶体由于具有高的非线性系数而引人注目,但以前还未见过国内有关测量晶体非线性系数的工作报导,这无疑直接影响了提高倍频晶体的非线性光学性能的研究。本文介绍一种测量晶体非线性系数的方法和实验装置;给出若干不同组份及不同生长条件下拉制的 BNN 晶体的 d_{31} 及 d_{32} 的测量结果;并对 BNN 晶体的非线性光学性质进行了讨论。

二、测量方法和装置

关于晶体非线性系数的张量元 d_u 的测量技术,在文献[1,2]中已有详细的讨论。测量方法可分为两大类:绝对测量和相对测量。在绝对测量中,以光学二次谐波振荡(SHG)的相位匹配法为主;而在相对测量中,是以 Maker 条纹法为主。前者能给出 d_u 的绝对值,但因对基频光的模式要求高,而且光功率的绝对值很难测准,所以测量精度较低($\pm 10 \sim 20\%$);后者以 KDP 或石英晶体为标准,把待测晶体与标准晶 体相 比较,所以测量精度较高($\pm 5\%$)。

我们采用相位匹配的比较测量法。这种方法吸收了以上两种测量方法中的优点,而避免了它们的缺点。这种方法与 Maker 条纹法相比较,具有测量方法比较简便的优点,而与相位匹配的绝对测量法相比较,又具有测量精度较高的优点。现把测量方法的原理叙述如下:

一束横向单模 (TEM_{000}) 的基频高斯光束垂直入射到一块两面平行的倍频晶体中,在晶体内所产生的倍频光的功率 $P^{2\omega}$ 可由下式给出 $^{\Box}$

$$P^{2\omega} = \frac{2\mu_0^{3/2} \epsilon_0^{1/2} \omega^2 d_{eff}^2 (P^{\omega})^2 l^2 \exp\left[-(\alpha^{\omega} + \frac{1}{2}\alpha^{2\omega})l\right]}{\pi w_0^2 n^{2\omega} (n^{\omega})^2} \left[\frac{\sin^2\left(\frac{\Delta k l}{2}\right)}{\left(\frac{\Delta k}{2}l\right)^2}\right],\tag{1}$$

式中 P^{ω} 为晶体内基频光功率, ω 为基频光的角频率, w_0 为基频高斯光束束腰半径, d_{eff} 是晶体非线性系数, n^{ω} 是晶体对基频光的折射率, $n^{2\omega}$ 是对倍频光的折射率, μ_0 和 ϵ_0 分别为自由空间的磁导率和电容率; α^{ω} 和 $\alpha^{2\omega}$ 分别为晶体对基频光和倍频光的吸收系数; $\Delta k = k^{2\omega} - 2k^{\omega}$ 表示在晶体中基频光和倍频光之间的波矢失配。

如果在实验条件上使得 $\Delta k = 0$,即实现相位匹配,则 (1) 式中的 $\left[\sin^2\left(\frac{\Delta k}{2}l\right)\right]/\left(\frac{\Delta k}{2}l\right)^2$ = 1。一般情况下,倍频晶体在可见光和近红外光区都有很好的透光性能,所以可以略去光吸收的影响,则 (1) 式可改写为

$$P^{2\omega} = \frac{2\mu_0^{3/2} \epsilon_0^{1/2} \omega^2 d_{eff}^2 (P^{\omega})^2 l^2}{\pi w_0^2 n^{2\omega} (n^{\omega})^2},$$
 (2)

应当指出,在(1)或(2)中,l为倍频晶体的长度,为使(1)或(2)式成立,要求 $l \ll l_a$ 及 $l \ll l_t$ 。 l_a 称为倍频晶体的孔径长度,

$$l_0 = w_0 \pi^{1/2} / \rho_* \tag{3}$$

式中 ρ 为双折射晶体中基频光和倍频光之间的离散角,对于负单轴晶体 (如 KDP), ρ 可由下式求得:

$$\tan \rho = \frac{1}{2} (n_0^{\omega})^2 \left[\frac{1}{(n_e^{2\omega})^2} - \frac{1}{(n_0^{2\omega})^2} \right] \sin 2\theta_m, \tag{4}$$

式中 θ_m 为倍频晶体的相位匹配角,而 θ_m 为基频高斯光束的有效聚焦长度

$$l_f = \frac{\pi}{2} k^{\omega} w_0^2, \tag{5}$$

式中 k^w 为基频光的波数。

还应当指出,在(1)或(2)式中, P^{ω} 和 $P^{2\omega}$ 分别为晶体中基频光和倍频光的功率,但在实验中我们只能测量在晶体外面的功率,所以必须对光在晶体表面的反射损失进行校正。可以证明⁽³⁾,校正之后(2)式应改写为:

$$P^{2\omega} = \frac{128 \,\mu_0^{3/2} \epsilon_0^{1/2} \omega^2 d_{eff}^2 (P^{\omega})^2 l^2}{\pi w_0^2 (n_{\omega} + 1)^4 (n_{2\omega} + 1)^2} \,, \tag{6}$$

有效非线性系数 d_{eff} 与张量元 d_u 之间的关系列在表 1 中, 对不同晶体及不同的相位匹配方式,则有不同的关系式。

 θ_m 为相位匹配角(即基频光与晶体 σ 轴的夹角), ϕ 为基频光通光方向的方位角。 BNN 晶体的对称点群为 mm^2 , 有 d_{31} , d_{32} , d_{33} , $d_{15}(=d_{31})$ 及 $d_{24}(=d_{32})$ 共五个非零张量元。 我们采用相位匹配比较法,可以测出 $d_{31}(=d_{15})$ 及 $d_{32}(=d_{24})$ 对于 d_{36}^{EDP} 的相对值。 应当指出,采用本方法, 无法测出 d_{32} , 这是不足之处。

测量所用的实验装置如图 1 所示: 连续泵浦声光调 Q 的 Nd: YAG 激光器,输出脉冲宽度为 $0.8\,\mu$ s, 重复率为 500 次/秒的基频光,光脉冲的峰值功率为千瓦级,其光束腰部束斑半径 $w_0=0.51\,\mathrm{mm}$,发散角 $\theta=1.8\,\mathrm{mrad}$ 。由 R_1 输出的基频激光束,经过焦距为 $280\,\mathrm{mm}$ 的透镜 l_1 ,聚焦在倍频晶体 o 上;倍频光经过焦距为 $83\,\mathrm{mm}$ 的透镜 l_2 ,聚焦在硅光电二级管 PD_1 上。 N_1 和 N_2 为一对尼科尔棱镜,用来确定基频光和倍频光的偏振方向;F 为一组

晶体名称	对称类型	匹配方式 -	相位匹配条件		光电场偏振方向		
			θ _m (注)	φ	E^{ω} 方向	E 2ω 方向	d_{eff}
KDP	42 m	I型,角度	41°27′	45°	[110]	1[110]	$d_{36}\sin\theta_m$
ADP	42 m	I型,角度	42°	45°	[110]	上[110]	$d_{36}\sin\theta_m$
BNN	mm2	I型,角度	74°	90°	[100]	[100]	$d_{31}\sin\theta_m$
BNN	mm2	I型,温型	90°	90°	[100]	[001]	d_{31}
BNN	mm2	I 型,角度	76°	0°	[010]	上[010]	$d_{32}\sin\theta_m$
BNN	mm2	I型,温度	90°	0,	[010]	[001]	d_{32}

表 $\mathbf{1}$ d_{eff} 与 d_u 的关系式 Table $\mathbf{1}$ Retation between d_{eff} and d_u

注: 基频光波长 $\lambda^{\omega}=1.064 \mu$; 倍频光波长 $\lambda^{2\omega}=0.532 \mu$ 。

滤光片,使得入射至 PD_I 上只有倍频光; A 为光学衰减片,使得 PD_I 上的信号不出现饱和。由高反射镜 R_2 输出的基频光,作为测量中的参考光束,用来监视基频光的功率起伏,这束光由 PD_{II} 检测之后,与 PD_I 的信号一起送至激光光度计(boxcar),标 准晶体与待测晶体的 P^ω 及 $P^{2\omega}$ 均由激光光度计测出其相对强度的平均值。

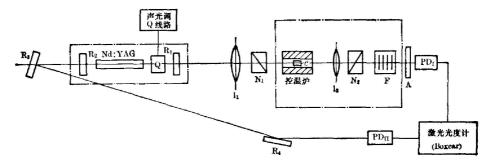


图 1 实验装置示意图

Fig. 1 Block diagram of the experimental arrangement for measuring nonlinear optical coefficients

三、测量结果

为了检验测量装置的可靠性,我们先用一块 ADP 晶体与 KDP 晶体进行比较测量。测量结果及文献数据列于表 2

表 2 $d_{36}^{\mathrm{ADP}}/d_{36}^{\mathrm{RDP}}$ 的测量结果

Table 2 The experimental results of $d_{36}^{\mathrm{ADP}}/d_{36}^{\mathrm{RDP}}$

测量次数	1	2	3	4	平均	文献数据[4]
$d_{86}^{ m ADP}/d_{36}^{ m KDP}$	1.19	1.25	1.19	1.23	1.22±0.03	1.21

对于 BNN 晶体我们测量了四块样品*,测量结果列于表 3 及表 4 中。

表 3 由温度匹配相对比较法测得的结果
Table 3 The results from the temperature match comparison

		编	编 号		BNN78-38	BNN78-44	BNN79-19	文献[5]
样 品			BaO	41.5	41.3	41.3	41.7	
	品	原料组份 (% mol)	Na ₂ O	8.5	8.7	8.7	8.7	
			Nb ₂ O ₅	50.0	50.0	50.0	50.0	
		原料再结晶处理		无	无	有	有	
$d_{31}^{ m BNN}/d_{36}^{ m KDP}$			31±2	29±1	32±1	33±1	31±2	
$T_m^{81}(^{\circ}\mathrm{C})$			81	92	98	92	101	
$d_{32}^{ m BNN}/d_{36}^{ m KDP}$			27±1	31±2	35±1	31±1	31±3	
$T^{32}_{m}(^{\circ}\mathrm{C})$			67.5	87	89	80	89	

表 4 由角度匹配相对比较法测得的结果

Table 4 The results from the angle match comparison

样 品	θ_m^{31}	$d_{31}^{ m BNN}/d_{36}^{ m KDP}$	样 品	θ_{m}^{32}	$d_{32}^{ m BNN}/d_{36}^{ m KDP}$
BNN79-19	74°	31±2	BNN78-44	76°	34±1

注: θ_m^{31} 和 θ_m^{32} 取自文献[5]的数据。

表中的数据是对每一块样品进行四次以上测量结果的平均值。测量误差由每次测量值与平均值之差的平均给出。 样品 BNN77-53 的 d_{82} 的数据比较小,这是与样品的组份有关。 关于这一点我们还将在下面进行讨论。

为了保证测量的精度,我们认为应该注意以下几个问题: (1) 基频光束经过透镜 L 聚焦之后,仍应满足 $l_a\gg l$, $l_f\gg l$ 的要求; 所以我们的 YAG 激光器采用平-平腔,激光束在离 R_1 为 100 mm 处的束腰半径 $w_0=0.51$ mm,近场发 散 角 为 $\theta_{\alpha}=0.73$ mrad (远 场 发 散 角 $\theta_{\alpha}=1.8$ mrad),经透镜 l_a 后,光束在 l_a 处的腰部半径为 $w_0'=0.37$ mm。(2) YAG 激光输出的脉冲功率的起伏不能过大。当最大起伏 l_a 50% 时,测量数据的起伏可以小于 5%。由于我们在测量装置中采用激光光度计,对脉冲信号进行平均,所以可以消除那些不可避免的幅

表 5 化学衰减片的衰减倍数的测量值

Table 5 The measuremental value of the attenuation ratio of the optical attenuation plate

衰	减	片	在倍频光 5320 Å 处直接测量值	在 Ar+ 激光测量值	在 He-Ne 激光下 测量值	用补插法求出在 5320 Å 处的测量值	
	A (2#)		4.5	3.9	5.8	4.4	
	A (4#)		5.4×10 ²	6.0×10^{2}	4.2×10 ²	5.5×10^{2}	

^{*} BNN 晶体样品及原料组份数据是由中国科学院上海硅酸盐研究所提供的。

度不太大的功率起伏对测量结果的影响。(3)待测晶体和标准晶体的通光面要有足够的光 洁度,两面平行度≤1′。(4) 要仔细调节角度或温度,使得测量是在相位匹配(最好是在非临 界相位匹配) 的条件下进行。(5) 光学衰减片是用倍频光(0.532 μ) 在本实验装置上直接测 量, 也用 He-Ne 激光和 Ar^{\dagger} 激光测量它们的衰减倍数,然后再用补插法求出在 $\lambda=0.532\,\mu$ 处的衰减倍数,二者符合得很好,如表5所示。

四、关于 BNN 晶体的非线性光学性质的讨论

根据所测量的四块 BNN 样品的结果, 我们认为对 BNN 晶体的非线性光学性质, 可作 以下几点讨论:

(1) BNN 的非线性系数 d_{s1} 和 d_{s2} 的大小与晶体中所含的组份百分比及晶体的组份 的 纯度有关。对 d_{32} 来说, 尤其明显。

由表 3 可看出, BNN77-53 样品的 $d_{32}=27\pm1$, 而 BNN78-44 的 $d_{32}=35\pm1$, 两者差别 较大, 这主要是因为两者在生长单晶时所用的原料组份不同(见表 3)。

如果把 BNN78-38 样品和 78-44 样品的 d_{32} 相比较,后者比前者大,这两块样品所用的 原料配比是一样的, 但 BNN78-44 晶体在生长时是经过再结晶处理, 因此后者比前者的纯 度要高。

我们认为,文献[5] 所给出的数据仅是一种特定组份的 BNN 晶体的数据,这种晶体的组 份化学比为 Ba(4+x)Na(2-2x)Nb10O30, 其中 x=0.13。很显然, 对于 BNN 晶体, 即使它们的结构 是相同的, 但它们的组份如果有 0.2% 克分子的不同, 就导致其非线性系数有较大的差别。

另外,由表3及表4可以看出,对同一样品,由角度(临界)匹配与由温度(非临界)匹配 所测得的非线性系数之间的差别在测量的误差范围之内,这说明在一定范围内的温度变化 并不影响 BNN 晶体的二阶非线性极化率。

(2) BNN77-53 晶体样品的非临界相位匹配温度 T_m^{31} 及 T_m^{32} 的数值比其他三块样品匹配温度要低 $11\sim$ 17°C 及 12.5~22°C。

对于这一点,我们认为亦是与晶体组份的化学比 有密切关系。文献[5]指出: 处于正交相下 BNN 晶体 的主折射率 nx 和 nx 随着温度升高而降低, 而 nx 随着 温度的升高而增大。 当 $n_x^{\omega}(T_m^{31}) = n_z^{2\omega}(T_m^{31})$ 及 $n_y^{\omega}(T_m^{32})$ $=n_z^{2\omega}(T_m^{32})$ 时,就实现了非临界相位匹配。对于 BNN77-53 样品, 因其钠组份较少, 所以其匹配温度较 低,这表明它的折射率温度系数较大。

(3) 由表 3 还可看出, 晶体的组份化学比不同, 对 Fig. 2 The structure of barium sodium d_{32}^{BNN} 的影响比对 d_{31}^{BNN} 要来得大。

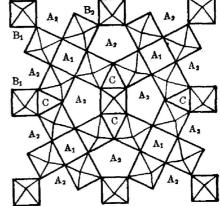


图 2 在 300°C 下 BNN 晶体的结构 niobate crystal below 300°C

BNN 晶体的结构如图 2 所示[6]; 理想情况下一个单胞所包含的分子式为 Ba₄Na₂Nb₁₀O₃₀₀ Na 离子占据 A_1 格点, Ba 离子占据 A_2 格点, Nb 离子位于由 O 离子组成的氧八面体 B_1 和 B_2 的中心, C是空的。 当晶体中 Ba 离子和 Na 离子的比例不是 2:1 而是 (4+x):(2-2x)

时,在晶体中就会有 α 个原来被钠离子占据的 A_1 格点被 Ba 离子占据,同时也有 α 个位于 A_1 处的空格点出现,因为 Ba 的离子半径比 Na 的离子半径大,所以我们认为这些占据 A_1 格点的 Ba 离子直接影响 BNN 晶体的离子基团的非线性极化过程。文献 [7] 认为:BNN 晶体的非线性极化主要是由于氧八面体沿四次轴 (C 轴) 的畸变所引起的。从我们的测量结果中知道,由于组份的化学比不同,引起晶体的非线性系数 d_{BN}^{SNN} 的变化很明显,而 d_{BN}^{SNN} 的变化不明显。据此我们认为存在如下一种可能性:占据 A_1 格点的 Ba 离子引起氧八面体沿着平行于 b 轴的二次轴产生畸变。这一畸变对非线性极化有着一定的贡献,,而且这一部分的极化与晶体组份的化学比明显地有关。

五、结 论

我们用相位匹配比较法,测量了 BNN 晶体的非线性系数 d_{31} 及 d_{32} ,对于 KDP 晶体 d_{36} 的相对值,所得的结果是可靠的。 BNN 晶体的非线性系数 d_{31} 及 d_{32} 与晶体组份的化学 比和原料的纯度明显地有关,对于 d_{32} 来说,尤为明显。

作者对姜杏梅、夏敬芳、杨心亮、夏绍丰、张慧英等同志在本实验中给予的帮助表示致谢。 对中国科学院上海硅酸盐所的唐元汾同志的密切合作,致以谢意。

参考文献

- [1] H. Rabin, C. L. Tang; "Quantum Electronics: Vol. 1, Nonlinear Optics" (New York, Academic, Pr., 1975), 209~281.
- [2] 李阴远,杨顺华;《非线性光学》(科学出版社,1974),171~188.
- [3] M. Bron, E. Wolf; «光学原理»上册(中译本,科学出版社,1978),61~71.
- [4] J. Terphagnon, S. K. Kurtz; Phys. Rev. (B), 1970, B1, No. 4 (15 Feb), 1739.
- [5] S. Singn, D. A. Draegert et al.; Phys. Rev. (B), 1970, B2, No. 7 (1 Oct), 2709.
- [6] P. B. Jamison, S. C. Abrahams et al.; J. Chem. Phys., 1969, 50, No. 10 (15 May), 4325.
- [7] 陈创天; 《物理学报》, 1977, 26, No. 6 (Nov), 486.

Measurement of SHG coefficients of crystals and nonlinear optical properties of BNN crystal

WANG WENCHENG WANG GANGMIN AND ZHANG ZHIMING (Department of Physics, Fudan University, Shanghai)

(Received 21 January 1981)

Abstract

This article discribes a comparative method for experimental determination of SHG coefficients of some crystals. With the $d_{36}^{\rm RDP}$ as a reference standard, we measured both $d_{36}^{\rm RDP}$ and $d_{31}^{\rm BNN}$, $d_{32}^{\rm BNN}$ of several samples of BNN crystal. Their results show that the coefficient $d_{32}^{\rm RNN}$ is sensitively related to the stoichiometric composition of BNN crystal. Some discussions concerning the nonlinear optical properties of BNN crystal are also presented.